JPH02140489A - Compressor - Google Patents
CompressorInfo
- Publication number
- JPH02140489A JPH02140489A JP63293395A JP29339588A JPH02140489A JP H02140489 A JPH02140489 A JP H02140489A JP 63293395 A JP63293395 A JP 63293395A JP 29339588 A JP29339588 A JP 29339588A JP H02140489 A JPH02140489 A JP H02140489A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- liquid refrigerant
- compression
- valve
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims abstract description 102
- 239000003507 refrigerant Substances 0.000 claims abstract description 95
- 238000002347 injection Methods 0.000 claims abstract description 89
- 239000007924 injection Substances 0.000 claims abstract description 89
- 238000007906 compression Methods 0.000 claims abstract description 74
- 230000006835 compression Effects 0.000 claims abstract description 73
- 238000001816 cooling Methods 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 3
- 239000003595 mist Substances 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- 238000001704 evaporation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は空調装置等に使用される圧縮機に係り、特に圧
縮行程中に圧縮室内に液冷媒を噴射するようにした圧縮
機に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compressor used in an air conditioner or the like, and particularly relates to a compressor that injects liquid refrigerant into a compression chamber during a compression stroke.
[従来の技術]
冷媒圧縮用の圧縮機を高速で運転するか又は吐出圧力を
高く設定すると吐出冷媒ガス温度が高くなり、一般に冷
媒の熱分解やモータ効率の低下が起るので、これを防ぐ
ために、従来、圧縮機の冷却を行なっている。この従来
の冷却方法には、(イ)吐出ガスを一度圧縮機の外に出
して冷却した後再び圧縮機に戻す方法、<U>ヒートバ
イブを用いて冷却する方法、(ハ)液冷媒を圧縮機の圧
縮室内に圧縮行程中に噴射する方法等がある。[Prior Art] When a compressor for refrigerant compression is operated at high speed or the discharge pressure is set high, the temperature of the discharged refrigerant gas increases, which generally causes thermal decomposition of the refrigerant and a decrease in motor efficiency. Conventionally, the compressor is cooled to prevent This conventional cooling method includes (a) a method in which the discharged gas is cooled once outside the compressor and then returned to the compressor, a method in which the discharged gas is cooled using a heat vibrator, and (c) a method in which the discharged gas is cooled by using a heat vibrator. There are methods such as injecting it into the compression chamber of the compressor during the compression stroke.
上記(ハ)の方法を行う従来の装置は、特開昭53−4
0451に記載のように、流量計で噴射する液冷媒流量
を計測し、冷凍負荷に応じて流量制御弁で噴射する液冷
媒流量を制御するか、特開昭54−40347に記載の
ように、2個の液噴出孔から噴射される液冷媒を互いに
衝突させるように液噴射ノズルを設け、液冷媒を互いに
干渉させて霧状とするか、特開昭61−159054に
記載のように、電動機の温度が所定値を超えたとき動作
する過負荷検知手段を設け、これが動作したとき液冷媒
用開閉弁を開放する弁開閉手段を設けて、無、駄な液冷
媒噴射を防ぐか、実開昭60−59039に記載のよう
に、シリンダ内圧力検出器の検出信号に基づいて開閉す
る電磁弁をバイパス路に介装し、圧縮機のシリンダ内圧
力が所定値以上になったときシリンダ内に液冷媒を強制
的に噴射させるようになっていた。The conventional device for carrying out the method (c) above is JP-A-53-4
0451, the flow rate of liquid refrigerant to be injected is measured with a flow meter, and the flow rate of liquid refrigerant to be injected is controlled by a flow rate control valve according to the refrigeration load, or as described in JP-A-54-40347, A liquid injection nozzle is provided so that the liquid refrigerant injected from two liquid injection holes collides with each other, and the liquid refrigerant interferes with each other to form a mist. Provide overload detection means that operates when the temperature of As described in 1986-59039, a solenoid valve that opens and closes based on a detection signal from a cylinder pressure detector is installed in the bypass passage, and when the cylinder pressure of the compressor exceeds a predetermined value, Liquid refrigerant was forcibly injected.
〔発明が解決しようとする課題]
前記(ハ)の方法を行う従来技術のうち、特開昭53−
40451.61−159054.実開昭60−590
39に記載の従来技術は、液冷媒噴射による冷却手段を
夫々前記の如く講じているが、シリンダ内の液冷媒の蒸
発時間には考慮が払われておらず、′虐状噴射でないの
で液冷媒が蒸発しきらないでシリンダ内に残り、それ故
に液圧縮を生じたり圧縮行程途中で十分な熱交換が行わ
れなかかつたりするため、等温圧縮に近すげることが出
来ず、大幅な圧縮動力の低減を図ることができないとい
う問題点があった。[Problems to be Solved by the Invention] Among the conventional techniques for performing the method (c) above, Japanese Unexamined Patent Application Publication No. 1986-
40451.61-159054. Jitsukai Showa 60-590
The prior art described in No. 39 provides a cooling means by liquid refrigerant injection as described above, but no consideration is given to the evaporation time of the liquid refrigerant in the cylinder. remains in the cylinder without being completely evaporated, resulting in liquid compression and insufficient heat exchange during the compression process, making it impossible to approach isothermal compression and requiring a significant amount of compression power. There was a problem in that it was not possible to reduce the
又、特開昭54−40347に記載の従来記述は、液噴
射孔から噴射される液冷媒が互いに衝突するように液噴
射ノズルを設け、霧状とするようにしているが、噴射ノ
ズルが2ケ必要であり、取り付けるスペース上の問題点
があるだけでなく、噴出液dεを衝突させて液膜を作り
、液膜の外周部からt成粒を発生させる方法であるので
、短詩1■ノで噴射を行う場合、微粒化が十分促進され
ず、大きな液粒になりやすく、液粒の径は噴出流の速さ
、すなわち、液冷媒の源である凝縮器の圧力レベルの影
響を受けやすいという問題点があった。Furthermore, in the conventional description described in JP-A No. 54-40347, liquid injection nozzles are provided so that the liquid refrigerant injected from the liquid injection holes collide with each other to form a mist. Not only is this method necessary and there is a problem with the installation space, but also the method involves colliding the ejected liquid dε to create a liquid film and generating T agglomerations from the outer periphery of the liquid film. When injection is performed, atomization is not sufficiently promoted and the droplets tend to become large, and the diameter of the droplets is easily influenced by the speed of the jet flow, that is, the pressure level of the condenser, which is the source of the liquid refrigerant. There was a problem.
本発明は、前記(ハ)の方法を行う圧縮機において、噴
射液冷媒を微小な液粒にして圧縮行程中で全て蒸発させ
て、液圧縮を防止し、圧縮行程をより等温変化に近づけ
、またIEN閥動力の低減、サイクルエネルギー効率の
最大化を可能にすることを目的とする。The present invention provides a compressor that performs the method (c), in which the injected liquid refrigerant is made into minute liquid droplets and all evaporated during the compression stroke to prevent liquid compression and bring the compression stroke closer to an isothermal change. It also aims to reduce IEN power and maximize cycle energy efficiency.
[課題を解決するための手段]
本発明は上記目的を達成するため、特許請求の範囲の請
求項1ないし5夫々に記載の圧縮機を提供するものであ
る。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a compressor according to claims 1 to 5, respectively.
[作 用]
高圧の液冷媒を液冷媒噴射装置に導入し、弁作動手段へ
のパルス電気信号により弁を開くと、液冷媒は、スワー
ラにより噴射ノズルの中心軸に対して偏心して流入する
ため旋回を与えられ、小さな孔径の噴射ノズルから高速
旋回しながら圧縮機の圧縮室内に噴射するので、遠心力
やキャビテーション効果及び液膜の表面張力による不安
定性などにより、ごく短時間で噴霧状の微小な液粒に分
裂する。液粒の粒径が小さいほど体積が小さいため蒸発
速度は速い。又、高圧の液冷媒を噴射するため、噴射時
間がごく短時間でも圧縮機を冷却するのに十分な流量を
噴射出来ろ、従って、この微小な液粒を圧縮行程途中に
噴射すると、高速運転でも圧縮行程が終了するまでにガ
スから受熱して全て蒸発するので、圧縮行程を等温圧縮
に近づけることが可能になり、液圧縮も完全に防止出来
る。[Function] When high-pressure liquid refrigerant is introduced into the liquid refrigerant injection device and the valve is opened by a pulse electric signal to the valve operating means, the liquid refrigerant flows eccentrically with respect to the central axis of the injection nozzle due to the swirler. Since the injection is given a swirl and is injected into the compression chamber of the compressor while rotating at high speed from an injection nozzle with a small hole diameter, it becomes a fine spray in a very short time due to instability due to centrifugal force, cavitation effect, and surface tension of the liquid film. It splits into liquid droplets. The smaller the particle size of the liquid droplets, the smaller the volume, so the evaporation rate is faster. In addition, since high-pressure liquid refrigerant is injected, even if the injection time is very short, a sufficient flow rate can be injected to cool the compressor. Therefore, if these minute liquid droplets are injected during the compression stroke, high-speed operation However, since it receives heat from the gas and evaporates all of it by the time the compression stroke ends, it becomes possible to bring the compression stroke closer to isothermal compression, and liquid compression can be completely prevented.
さらに、この噴射タイミングは、液冷媒噴射装置の弁作
動手段にパルス電気信号指令を送る時刻に依って任意に
変えられるので、圧縮動力が最小となる最適なタイミン
グを選ぶことが出来るし。Furthermore, since this injection timing can be arbitrarily changed depending on the time when a pulse electric signal command is sent to the valve operating means of the liquid refrigerant injection device, the optimum timing at which the compression power is minimized can be selected.
噴射時間ひいては噴射量もパルス電気信号指令により任
意に変えることが出来るので、サイクル全体の効率、す
なわち、暖房能力又は冷房能力と電気入力の比を最大に
なるように噴射時間、噴射タイミングを制御することが
出来る。Since the injection time and, by extension, the injection amount can be changed arbitrarily by pulse electric signal commands, the injection time and injection timing are controlled to maximize the efficiency of the entire cycle, that is, the ratio of heating capacity or cooling capacity to electrical input. I can do it.
[実 施 例コ
本発明の一実施例を第1図〜第11図により説明する2
第1図にサイクルの代表例として、インバータ暇動回転
数制御ヒートポンプ式ルームエアコンのサイクル構成を
示す。このサイクルは、圧縮機1、冷媒の流れ方向を変
えるための四方弁2゜室外熱交換器3、膨張弁4、室内
熱交換器5、圧縮機の回転速度等を制御するためのマイ
クロコンピュータ7、インバータ卵動装置8、液冷媒の
流路を切り換える切り換え弁6、液冷媒噴射装置用駆動
回路9、図示はしていないが室内熱交換器5に内蔵され
たインルームセンサ、室外熱交換器3に内蔵されたアウ
トドアセンサ等から構成されている。冷房運転の場合は
、圧縮機1から吐出された冷媒、ガスは、凝縮器として
の室外熱交換器3゜膨張弁4、蒸発器としての室内熱交
換器5を経て圧縮機1に戻るように、また、暖房運転の
場合は。[Example] An example of the present invention will be explained with reference to FIGS. 1 to 11.
FIG. 1 shows a cycle configuration of a heat pump type room air conditioner with inverter idle rotation speed control as a representative example of the cycle. This cycle consists of a compressor 1, a four-way valve 2 for changing the flow direction of the refrigerant, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, and a microcomputer 7 for controlling the rotational speed of the compressor, etc. , an inverter motion device 8, a switching valve 6 for switching the liquid refrigerant flow path, a drive circuit 9 for the liquid refrigerant injection device, an in-room sensor built into the indoor heat exchanger 5 (not shown), and an outdoor heat exchanger. It consists of outdoor sensors etc. built into 3. In the case of cooling operation, the refrigerant and gas discharged from the compressor 1 are returned to the compressor 1 through an outdoor heat exchanger 3 as a condenser, an expansion valve 4, and an indoor heat exchanger 5 as an evaporator. , also in case of heating operation.
圧縮機1から吐出された冷媒ガスは、蒸発器としての室
外熱交換器5、膨張弁4、凝縮器としての室内熱交換器
3を経て圧縮機1に戻るように流れる。圧縮機1を冷却
するため、液冷媒を圧縮行程中に圧縮機内にを噴射する
が、その液冷媒は、切り換え弁6により、冷房運転の場
合は室外熱交換器3から、また、暖房運転の場合は室内
熱交換器5から圧縮機1に導かれるように切り換えられ
る。Refrigerant gas discharged from the compressor 1 flows back to the compressor 1 through an outdoor heat exchanger 5 as an evaporator, an expansion valve 4, and an indoor heat exchanger 3 as a condenser. In order to cool the compressor 1, liquid refrigerant is injected into the compressor during the compression stroke. In this case, the air is switched so that it is guided from the indoor heat exchanger 5 to the compressor 1.
第2図は、上記圧縮機1どしてローリングビス1〜ン形
ロータリ圧縮機を例にとり、これに上記の液冷媒の噴射
のための液冷媒噴射′!A置]−7を取り付けた例を示
す。ロータリ圧縮機の構成は、ケーシング10、シリン
ダ】−1、ローラ12、上軸受13、下軸受】4、シャ
フト15、モータ16等からなる。シリンダ11には液
冷媒の導入管18に連なる液冷媒噴射装置17(その構
造は後に詳述する)を取り付けている。この液冷媒噴射
装置17の取り付は位置は、その噴出ノズル23が第3
図に示したように、ローラ12、ベーン19、上下軸受
13,14、シリンダ11で形成される圧縮室20内に
圧縮行程のほぼ如何なる段階においても臨んでいるよう
な位置に設けられている。FIG. 2 shows an example of a rolling screw type rotary compressor as the compressor 1, and the liquid refrigerant injection '! An example in which A-7 is installed is shown. The rotary compressor is composed of a casing 10, a cylinder 1, a roller 12, an upper bearing 13, a lower bearing 4, a shaft 15, a motor 16, and the like. A liquid refrigerant injection device 17 (the structure of which will be described in detail later) is attached to the cylinder 11 and is connected to a liquid refrigerant introduction pipe 18 . This liquid refrigerant injection device 17 is installed in a position such that its injection nozzle 23 is in the third position.
As shown in the figure, it is provided in a position where it faces into the compression chamber 20 formed by the roller 12, the vane 19, the upper and lower bearings 13, 14, and the cylinder 11 at almost any stage of the compression stroke.
換言すれば、液冷媒噴射装置17の噴出ノズル23は圧
縮室20が圧縮行程の終り近くになったときでも該圧縮
室に臨んでいる様な位置、すなわち、冷媒ガス吐出口1
01に近い位置に配置している。 モータ16が回転す
るとシャフト15の軸心に対して偏心したローラ12が
シリンダ11内で転勤運動し、圧縮室20の空間容積が
小さくなって該圧縮室内の冷媒ガスを圧縮し、吐出口1
02から不図示の吐出弁(逆止弁)を経てサイクルへ吐
出する。同時に吸入室21の空間容積が大きくなり、冷
媒ガスを吸入口102から吸入する。この動作を繰り返
すことにより連続的に冷媒ガスを高圧にしてサイクル中
を循環させる。すなわち、圧縮機1から吐出された高温
高圧の冷媒ガスは、冷房運転時には、凝縮器としての室
外熱交換器3で冷却されて液体となり、膨張弁4で絞ら
れて低圧になり、蒸発器としての室内熱交換器5で受熱
して蒸発した後、圧縮機1に戻る。暖房運転時には、冷
媒は逆方向に循環し、i!!aiどしての室内熱交換器
へで液化され、原発器としての室外熱交換器3で気化さ
れて圧縮機1に戻る。In other words, the ejection nozzle 23 of the liquid refrigerant injection device 17 is located at a position where it faces the compression chamber 20 even when the compression chamber 20 is near the end of the compression stroke, that is, the refrigerant gas discharge port 1
It is located near 01. When the motor 16 rotates, the roller 12 eccentric to the axis of the shaft 15 moves within the cylinder 11, reducing the spatial volume of the compression chamber 20 and compressing the refrigerant gas in the compression chamber.
02 and is discharged to the cycle via a discharge valve (check valve) not shown. At the same time, the spatial volume of the suction chamber 21 increases, and refrigerant gas is sucked through the suction port 102. By repeating this operation, the refrigerant gas is continuously raised to high pressure and circulated throughout the cycle. That is, during cooling operation, high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is cooled to liquid in the outdoor heat exchanger 3 serving as a condenser, is throttled to low pressure by the expansion valve 4, and is used as an evaporator. After receiving heat and evaporating it in the indoor heat exchanger 5, it returns to the compressor 1. During heating operation, the refrigerant circulates in the opposite direction, i! ! It is liquefied in the indoor heat exchanger as AI, vaporized in the outdoor heat exchanger 3 as a nuclear generator, and returned to the compressor 1.
ところで、先に述べたように圧縮機内の圧縮行程中のガ
スの冷却を液冷媒の噴射で行う先述の従来技術において
は、前記したように液粒の径が大きいため蒸発時間が遅
く、それ故に、特に高速運転時には液圧縮の防止ができ
ず、圧縮行程途中の圧力変化を等温圧縮に近づけられな
いので圧縮動力の低減を図ることができなかった。本発
明によれば、この従来の欠点は以下述べるように解消さ
れる。By the way, as mentioned earlier, in the above-mentioned conventional technology in which the gas during the compression stroke in the compressor is cooled by injection of liquid refrigerant, the evaporation time is slow due to the large diameter of the liquid refrigerant, and therefore In particular, during high-speed operation, liquid compression cannot be prevented, and pressure changes during the compression stroke cannot be brought close to isothermal compression, making it impossible to reduce compression power. According to the present invention, this conventional drawback is overcome as described below.
第4図に前記本発明実施例における液冷媒噴射装置17
の構造を断面図で示す。これは弁体22、ノズル23、
スワーラ24、電磁石25、アーマチャ26、ギャップ
調圧用ストッパ27、外体部28等から構成している。FIG. 4 shows a liquid refrigerant injection device 17 in the embodiment of the present invention.
The structure of is shown in a cross-sectional view. This includes a valve body 22, a nozzle 23,
It is composed of a swirler 24, an electromagnet 25, an armature 26, a gap pressure regulating stopper 27, an outer body part 28, and the like.
弁体22よりも上流にある空間29には、液冷媒の導入
管18を経てアーマチャ26の溝を通って導かれた液冷
媒が貯留している。この液冷媒噴射装置17において、
電磁石25はパルス状の電圧を印加されるとアーマチャ
26を吸引して弁体22を開口させ、空間29内の液冷
媒はストッパ27の周部およびスワーラ24を経てノズ
ル23の小さな穴から圧縮機シリンダ内の圧縮室20内
に噴出される。このとき、液冷媒はスワーラ24により
ノズル23の中心軸線に対して偏心して流入するので旋
回を与えられ、旋回流となって前記のノズル23を流れ
。A space 29 located upstream of the valve body 22 stores liquid refrigerant introduced through the groove of the armature 26 via the liquid refrigerant introduction pipe 18 . In this liquid refrigerant injection device 17,
When a pulse voltage is applied to the electromagnet 25, it attracts the armature 26 and opens the valve body 22, and the liquid refrigerant in the space 29 passes through the circumference of the stopper 27 and the swirler 24, and then enters the compressor from a small hole in the nozzle 23. It is injected into the compression chamber 20 inside the cylinder. At this time, the liquid refrigerant flows eccentrically with respect to the central axis of the nozzle 23 by the swirler 24, so that it is given a swirl and flows through the nozzle 23 as a swirling flow.
略コーン状の薄い液膜を形成して噴出される。液冷媒は
高圧で噴出するため高速旋回となり、強い遠心力の作用
やキャビテーション、液膜の表面張力の作用等によって
、ごく短時間で非常に小さい径の液粒に分裂する。液粒
の径がホさいほど液粒1個当りの体積が小さいため蒸発
時間は早い。例えば、第5図で示すように、冷媒R−2
2の場合、液粒の径が10μmのとき5msで蒸発する
。従って、液粒の径を10μm以下になるように旋回半
径、ノズルの径を設計すれば、圧縮機の回転速度が12
00Orρmまでは圧縮行程途中で液冷媒を全て蒸発さ
せることが出来る。そのため、圧縮行程途中で冷媒ガス
から熱を直接qうので、第6図に液粒の大きさと指圧線
図上の圧力変化の関係で示したように、圧縮行程の圧力
変化を等温圧縮に近づけることが出来、高速運転でも液
圧縮を防止出来る。It is ejected forming a thin, approximately cone-shaped liquid film. Since the liquid refrigerant is ejected under high pressure, it swirls at high speed, and due to the effects of strong centrifugal force, cavitation, and the surface tension of the liquid film, it breaks up into very small diameter droplets in a very short time. The larger the diameter of the droplets, the smaller the volume per droplet, and therefore the faster the evaporation time. For example, as shown in FIG.
In the case of 2, when the diameter of the droplet is 10 μm, it evaporates in 5 ms. Therefore, if the radius of gyration and the diameter of the nozzle are designed so that the diameter of the liquid droplets is 10 μm or less, the rotational speed of the compressor can be reduced to 12 μm or less.
Up to 00Orρm, all the liquid refrigerant can be evaporated during the compression stroke. Therefore, heat is directly absorbed from the refrigerant gas during the compression stroke, so the pressure change in the compression stroke approaches isothermal compression, as shown in Figure 6 by the relationship between the size of the liquid droplets and the pressure change on the acupressure diagram. This allows liquid compression to be prevented even during high-speed operation.
その結果として、圧縮動力を減少出来5効果的な圧縮機
の冷却が行える。As a result, compression power can be reduced and effective compressor cooling can be achieved.
液冷媒噴射装置17の前記電磁石25へのパルス電圧印
加は、第1図に示すように、液冷媒噴射装置用駆動回路
9を介してマイクロコンピュータ7により行われる。The application of a pulse voltage to the electromagnet 25 of the liquid refrigerant injection device 17 is performed by the microcomputer 7 via the liquid refrigerant injection device drive circuit 9, as shown in FIG.
液冷媒噴射装置17の弁体22の開口時間は、次のよう
にして決定する。圧縮機の回転速度をNc、吸入圧力を
Ps、吐出圧力をpd、吸入温度をT3、冷却しない時
の吐出温度をTd、液冷媒噴射により、冷却してそこま
で下げたい吐出温度をTdc、体積効率を77、吸入ガ
スの比容積をVs、論理容積をVthとすると、冷媒循
環1k G rは、Gr” ηv ・Vth e Nc
/ v s −(1)冷却しないときの圧縮
機出口のエンタルピをhd、冷却後の圧縮機出口のエン
タルピをhdcとすると、必要な冷却量Qcは。The opening time of the valve body 22 of the liquid refrigerant injection device 17 is determined as follows. The rotation speed of the compressor is Nc, the suction pressure is Ps, the discharge pressure is pd, the suction temperature is T3, the discharge temperature when not being cooled is Td, the discharge temperature to which you want to cool by liquid refrigerant injection is Tdc, the volume If the efficiency is 77, the specific volume of the suction gas is Vs, and the logical volume is Vth, then the refrigerant circulation 1k G r is Gr” ηv ・Vth e Nc
/ v s - (1) If the enthalpy at the compressor outlet when not being cooled is hd, and the enthalpy at the compressor outlet after cooling is hdc, the required cooling amount Qc is.
Qc= G r()i (3h d(z)
・・・(2)となる。冷却するめたの噴射* a
iは、液冷媒の定圧比熱をCPn、液冷媒の温度をT。Qc= G r()i (3h d(z)
...(2) becomes. Cooling injection*a
i is the constant pressure specific heat of the liquid refrigerant, CPn, and the temperature of the liquid refrigerant is T.
、吐出圧力での飽和温度をTsat、蒸発潜熱をLとす
れば、Gi”Qc/ (CPA (Tsat To)
+ L) ・i3)噴射−回当りの液冷媒の噴射容
積(Iiは、液冷媒の比容積v(、として、
qi”Gi −vo/Nc −
(4)となる。よって、噴射弁22の開口時間tbは、
ノズル部の膜面積をΔ、重力加速度をg、流搭係数をα
、噴射する時のシリンダ内圧力をPcとして、
しb=qt/(α ・A 2g Pd−P(、)
・vo)・・・(5)
で求まる。従って、第7図に示したように圧縮機回転速
度Nc、吐出圧力Pd、必要冷却ff1qcの、又は、
第8図に示したように圧縮機回転速度Nc。, if the saturation temperature at discharge pressure is Tsat, and the latent heat of vaporization is L, then Gi”Qc/ (CPA (Tsat To)
+ L) ・i3) Injection - Injection volume of liquid refrigerant per injection (Ii is the specific volume of liquid refrigerant v (, as qi''Gi −vo/Nc −
(4) becomes. Therefore, the opening time tb of the injection valve 22 is
The membrane area of the nozzle part is Δ, the gravitational acceleration is g, and the flow coefficient is α
, the cylinder pressure at the time of injection is Pc, then b=qt/(α ・A 2g Pd-P(,)
・vo)・・・(5) Find it as follows. Therefore, as shown in FIG. 7, the compressor rotational speed Nc, discharge pressure Pd, required cooling ff1qc, or
As shown in FIG. 8, the compressor rotation speed Nc.
吐出圧力Pd、噴射弁22の開口時間tbの3次元マツ
プを予め作成出来る。このマツプをデータベースとして
マイクロコンピュータ7に記憶させておく。このように
しておくと、前記のインルームセンサ又はアウトドアセ
ンサから検出できる吐出圧力と、別に求めた圧縮機の回
転速度の値とから、第7図のデータベースを用いて必要
冷却量Qcを、又は第8図のデータベースを用いて噴射
弁22の開口時間tbを補間計算して求めることが出来
る。A three-dimensional map of the discharge pressure Pd and the opening time tb of the injection valve 22 can be created in advance. This map is stored in the microcomputer 7 as a database. In this way, the required cooling amount Qc can be calculated using the database shown in Fig. 7 from the discharge pressure that can be detected from the in-room sensor or outdoor sensor and the separately determined rotational speed of the compressor. The opening time tb of the injection valve 22 can be determined by interpolation using the database shown in FIG.
必要冷却ff1Qoを第7図のデータベースから求めた
場合は、吸入圧力P5と噴射する時のシャツ1へ15の
回転角度から計算されたシリンダ容積Vcとから、シリ
ンダ内圧力P3.をポリ1−ロープ指数nを用いて、
P c= P s (Vth/ vc)
・++ (6)と予測出来るので、(5)式を用いて
第8図のデータベースを用いた場合と同様に、最終的に
は噴射弁開口時間tbが求まる。When the required cooling ff1Qo is determined from the database shown in FIG. 7, the cylinder internal pressure P3. Using poly1-rope index n, P c = P s (Vth/vc)
・++ Since it can be predicted as (6), the injection valve opening time tb can be finally found using equation (5) in the same way as when using the database shown in FIG.
又、上記の様なデータマツプ方式とは別に噴射弁22の
開口時間tbをリアルタイムbこ演算する方式も可能で
ある。すなわち1体積効率η9、エンタルピh、比容積
Vの計算式を記憶させておき。In addition to the data map method described above, a method of calculating the opening time tb of the injection valve 22 in real time is also possible. That is, calculation formulas for 1-volume efficiency η9, enthalpy h, and specific volume V are memorized.
第9図のフローチャートで示したように、圧縮機の速度
の値、インルームセンサ、アウトドアセンサからの検出
値を基に吸入温度、吐出温度、冷媒循環量、エンタルピ
、冷却量、噴射容積、噴射弁開口時間を(1)〜(5)
によりリアルタイムにj頓に計算することにより、噴射
弁開口時間t4.を求めることが出来る。As shown in the flowchart in Figure 9, based on the compressor speed value, the detected values from the in-room sensor and the outdoor sensor, the suction temperature, discharge temperature, refrigerant circulation amount, enthalpy, cooling amount, injection volume, injection Valve opening time (1) to (5)
The injection valve opening time t4. can be found.
以上のようにして求めた噴射弁22の開口時間tbを実
現するようにマイクロコンピュータ7は駆動装置9を介
して液冷媒噴射装置17の電磁石25にパルス電圧を印
加するのである。The microcomputer 7 applies a pulse voltage to the electromagnet 25 of the liquid refrigerant injection device 17 via the drive device 9 so as to realize the opening time tb of the injection valve 22 determined as described above.
更に、液冷媒噴射装置17は電気信号指令によって任意
のタイミングで液粒の噴射を行うように制御可能である
。従って、液粒の噴射タイミングを圧縮動力が最小にな
るように最適に制御することが可能である。それを行う
具体的な回路を第10図に示す。この回路は、圧縮機モ
ータ電流値を検出する回路、シャフト15の上死点位置
からの回転角度を検出する回路、液冷媒噴射装置17を
電気指令信号に従って駆動する回路とマイクロコンピュ
ータから構成されている6その動作を第11図のフロー
図により説明する。圧縮機モータの駆動電流検出値(ア
)に対して電圧は一定であるのでマイクロコンピュータ
7で圧縮機1回転中の該電流検出値を積分することによ
り圧縮に要する動力値が計算出来る(イ)。回転速度が
同一で圧力条件が同一のとき、各回転毎の計算した動力
値を比較して最小値を求めることが出来る(つ)。Furthermore, the liquid refrigerant injection device 17 can be controlled to inject liquid droplets at arbitrary timing by electric signal commands. Therefore, it is possible to optimally control the injection timing of liquid droplets so that the compression power is minimized. A specific circuit for doing this is shown in FIG. This circuit consists of a circuit for detecting the compressor motor current value, a circuit for detecting the rotation angle of the shaft 15 from the top dead center position, a circuit for driving the liquid refrigerant injection device 17 according to an electric command signal, and a microcomputer. The operation will be explained with reference to the flowchart in FIG. Since the voltage is constant with respect to the drive current detection value of the compressor motor (A), the power required for compression can be calculated by integrating the current detection value during one rotation of the compressor using the microcomputer 7 (B). . When the rotational speed is the same and the pressure conditions are the same, the minimum value can be found by comparing the calculated power values for each rotation.
前回設定した液冷媒の噴射タイミング(すなわち噴射角
度、つまり噴射時点におけるシャツ1〜15の回転角度
)での動力値と今回変更した噴射タイミングでの動力値
を比較し、より小さい値の方に噴射タイミングをずらせ
ていくことにより、最適な噴射タイミングを選ぶ事が出
来る(1)。この最適な噴射タイミングすなわち設定噴
射回転角度と、検出したシャフト15の回転角度(オ)
を比較して(力)、これらが同一になった時、電気信号
指令(キ)を液冷媒噴射装置の師動回路に送る(り)こ
とにより、最小動力で圧縮機を運転できる。又、液冷媒
の噴射は蒸発時間が圧縮機の1回転時間より充分短いと
きは、1回転中に数回行うとより効果的である。このよ
うにして得られた圧縮動力が最小となる噴射タイミング
をデータベースとして記憶させておくと再び運転したと
きの制御速度が速く出来る。Compare the power value at the previously set liquid refrigerant injection timing (i.e. injection angle, i.e. the rotation angle of shirts 1 to 15 at the time of injection) with the power value at the injection timing changed this time, and inject towards the smaller value. By shifting the timing, the optimal injection timing can be selected (1). This optimal injection timing, that is, the set injection rotation angle and the detected rotation angle (o) of the shaft 15.
(force), and when they become the same, the compressor can be operated with the minimum power by sending an electrical signal command (ki) to the dynamic circuit of the liquid refrigerant injection device. Furthermore, when the evaporation time is sufficiently shorter than the time for one rotation of the compressor, it is more effective to inject the liquid refrigerant several times during one rotation. By storing the injection timing at which the compression power obtained in this manner is minimum as a database, the control speed can be increased when the engine is operated again.
又、第11図(a)に液冷媒噴射量とサイクル全体のエ
ネルギー効率を示す。本発明実施例では。Further, FIG. 11(a) shows the liquid refrigerant injection amount and the energy efficiency of the entire cycle. In the embodiment of the present invention.
サイクル全体のエネルギー効率を最大にするように電気
信号指令により液冷媒噴射装置17の噴射弁22の開口
時間すなわち液冷媒噴射量を制御することも可能である
。その具体的な方法を第11図(b)により説明する。It is also possible to control the opening time of the injection valve 22 of the liquid refrigerant injection device 17, that is, the amount of liquid refrigerant injection, by electrical signal commands so as to maximize the energy efficiency of the entire cycle. The specific method will be explained with reference to FIG. 11(b).
サイクルのエネルギー効率を最大にするためには、例え
ば暖房能力と電気入力の比あるいは冷房能力と電気入力
の比を最大になるように制御すれば良い。暖房能力、冷
房能力とも室内側、すなわち熱交換器5の能力である。In order to maximize the energy efficiency of the cycle, for example, the ratio of heating capacity to electrical input or the ratio of cooling capacity to electrical input may be controlled to be maximized. Both the heating capacity and the cooling capacity are the capacity of the indoor side, that is, the capacity of the heat exchanger 5.
第11図(b)のモリエル線図で示したように、熱交換
器5の出入口のエンタルピ差Δhと冷媒循環量Grが求
まれば、暖房能力Q h。し、冷房能力Q cooQ、
は、それぞれ。As shown in the Mollier diagram of FIG. 11(b), if the enthalpy difference Δh at the entrance and exit of the heat exchanger 5 and the refrigerant circulation amount Gr are determined, the heating capacity Q h can be determined. Cooling capacity Q cooQ,
, respectively.
Qhot=Δhh・ (G1・十61) ・・・
(7)Qcoog=Δh、−Gr −(
Uで計算出来る。ここで、添字りおよびCは夫々暖房時
および冷房時を表わしている。循環M G r。Qhot=Δhh・ (G1・161)...
(7) Qcoog=Δh, -Gr -(
It can be calculated using U. Here, the suffix and C represent the heating time and the cooling time, respectively. Circulation M G r.
液冷媒噴射量G1は、(1)および(3)式で計算出来
るので、エンタルピ差Δhを運転条件とともにデータベ
ース化して記憶するか、上記熱交換器出入口の温度計測
から算出するかすれば、暖房能力、冷房能力とも求める
ことが出来る。従って、第11図に示したように設定能
力以上の範囲内で噴射弁の開口時間を変化させて、前記
したようにして暖房能力又は冷房能力を計算するととも
に圧縮機電気入力を計測し、その比が最大になる液冷媒
噴射量G1すなわち噴射弁22の開口時間を求める。次
に噴射タイミングを圧縮動力が最小になるように前記し
た如く調整することにより、サイクルのエネルギー効率
の最大点を見っけ出すことが出来る。Since the liquid refrigerant injection amount G1 can be calculated using equations (1) and (3), the heating capacity can be determined by storing the enthalpy difference Δh together with the operating conditions in a database or by calculating it from the temperature measurement at the inlet and outlet of the heat exchanger. , cooling capacity can also be determined. Therefore, as shown in Fig. 11, the opening time of the injection valve is varied within a range exceeding the set capacity, the heating capacity or cooling capacity is calculated as described above, and the electrical input to the compressor is measured. The liquid refrigerant injection amount G1 at which the ratio becomes maximum, that is, the opening time of the injection valve 22 is determined. By then adjusting the injection timing as described above to minimize compression power, the maximum energy efficiency of the cycle can be found.
以上のように、本実施例によれば、微小な液冷媒の液粒
を、圧縮行程途中に任意のタイミングでかつ任1行の時
間、圧縮機の圧縮室内に噴射出来る。As described above, according to this embodiment, minute droplets of liquid refrigerant can be injected into the compression chamber of the compressor at any timing during the compression stroke and for an arbitrary period of time.
そのため、圧縮機の高速運転時でも圧縮行程中に噴射し
た液冷媒を圧縮室内で全て蒸発させることが出来るので
、液圧縮を防止出来るとともに、より等温圧縮に近づけ
ることができ、圧縮動力を低減出来る。その他、付随効
果として、液圧縮による吐出弁の破損を防止出来るし、
軸受温度の低下による軸受の焼付防止ができ、信頼性の
向上が図れ、またモータも冷却されることになって巻き
線温度が下がり抵抗値が小さ(なるのでモータ効率が向
上する。又、圧縮動力が最小となる噴射タイミングを設
定することも、サイクルのエネルギー効率を最大にする
ように噴射時間と噴射タイミングを設定することも出来
るので最高効率点でルームエアコンを運転出来る。Therefore, even when the compressor is operating at high speed, all of the liquid refrigerant injected during the compression stroke can be evaporated within the compression chamber, which prevents liquid compression and brings the compression closer to isothermal compression, reducing compression power. . In addition, as an accompanying effect, damage to the discharge valve due to liquid compression can be prevented,
It is possible to prevent the bearing from seizing due to a decrease in the bearing temperature, improving reliability, and the motor is also cooled, which lowers the winding temperature and reduces the resistance value (which improves the motor efficiency. You can set the injection timing that minimizes the power, or you can set the injection time and injection timing to maximize the energy efficiency of the cycle, so you can operate the room air conditioner at the highest efficiency point.
[発明の効果]
本発明によれば、液冷媒の微小な液粒を圧縮行程途中の
圧縮機の圧縮室内に任意のタイミングで噴射出来る。そ
のため、該液粒の蒸発速度が速く、圧縮行程途中で全て
蒸発するので、圧縮機の高速運転においても液圧縮を防
止出来、圧縮行程中での冷媒ガスを冷却するので圧縮行
程をより等温圧縮に近づけることができ、圧縮冷媒ガス
によって冷却されるモータの冷却も良好になってモータ
効率が向上するので、圧縮機の吐出弁の破損の防止、軸
受温度の低下による信頼性の向上、圧縮動力の低減等の
効果がある。又、液冷媒噴射時間、噴射タイミングを自
由に変えられるので、圧7略1幾動力を最小にし、更に
はサイクルのエネルギー効率を最大にする運転が出来る
。[Effects of the Invention] According to the present invention, minute droplets of liquid refrigerant can be injected into the compression chamber of the compressor during the compression stroke at any timing. Therefore, the evaporation rate of the liquid droplets is fast and all of them evaporate during the compression stroke, so liquid compression can be prevented even during high-speed operation of the compressor, and the refrigerant gas during the compression stroke is cooled, making the compression stroke more isothermal compression. The motor, which is cooled by compressed refrigerant gas, can be cooled more effectively, improving motor efficiency, preventing damage to the compressor discharge valve, improving reliability by lowering bearing temperature, and increasing compression power. This has the effect of reducing Furthermore, since the liquid refrigerant injection time and injection timing can be freely changed, it is possible to minimize the pressure and the geometrical force, and furthermore, to maximize the energy efficiency of the cycle.
第1図は本発明の一実施例に係る空調装置サイクル構成
図、第2図は本発明の実施例に係るロータリ圧縮機の縦
断面図、第3図は同実施例のロータリ圧縮機の横断面図
、第4図は本発明の一実施例における液冷媒噴射装置の
縦断面図、第5図は液粒のj拉マ、tと液粒の蒸発時間
の関係を示した図、第6図は液冷媒噴射による圧縮機シ
リンダ内圧力の変化を示した図、第7図、第8図は液冷
媒噴射装置の噴射弁の開口時間を決めるためのマツプ図
。
第9図は噴射弁の開口時間をリアルタイムに計算するフ
ローチャートを示す図、第10図はIf、拓・I動力を
最小にするように制御するシステムを示す図、第11図
は第10図の制御手順を示す図、第1−2図(a)、(
b)はサイクル効率を最大にする制御方法を説明するた
めの図である。
1:圧縮機 2:四方弁
3:室外熱交換器 4:膨張弁
5 ニ
ア :
8 :
9 :
10 :
12 :
14 :
16 :
18 :
20 :
22 :
24 :
26 =
27 :
28 :
室内熱交換器 6:切り換え弁
マイクロコンピュータ
インバータI原動装置
液冷媒噴射装置用叩動回路
ケーシング 11ニジリンダ
ローラ 13:上+1曲受
下軸受 15:シャフト
モータ J7:液冷媒噴射装置
液冷媒導入管 19:ベーン
圧縮室 21:吸入室
弁体 23:ノズル
スワーラ 25:電磁石
アーマチャ
ギヤツブ調圧用ストッパ
外体部
篤1図
算3図
第4図
?、)
ん
δ
U
篤2図
箆5図
5夜粒の4貴d
(p、m)
イ〒ネ呈容ネ員
VC(C7rL3)
第7図
圧縮機回転速度N(、(rρ町
圧縮機回転速度N(: (rpm)
第10図
¥11図Fig. 1 is an air conditioner cycle configuration diagram according to an embodiment of the present invention, Fig. 2 is a longitudinal cross-sectional view of a rotary compressor according to an embodiment of the present invention, and Fig. 3 is a cross-sectional view of a rotary compressor according to the embodiment. FIG. 4 is a vertical cross-sectional view of a liquid refrigerant injection device according to an embodiment of the present invention; FIG. The figure shows changes in compressor cylinder internal pressure due to liquid refrigerant injection, and FIGS. 7 and 8 are map charts for determining the opening time of the injection valve of the liquid refrigerant injection device. Fig. 9 is a flowchart for calculating the opening time of the injection valve in real time, Fig. 10 is a diagram showing a control system to minimize the If, I and I power, and Fig. 11 is the flowchart for calculating the opening time of the injection valve in real time. Diagrams showing control procedures, Figures 1-2 (a), (
b) is a diagram for explaining a control method that maximizes cycle efficiency. 1: Compressor 2: Four-way valve 3: Outdoor heat exchanger 4: Expansion valve 5 Near: 8: 9: 10: 12: 14: 16: 18: 20: 22: 24: 26 = 27: 28: Indoor heat exchange 6: Switching valve microcomputer inverter I prime mover Beating circuit casing for liquid refrigerant injection device 11 Nigilinder roller 13: Upper + 1 lower bearing 15: Shaft motor J7: Liquid refrigerant injection device Liquid refrigerant introduction pipe 19: Vane compression Chamber 21: Suction chamber valve body 23: Nozzle swirler 25: Electromagnetic armature gear pressure regulating stopper External body Attachment 1 Figure 3 Figure 4? , ) Nδ U Atsushi 2 Figure 5 Figure 5 Night Grain 4 Ki d (p, m) Rice presentation member VC (C7rL3) Figure 7 Compressor rotation speed N (, (rρ Town Compressor rotation Speed N(: (rpm) Fig. 10¥11
Claims (1)
の間に形成される圧縮室の容積がシャフトの回転と共に
縮小することにより該圧縮室内の冷媒ガスを圧縮して吐
出する圧縮機において、圧縮行程中に液冷媒を圧縮室内
に微細な霧状に噴射する液冷媒噴射装置を備え、該液冷
媒噴射装置は小孔径の噴射ノズルと、該噴射ノズルに高
圧の液冷媒を旋回流として導入するスワーラと、該噴射
ノズルを開閉する弁と、パルス電気信号を受けて該弁を
操作する弁作動手段からなり、該噴射ノズルが圧縮行程
のほぼ如何なる段階においても前記圧縮室に臨んでいる
ように位置していることを特徴とする圧縮機。 2 圧縮機回転速度(前記シャフトの回転速度)と吐出
圧力の検出値を基に、予め圧縮機回転速度、吐出圧力、
必要な冷却量もしくは弁開口時間を3次元的にマップし
たデータベースから補間して必要な弁開口時間を算出し
、この算出した所要弁開口時間だけ前記噴射ノズルを開
くよう前記弁作動手段にパルス電気信号を与える演算制
御手段を備えた請求項1記載の圧縮機。 3 圧縮機回転速度(前記シャフトの回転速度)と吸入
圧力、吐出圧力の検出値を基に吐出温度、エンタルピ、
冷媒循環量を計算して、必要な冷却量を計算し、その値
から必要な弁開口時間をリアルタイムに算出し、この算
出した必要な弁開口時間だけ前記噴射ノズルを開くよう
前記弁作動手段にパルス電気信号を与える演算制御手段
を備えた請求項1記載の圧縮機。 4 前記演算制御手段は前記シャフトを回転させるモー
タの駆動電流の検出値から圧縮動力を演算し、この圧縮
動力が最小となるように前記弁作動手段にパルス電気信
号を与えるタイミングを制御する請求項2又は3記載の
圧縮機。 5 前記演算制御手段は、前記圧縮機を用いる冷凍サイ
クルの暖房又は冷房能力の計測値と前記モータの駆動電
流の検出値との比を最大とするように前記弁開口時間を
調整する請求項4記載の圧縮機。[Claims] 1. The volume of the compression chamber formed between the rotating body and the fixed body, which is rotated by the rotation of the shaft, decreases with the rotation of the shaft, so that the refrigerant gas in the compression chamber is compressed and discharged. The compressor is equipped with a liquid refrigerant injection device that injects liquid refrigerant into a compression chamber in the form of a fine mist during the compression stroke, and the liquid refrigerant injection device includes an injection nozzle with a small hole diameter and a high-pressure liquid refrigerant injected into the injection nozzle. It consists of a swirler that introduces the injector as a swirling flow, a valve that opens and closes the injection nozzle, and a valve operating means that operates the valve in response to a pulse electric signal. A compressor characterized by being located as if facing the 2 Based on the detected values of the compressor rotation speed (rotation speed of the shaft) and discharge pressure, the compressor rotation speed, discharge pressure,
A necessary valve opening time is calculated by interpolation from a database that three-dimensionally maps the required cooling amount or valve opening time, and pulse electricity is applied to the valve operating means to open the injection nozzle for the calculated required valve opening time. The compressor according to claim 1, further comprising arithmetic control means for providing a signal. 3 Discharge temperature, enthalpy,
Calculate the amount of refrigerant circulation, calculate the required cooling amount, calculate the required valve opening time from the calculated value in real time, and direct the valve operating means to open the injection nozzle for the calculated required valve opening time. 2. A compressor according to claim 1, further comprising arithmetic control means for providing a pulsed electrical signal. 4. The calculation control means calculates compression power from a detected value of a drive current of a motor that rotates the shaft, and controls the timing of applying a pulse electric signal to the valve operation means so that the compression power is minimized. Compressor according to 2 or 3. 5. The calculation control means adjusts the valve opening time so as to maximize the ratio between the measured value of the heating or cooling capacity of the refrigeration cycle using the compressor and the detected value of the drive current of the motor. Compressor as described.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63293395A JPH02140489A (en) | 1988-11-19 | 1988-11-19 | Compressor |
KR1019890016340A KR940001355B1 (en) | 1988-11-19 | 1989-11-11 | Compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63293395A JPH02140489A (en) | 1988-11-19 | 1988-11-19 | Compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02140489A true JPH02140489A (en) | 1990-05-30 |
Family
ID=17794210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63293395A Pending JPH02140489A (en) | 1988-11-19 | 1988-11-19 | Compressor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH02140489A (en) |
KR (1) | KR940001355B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291878A (en) * | 2005-04-12 | 2006-10-26 | Sanden Corp | Control method and device for motor driven compressor |
JP2010112952A (en) * | 2008-11-05 | 2010-05-20 | Rosemount Aerospace Inc | Apparatus and method for in-flight detection of airborne water droplets and ice crystals |
US20120051958A1 (en) * | 2010-08-30 | 2012-03-01 | Pedro Santos | Compressor with liquid injection cooling |
CN103423129A (en) * | 2012-05-24 | 2013-12-04 | 三菱电机株式会社 | Sealed rotary refrigeration compressor |
US9719514B2 (en) | 2010-08-30 | 2017-08-01 | Hicor Technologies, Inc. | Compressor |
US20190136858A1 (en) * | 2015-03-30 | 2019-05-09 | Hicor Technologies, Inc. | Compressor with liquid injection cooling |
CN111306061A (en) * | 2018-12-11 | 2020-06-19 | 广东美芝精密制造有限公司 | Compressor and refrigerating device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100664843B1 (en) * | 2006-03-25 | 2007-01-04 | 이준형 | Heating Heat Pump |
KR101268612B1 (en) | 2008-11-17 | 2013-05-29 | 엘지전자 주식회사 | Variable frequency compressor and method of controlling the same |
-
1988
- 1988-11-19 JP JP63293395A patent/JPH02140489A/en active Pending
-
1989
- 1989-11-11 KR KR1019890016340A patent/KR940001355B1/en not_active IP Right Cessation
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291878A (en) * | 2005-04-12 | 2006-10-26 | Sanden Corp | Control method and device for motor driven compressor |
JP4686242B2 (en) * | 2005-04-12 | 2011-05-25 | サンデン株式会社 | Control method and control apparatus for electric compressor |
JP2010112952A (en) * | 2008-11-05 | 2010-05-20 | Rosemount Aerospace Inc | Apparatus and method for in-flight detection of airborne water droplets and ice crystals |
US9719514B2 (en) | 2010-08-30 | 2017-08-01 | Hicor Technologies, Inc. | Compressor |
US8794941B2 (en) * | 2010-08-30 | 2014-08-05 | Oscomp Systems Inc. | Compressor with liquid injection cooling |
US20120051958A1 (en) * | 2010-08-30 | 2012-03-01 | Pedro Santos | Compressor with liquid injection cooling |
US9856878B2 (en) | 2010-08-30 | 2018-01-02 | Hicor Technologies, Inc. | Compressor with liquid injection cooling |
US10962012B2 (en) | 2010-08-30 | 2021-03-30 | Hicor Technologies, Inc. | Compressor with liquid injection cooling |
CN103423129A (en) * | 2012-05-24 | 2013-12-04 | 三菱电机株式会社 | Sealed rotary refrigeration compressor |
US20190136858A1 (en) * | 2015-03-30 | 2019-05-09 | Hicor Technologies, Inc. | Compressor with liquid injection cooling |
US11306722B2 (en) | 2015-03-30 | 2022-04-19 | Forums Us, Inc. | Compressor with mechanical seal |
CN111306061A (en) * | 2018-12-11 | 2020-06-19 | 广东美芝精密制造有限公司 | Compressor and refrigerating device |
CN111306061B (en) * | 2018-12-11 | 2022-07-08 | 广东美芝精密制造有限公司 | Compressor and refrigerating device |
Also Published As
Publication number | Publication date |
---|---|
KR900008178A (en) | 1990-06-02 |
KR940001355B1 (en) | 1994-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100480604C (en) | Apparatus and method for controlling refrigerator refrigerating circulation | |
CN1189711C (en) | Injection circulation | |
CN102844632B (en) | Refrigeration cycle system and method for circulating refrigerant | |
EP1467158B1 (en) | Refrigeration cycle apparatus | |
CN1470821B (en) | Injector with throttle controllable nozzle and injection circulation using same | |
JP4001065B2 (en) | Ejector cycle | |
US20030145613A1 (en) | Ejector decompression device with throttle controllable nozzle | |
JPH02140489A (en) | Compressor | |
KR20070048235A (en) | Compressor loading control | |
WO1988000320A1 (en) | Refrigeration system having periodic flush cycles | |
KR20060121738A (en) | Control apparatus for variable capacity compressor and method of calculating torque of variable capacity compressor | |
Aphornratana et al. | Experimental investigation of a combined ejector‐absorption refrigerator | |
US5398512A (en) | Cold accumulation type refrigerating machine | |
JP4396004B2 (en) | Ejector cycle | |
WO2016143290A1 (en) | Ejector and ejector-type refrigeration cycle | |
JPH08511859A (en) | Unsteady self-regulating intermittent flow thermodynamic system | |
CA2958388A1 (en) | Supercritical transient storage of refrigerant | |
KR20050083670A (en) | Apparatus, method and software for use with an air conditioning cycle | |
KR20050030586A (en) | Refrigeration cycle | |
US20060080977A1 (en) | Torque calculation apparatus and torque calculation method of variable capacitance compressor | |
CN101532740B (en) | Vapor compression refrigerating cycle apparatus | |
JPH1151514A (en) | Air conditioner | |
JP4110830B2 (en) | Ejector type decompression device | |
CN114198950B (en) | Liquid supply system of compressor | |
JP4804797B2 (en) | Control method for variable capacity compressor for air conditioner and torque calculation device for variable capacity compressor |