JPH02140430A - Explosion cycle shortening type internal combustion engine - Google Patents

Explosion cycle shortening type internal combustion engine

Info

Publication number
JPH02140430A
JPH02140430A JP25887188A JP25887188A JPH02140430A JP H02140430 A JPH02140430 A JP H02140430A JP 25887188 A JP25887188 A JP 25887188A JP 25887188 A JP25887188 A JP 25887188A JP H02140430 A JPH02140430 A JP H02140430A
Authority
JP
Japan
Prior art keywords
output shaft
pistons
cylinders
pair
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25887188A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tsunoda
義明 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25887188A priority Critical patent/JPH02140430A/en
Publication of JPH02140430A publication Critical patent/JPH02140430A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • F02B75/246Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type with only one crankshaft of the "pancake" type, e.g. pairs of connecting rods attached to common crankshaft bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To remarkably heighten output values for high performance and smoothen revolution by installing a converting means to rotate an output shaft with the linear motion of a piston, and a suction/exhaust mechanism which alternates exhaust and suction strokes. CONSTITUTION:Cylinders 1-4 are arranged above a horizontal shaft in pairs on the left and right, two sets in the front and back. Each piston 11-14, possessing connecting members 21-24, are connected to an output shaft 30 with converting means. When starting an engine, a set of pistons consisting of two pieces (a pair) respectively go through explosion strokes as they make one reciprocation, so that explosion cycles take place twice in four cylinders everytime when the output shaft 30 makes one rotation. Thus, output value is remarkably increased for high performance, and the revolution is smoothened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は在来機関より遥か高い効率で作動させることが
できる爆発サイクル短縮型内燃機関に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an internal combustion engine with a shortened explosion cycle that can be operated with much higher efficiency than conventional engines.

(従来の技術) 爆発回数に着目した場合従来の2サイクルエ〕/ジンは
クランク軸1回転につき1回の爆発、4サイクルエンジ
ンではクランク軸2回転につき1回の爆発が行なわれる
。このような回転力の変動を円滑化するため多気筒化が
行なわれて来たものである。
(Prior Art) When focusing on the number of explosions, a conventional 2-cycle engine causes one explosion per crankshaft rotation, and a 4-cycle engine causes one explosion per two crankshaft rotations. In order to smooth out such fluctuations in rotational force, multiple cylinders have been used.

(技術的課題) しかし従来の多気筒エンジンは例えば4気筒、1000
ccといっても4ピストンが同時に爆発サイクルに入る
訳ではなく、250ccずつの各ピストンが1個ずつ爆
発を起すに過ぎない。つまり爆発サイクルにある1個以
外の3個のピストンは、出力を発生しないだけでなく、
1個のピストンの爆発エネルギーを消費して吸気、圧縮
、排気のいずれかの仕事をする負荷となっている。
(Technical issue) However, conventional multi-cylinder engines have, for example, 4 cylinders, 1000
Even though it is called cc, it does not mean that all four pistons enter the explosion cycle at the same time, but each piston of 250cc each causes one explosion. In other words, the three pistons in the explosion cycle not only do not produce any output, but also
It is a load that consumes the explosive energy of one piston to perform intake, compression, or exhaust work.

この状態は常に変らないが、しかし回転数が高まればそ
れだけ4ピストンが同時に爆発サイクルにあるのに近付
いた状態になり、またそれ故最大出力値も高回転域で発
生することになる訳である。出力値が回転数に比例する
という上記事実は、換言すれば、同一回転数では爆発間
隔が短いほど大出力が得られ、回転も円滑化するという
ことを意味する。
This state does not always change, but as the rotation speed increases, the four pistons come closer to being in an explosion cycle at the same time, and therefore the maximum output value will also occur in the high rotation range. . In other words, the above fact that the output value is proportional to the rotational speed means that at the same rotational speed, the shorter the explosion interval, the greater the output and the smoother the rotation.

発明者は前記の点に着目し、鋭意研究の結果本発明をな
したもので、その目的は同一回転数に於て各気筒に生ず
る爆発間隔を短くすることにより高い出力値を得るとと
もに、回転を円滑化することができる爆発サイクル短縮
型内燃機関を提供することにある。
The inventor focused on the above points and made the present invention as a result of intensive research.The purpose is to obtain a high output value by shortening the interval between explosions occurring in each cylinder at the same rotation speed, and to increase the rotation speed. The object of the present invention is to provide an internal combustion engine with a shortened explosion cycle that can facilitate the explosion.

また本発明の他の目的は同出力であれば在来エンジンよ
りも回転数を少なくでき、さらにトルクを増大すること
が可能な爆発サイクル短縮型内燃機関を提供することに
ある。
Another object of the present invention is to provide an internal combustion engine with a shortened explosion cycle, which is capable of lowering the rotational speed and increasing torque than a conventional engine with the same output.

(技術的手段) 前記目的は、水平な軸上に配置され、夫々の外方端に燃
焼室を設けた一対のシリングと、各シリング内に於て夫
々吸気圧縮爆発排気からなる燃焼サイクルにより往復直
線運動を交互に行なう一対のピストンと、両ピストンを
一体的に結合する部材と、両シリンダを一体化したケー
ス内に前記軸と直交する方向に軸承された出力軸と前記
結合部材とを連繋し、ピストンの直線運動により出力軸
を回転させる変換手段、及び一方のシリングの排気行程
で他方のシリングへの吸気行程を交互に行なう吸・排気
機構とを備えた爆発サイクル短縮型内燃機関によって達
成される。
(Technical Means) The object is to provide a pair of cylinders arranged on a horizontal axis, each having a combustion chamber at its outer end, and a combustion cycle consisting of intake air, compression, explosion, and exhaust air in each cylinder. A pair of pistons that perform linear motion alternately, a member that integrally connects both pistons, and an output shaft that is supported in a direction perpendicular to the axis within a case that integrates both cylinders and the connecting member are linked. This is achieved by an internal combustion engine with a shortened explosion cycle, which is equipped with a conversion means that rotates the output shaft through the linear movement of a piston, and an intake/exhaust mechanism that alternately performs the exhaust stroke of one shilling and the intake stroke of the other shilling. be done.

本発明のものでは一対のシリンダが水平に並んでおり、
その中間に出力軸つまりクランクシャフトをケースと共
に配置し、ピストンは左右のシリンダ内に嵌挿されて出
力軸と結合部材により連絡されるので、第1図(C)に
示すように一対のピストンP、Qは常に一体に往復動す
る。この構造を見ると、結合部材R,Sを出力軸Xと一
体回転する変換手段Yに連繋ピン2によって連結し、該
部材R,Sに運動変換手段の一部を兼ねさせているため
従来の水平対向エンジンに近似しているようであるが、
結合部材を1本の剛体部材Tとしてそれに連接棒U、■
を取付け、夫々歯車Wl、W2を介して出力軸Xを回す
同図(B)の場合と置換えられるので、結局同図(A)
と同じ構成になる訳である。
In the present invention, a pair of cylinders are arranged horizontally,
An output shaft, that is, a crankshaft, is placed in the middle together with the case, and the pistons are inserted into the left and right cylinders and are connected to the output shaft by a coupling member, so that the pair of pistons P as shown in Fig. 1(C) , Q always reciprocate as one. Looking at this structure, the coupling members R and S are connected to the conversion means Y that rotates integrally with the output shaft It seems to resemble a horizontally opposed engine, but
The connecting member is one rigid member T, and a connecting rod U, ■
, and rotate the output shaft
It has the same structure as .

それ故、水平に配置された2組(1対)のシリンダピス
トンが本発明のものには不可欠であり、これが最小の機
関形態であるが、これを2対、3対と組合せるのは自由
である。
Therefore, two sets (one pair) of horizontally arranged cylinder pistons are essential to the present invention, and this is the minimum engine form, but it is free to combine them into two or three pairs. It is.

左右一対のピストンには吸、排気機構が連動し、夫と一
方のシリンダ内のピストンが排気行程にあるときに、他
方のシリンダ内のピストンは吸気行程にあるように行な
われる往復動と連動した吸・排気作動が交互に行なわれ
るので各ピストンは1往復で必らず1回爆発する。従っ
て前記吸・排気機構は出力軸1回転で2回の吸気と2回
の排気を行なう必要がある。これをまかなうため該機構
にブロワ等による強制吸気と強制排気を併用することが
できる。
The pair of left and right pistons are linked to the intake and exhaust mechanisms, and when the piston in one cylinder is on the exhaust stroke, the piston in the other cylinder is linked to the reciprocating movement that is performed as if it were on the intake stroke. Since suction and exhaust operations are performed alternately, each piston always explodes once during each reciprocation. Therefore, the intake/exhaust mechanism needs to take in air twice and exhaust air twice in one rotation of the output shaft. To compensate for this, forced air intake and forced exhaust using a blower or the like can be used in combination in the mechanism.

また本発明の目的は、水平な軸上に於て前後に位置をず
らせて配置された左右一対のシリンダと、各シリンダ内
に於て燃焼サイクルを行なうため往復直線運動を交互に
行なう一対のピストンと、両ピストンを一体的に結合す
る部材と、両シノンダを一体化したケース内に、前記軸
と直交する方向に軸承された出力軸の前後に、それと一
体に回転するように設けられた一対の変換手段と、出力
軸から所定半径だけ離れ、かつ該半径の通る円周上の同
一点に於て前記各結合部材を各変換手段に連繋したピン
とを備えた構成によっても達成される。 つまり左右一
対のピストンはそねらが共通の一直線上に配置されなけ
ればならないものではなく、水平な軸上であれば前後に
ずらせて配置することができる。一方その場合も結合部
材と変換手段は1点で連繋される必要があるのは前述の
場合と同じである(第5図、第6図)。
Another object of the present invention is to have a pair of left and right cylinders arranged with their positions shifted back and forth on a horizontal axis, and a pair of pistons that alternately perform reciprocating linear motion in order to carry out a combustion cycle within each cylinder. and a member that integrally connects both pistons, and a pair of output shafts that are installed in front and rear of an output shaft that is rotatably supported in a direction perpendicular to the shaft in a case that integrates both cylinders so as to rotate together with the output shaft. This can also be achieved by a configuration comprising a converting means, and a pin that is separated from the output shaft by a predetermined radius and connects each coupling member to each converting means at the same point on the circumference that the radius passes through. In other words, the pair of left and right pistons do not have to be arranged on a common straight line, but can be arranged offset back and forth as long as they are on a horizontal axis. On the other hand, in that case as well, the connecting member and the converting means need to be connected at one point, as in the case described above (FIGS. 5 and 6).

(作用) 上記の構成により、ピストンは2個1組で水平に配置さ
れたものが、シリンダ内に於て夫々往復動して爆発行程
になり、左右交互に作動するので、出力軸1回転毎に2
回の爆発を生じる形態で運転が行なわれる。
(Function) With the above configuration, the two pistons arranged horizontally reciprocate within the cylinder to complete the explosion stroke, and the left and right actuate alternately, so that each rotation of the output shaft to 2
The operation is carried out in a manner that causes multiple explosions.

このような組合せのピストン及びシリンダは2対以上を
組合せ、所謂4気筒、6気筒・・・と2の倍数の多気筒
機関を構成すると、爆発間隔は反比例して短縮化する。
When two or more pairs of such combinations of pistons and cylinders are combined to form a multi-cylinder engine with multiples of two, such as four cylinders, six cylinders, etc., the explosion interval is shortened in inverse proportion.

例久ば外見上の爆発サイクルは、2気筒4サイクルエン
ジンの場合、在来の2サイクルエンジン1気筒と同等と
なり、気筒組数を増せば、出力軸1回転当りの爆発回数
は更に増大する。
For example, in the case of a two-cylinder four-stroke engine, the apparent explosion cycle is equivalent to one cylinder of a conventional two-stroke engine, and if the number of cylinders is increased, the number of explosions per revolution of the output shaft will further increase.

(実施例) 図面を参照して説明すると、図は4気筒ガソリンエンジ
ンに関する第1の実施例を示すもので第2図は本発明に
係る内燃機関の垂直方向断面、第3図は同じく水平方向
断面を示している。
(Embodiment) Referring to the drawings, the figure shows a first embodiment of a four-cylinder gasoline engine, FIG. 2 is a vertical cross-section of the internal combustion engine according to the present invention, and FIG. 3 is a horizontal cross-section. A cross section is shown.

シリンダl、2.3.4は水平な軸上に左右−対ずつ前
後2組配置され、それらはケース5により一体化されて
いるので、平面路H字型の配置となる。各シリンダ1〜
4には各々ピストン11.12.13.14が通常の往
復機関の場合と同じように嵌挿され、ピストンリングも
併用される。
The cylinders 1, 2, 3, 4 are arranged in left and right pairs on a horizontal axis in two pairs, front and rear, and are integrated by the case 5, resulting in an H-shaped arrangement on the plane. Each cylinder 1~
Pistons 11, 12, 13, and 14 are fitted into each of the pistons 4 in the same way as in a normal reciprocating engine, and piston rings are also used.

各ピストン11−14は、連接棒即ち結合部材21.2
2.23.24を有し、それらはケース5内にピストン
摺動方向と直交する方向に設けられた出力軸30に変換
手段によって連接されており、変換手段は結合部材21
〜24と、その端部を軸支した回転部材31.32.3
3.34から成り、各回転部材31〜34にはカウンタ
ーバランス35が付設されている。一対のピストン1工
、12は結合部材21.22の端部を回転部材31の同
一点に一点集合式にピン36により連結して、一体的に
往復動するように結合される6他の対のピストン13.
14も同様であり、各軸支点(a)、(b)は回転方向
に180度隔たって配置されている。
Each piston 11-14 has a connecting rod or coupling member 21.2.
2, 23, and 24, which are connected to an output shaft 30 provided in the case 5 in a direction perpendicular to the piston sliding direction, by a converting means, and the converting means is connected to the coupling member 21.
~24 and a rotating member 31.32.3 with its end pivotally supported.
3.34, and a counterbalance 35 is attached to each rotating member 31-34. A pair of pistons 1 and 12 are connected by connecting the ends of coupling members 21 and 22 to the same point of a rotating member 31 in a single-point assembly manner with a pin 36, and are connected to 6 other pairs so as to integrally reciprocate. Piston 13.
14 is the same, and the respective shaft fulcrums (a) and (b) are arranged 180 degrees apart in the rotational direction.

41は点火プラグ、42は空気吸入口、43はキャブレ
ーク、44はリードバルブ、45は混合ガス吸入口、4
6は燃焼ガス排気口、47は出力軸30に取付けた歯車
組、48はシリンダーの冷却水溝、49はワイヤーアク
セルを示す。前記点火ブラダ41には、区外のディスト
リビュータ、或いは電子制御燃料噴射装置等により定ま
る点火時期に高圧電気火花が飛ばされる。以上の説明で
は、爆発順序はシリンダ番号で対角線上のシリンダl、
4と2.3を同時に点火させることになる。このため横
振動を相殺し静粛な運転が可能となる。しかしこの順序
にこだわらず、例えばシリンダl、3と2.4を同時に
するような点火順序でも良い。
41 is a spark plug, 42 is an air intake port, 43 is a carburetor brake, 44 is a reed valve, 45 is a mixed gas intake port, 4
6 is a combustion gas exhaust port, 47 is a gear set attached to the output shaft 30, 48 is a cylinder cooling water groove, and 49 is a wire accelerator. A high-voltage electric spark is blown into the ignition bladder 41 at an ignition timing determined by an external distributor, an electronically controlled fuel injection device, or the like. In the above explanation, the explosion order is the cylinder number on the diagonal, l,
4 and 2.3 will be ignited at the same time. This cancels out lateral vibrations and enables quiet operation. However, without being limited to this order, for example, the firing order may be such that cylinders 1, 3, and 2.4 are fired at the same time.

第5図、第6図は本発明の第2の実施例を示す、第5図
は前後にずれた一対のピストン51.52を有する機関
の概念的断面図で、両ピストン51.52の連接棒にあ
たる結合部材53.54は、出力軸60に固定された変
換手段の一部である回転部材55.56の円周上の1点
に、ピン57.58により夫々連繋されている。59は
以上の機構を組込むための、シリンダーを有するケーシ
ングである。
5 and 6 show a second embodiment of the present invention. FIG. 5 is a conceptual cross-sectional view of an engine having a pair of pistons 51, 52 shifted forward and backward, and the connection of both pistons 51, 52. The coupling members 53, 54, which correspond to rods, are each connected to one point on the circumference of a rotary member 55, 56, which is part of the converting means fixed to the output shaft 60, by pins 57, 58. 59 is a casing having a cylinder for incorporating the above mechanism.

一対のピストン51.52は夫々別の回転部材55.5
6にピン結合されているが、結合点は一対のピストンに
ついて、出力軸60がらの回転半径、及びその半径に於
る円周上の位置が同一である。つまり第1図(C)の原
則通りであり、これは第6図に示すように4気筒化、更
には6気筒化しても守らなければならない。第6図は前
部のピストン対61.62の結合部材71.72が出力
軸6o廻りの1点aで各回転部材65.66にピン結合
され、後部のピストン対63.64の結合部材73.7
4も他の1点すで各回転部材67.68にピン結合され
た例を示しており、両点a、bは出力軸60を中心とす
る回転部材65〜68の同一円周上にあって、位相のみ
相違する。この位相は回転のバランスをとるために設定
される。
A pair of pistons 51.52 are each provided with a separate rotating member 55.5.
6, the connecting point is the same in the radius of rotation of the output shaft 60 and the same position on the circumference of the radius for the pair of pistons. In other words, the principle shown in FIG. 1(C) is the same, and this must be followed even when the engine is increased to 4 cylinders or even 6 cylinders as shown in FIG. 6. FIG. 6 shows that the coupling members 71, 72 of the front piston pair 61, 62 are pin-coupled to each rotating member 65, 66 at a point a around the output shaft 6o, and the coupling member 73 of the rear piston pair 63, 64 is connected with a pin at a point a around the output shaft 6o. .7
4 also shows an example in which one other point is already pin-coupled to each rotating member 67, 68, and both points a and b are on the same circumference of the rotating members 65 to 68 centered on the output shaft 60. Therefore, only the phase is different. This phase is set to balance the rotation.

作動 第2図、第3図のようなエンジンを作動させるときは、
2個(1対)1組のピストンが夫々1往復するごとに夫
々爆発行程を経るので出力軸3oが1回転するたびに例
示の4気筒では2回の爆発サイクルを生ずる。故に第3
図のエンジンと在来の直列4気筒エンジンの機関回転数
等を比較すると、第4図の如くになる。
Operation When operating the engine as shown in Figures 2 and 3,
Each pair of pistons undergoes an explosion stroke each time they make one reciprocation, so each rotation of the output shaft 3o causes two explosion cycles in the four-cylinder example. Therefore, the third
Comparing the engine speed, etc. of the engine shown in the figure and a conventional inline four-cylinder engine, the results are as shown in FIG. 4.

同図によれば、出力軸或いはクランクシャフトが同一回
転数で運転されているとき爆発回数即ちエネルギー発生
回数は在来エンジンの倍となり、逆に爆発時間間隔は2
分の1となることが理解できる。
According to the figure, when the output shaft or crankshaft is operated at the same rotation speed, the number of explosions, that is, the number of times energy is generated, is twice that of a conventional engine, and conversely, the explosion time interval is 2 times.
It can be understood that the difference is 1/1.

逆にいえば回転数は在来エンジンの半分で済み、それだ
け低速化するためピストンのストロークを長くすること
ができるので、本発明を2サイクルエンジンに適用する
ときは、従来の2サイクルエンジンの欠点であったトル
クの不足の問題を解決できることとなる。また回転数を
半減させる運転方法をとれば、機関の耐久性は倍に伸び
、結局燃焼時間は在来型と変らないことになるから熱だ
れ現象も起らない。
Conversely, the number of rotations is only half that of a conventional engine, and the piston stroke can be lengthened to reduce the speed accordingly, so when applying the present invention to a 2-stroke engine, it is possible to eliminate the drawbacks of a conventional 2-stroke engine. This will solve the problem of insufficient torque. Furthermore, if an operating method is adopted in which the rotational speed is halved, the durability of the engine will be doubled, and the combustion time will be the same as the conventional type, so no heat droop phenomenon will occur.

以上の点は第5図、第6図の実施例でも全く同様である
。この第2実施例の場合は、ピストンの往復運動を回転
運動に変換するための変換手段が各ピストン別に分散す
るので、部材強度や出力軸の剛性等を低く設定し、荷重
分布の集中を避けることができる。
The above points are exactly the same in the embodiments shown in FIGS. 5 and 6. In the case of this second embodiment, the conversion means for converting the reciprocating motion of the piston into rotational motion is distributed for each piston, so the strength of the members and the rigidity of the output shaft are set low to avoid concentration of load distribution. be able to.

(効果) 従って本発明によれば、気筒数を同一とした場合在来エ
ンジンと比較して同一回転数で爆発サイクルが2分の1
に短縮され、爆発回数は倍増するので、出力値を著しく
高める効果が得られる。また同出力であれば在来エンジ
ンよりもトルクを大きくすることができ、回転数は減少
することとなるので高性能で回転も円滑化する高効率の
内燃機関を提供することができる。
(Effect) Therefore, according to the present invention, when the number of cylinders is the same, the explosion cycle is halved at the same rotation speed compared to a conventional engine.
, and the number of explosions is doubled, resulting in the effect of significantly increasing the output value. Furthermore, with the same output, the torque can be increased compared to a conventional engine, and the rotational speed is reduced, so it is possible to provide a highly efficient internal combustion engine with high performance and smooth rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る爆発サイクル短縮型内燃機関に関す
るもので第1図(a)、(b)、(c)は本発明の原理
図、第2図は本発明の第1実施例を示す縦断面図、第3
図は横断面図、第4図は運転特性を示すグラフ、第5図
は本発明の第2実施例を示す横断説明図、第6図は変換
手段を説明する斜視図である。 1.2.3.4・・・シリンダ、P、 Q、 11.1
2.13.14.51.52.61.62.63.64
・・・ビスミーン、U、V、21.22.23.24.
71.72.73.74・・・連接棒即ち結合部材、3
1.32.33.34.55.56.65.66.67
.68・・・回転部材、X、30.60・・・出力軸。
The drawings relate to an internal combustion engine with a shortened explosion cycle according to the present invention, and FIG. 1 (a), (b), and (c) are diagrams of the principle of the present invention, and FIG. 2 is a longitudinal section showing the first embodiment of the present invention. Front view, 3rd
4 is a graph showing operating characteristics, FIG. 5 is a cross-sectional explanatory view showing a second embodiment of the present invention, and FIG. 6 is a perspective view illustrating the converting means. 1.2.3.4...Cylinder, P, Q, 11.1
2.13.14.51.52.61.62.63.64
... Bismeen, U, V, 21.22.23.24.
71.72.73.74...Connecting rod or coupling member, 3
1.32.33.34.55.56.65.66.67
.. 68...Rotating member, X, 30.60...Output shaft.

Claims (3)

【特許請求の範囲】[Claims] (1)水平な軸上に配置され、夫々の外方端に燃焼室を
設けた一対のシリンダと、各シリンダ内に於て夫々吸気
圧縮爆発排気からなる燃焼サイクルにより往復直線運動
を交互に行なう一対のピストンと、両ピストンを一体的
に結合する部材と、両シリンダを一体化したケース内に
前記軸と直交する方向に軸承された出力軸と前記結合部
材とを連繋し、ピストンの直線運動により出力軸を回転
させる変換手段、及び一方のシリンダの排気行程で他方
のシリングへの吸気行程を交互に行なう吸・排気機構と
を備えた爆発サイクル短縮型内燃機関。
(1) A pair of cylinders arranged on a horizontal axis, each with a combustion chamber at its outer end, and each cylinder performs reciprocating linear motion alternately through a combustion cycle consisting of intake, compression, explosion, and exhaust. A pair of pistons, a member that integrally connects both pistons, and an output shaft that is supported in a direction perpendicular to the axis within a case that integrates both cylinders and the connecting member are linked, and the pistons move linearly. An internal combustion engine with a shortened explosion cycle, comprising a conversion means for rotating an output shaft, and an intake/exhaust mechanism that alternately performs an intake stroke to the other cylinder during the exhaust stroke of one cylinder.
(2)1本の出力軸に対して2対以上のシリンダとピス
トンとが組合された請求項第1項記載の爆発サイクル短
縮型内燃機関。
(2) The explosion cycle shortening internal combustion engine according to claim 1, wherein two or more pairs of cylinders and pistons are combined with respect to one output shaft.
(3)水平な軸上に於て前後に位置をずらせて配置され
た左右一対のシリンダと、各シリンダ内に於て燃焼サイ
クルを行なうため往復直線運動を交互に行なう一対のピ
ストンと、両ピストンを一体的に結合する部材と、両シ
リンダを一体化したケース内に、前記軸と直交する方向
に軸承された出力軸の前後に、それと一体に回転するよ
うに設けられた一対の変換手段と、出力軸から所定半径
だけ離れ、かつ該半径の通る円周上の同一点に於て前記
各結合部材を各変換手段に連繋したピンとを備えた爆発
サイクル短縮型内燃機関。
(3) A pair of left and right cylinders arranged with their positions shifted back and forth on a horizontal axis, a pair of pistons that perform reciprocating linear motion alternately to perform a combustion cycle within each cylinder, and both pistons. and a pair of converting means provided in a case integrating both cylinders, front and rear of an output shaft supported in a direction perpendicular to the axis, so as to rotate together with the output shaft. , a pin that is separated from the output shaft by a predetermined radius and connects each of the coupling members to each conversion means at the same point on the circumference that the radius passes through.
JP25887188A 1988-07-27 1988-10-14 Explosion cycle shortening type internal combustion engine Pending JPH02140430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25887188A JPH02140430A (en) 1988-07-27 1988-10-14 Explosion cycle shortening type internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18757588 1988-07-27
JP63-187575 1988-07-27
JP25887188A JPH02140430A (en) 1988-07-27 1988-10-14 Explosion cycle shortening type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH02140430A true JPH02140430A (en) 1990-05-30

Family

ID=26504447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25887188A Pending JPH02140430A (en) 1988-07-27 1988-10-14 Explosion cycle shortening type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02140430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046314A (en) * 2004-08-06 2006-02-16 Sadao Suzuki Double-piston gasoline engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179335A (en) * 1981-04-25 1982-11-04 Saitou Seisakusho:Kk Horizontally opposed engine
JPS63167030A (en) * 1986-12-26 1988-07-11 Toshiaki Tsujioka Internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179335A (en) * 1981-04-25 1982-11-04 Saitou Seisakusho:Kk Horizontally opposed engine
JPS63167030A (en) * 1986-12-26 1988-07-11 Toshiaki Tsujioka Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046314A (en) * 2004-08-06 2006-02-16 Sadao Suzuki Double-piston gasoline engine

Similar Documents

Publication Publication Date Title
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
US6321693B1 (en) Reciprocating rotary piston system and pressure pump and internal combustion engine using the same
CA1107202A (en) Internal combustion engine
US4010611A (en) Compression-expansion power device
US20030136356A1 (en) Piston compressed turbine engine and control method thereof
KR20040032970A (en) An improved reciprocating internal combustion engine
EP0902175A1 (en) Energy conservation cycle engine
EP2721257A2 (en) Internal combustion engines
CN109184904B (en) Four-stroke four-cylinder opposite unidirectional rotary engine and control method thereof
JP2015529296A (en) Variable stroke mechanism for internal combustion engines
GB1565669A (en) Reciprocating rotary combustion engines
US3739755A (en) Rotary engine
US3608530A (en) Lever-type two-cycle internal combustion engine
CN111120087B (en) Piston type internal combustion generator and power generation method thereof
JP2008516142A (en) V-twin structure having an assembly in the field of rotating machinery
US5189993A (en) In-line three cylinder combustion engine
US1237696A (en) Explosion-engine.
JPS62182442A (en) Hypo cycloid crank internal combustion engine
US20210003121A1 (en) Process for operating a single-stroke combustion engine
JPH02140430A (en) Explosion cycle shortening type internal combustion engine
US5396868A (en) Two stroke internal combustion engine
US3874346A (en) Internal combustion engine
WO2020141553A1 (en) A radial opposed piston reciprocating internal combustion engine
US20030188701A1 (en) Internal combustion engine
US7188598B2 (en) Rotary mechanical field assembly