JPH0214039B2 - - Google Patents

Info

Publication number
JPH0214039B2
JPH0214039B2 JP56112913A JP11291381A JPH0214039B2 JP H0214039 B2 JPH0214039 B2 JP H0214039B2 JP 56112913 A JP56112913 A JP 56112913A JP 11291381 A JP11291381 A JP 11291381A JP H0214039 B2 JPH0214039 B2 JP H0214039B2
Authority
JP
Japan
Prior art keywords
lymphotoxin
cells
human
animal
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56112913A
Other languages
Japanese (ja)
Other versions
JPS5816687A (en
Inventor
Masakazu Mihashi
Haruo Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashibara Seibutsu Kagaku Kenkyujo KK
Mochida Pharmaceutical Co Ltd
Original Assignee
Hayashibara Seibutsu Kagaku Kenkyujo KK
Mochida Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashibara Seibutsu Kagaku Kenkyujo KK, Mochida Pharmaceutical Co Ltd filed Critical Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority to JP56112913A priority Critical patent/JPS5816687A/en
Priority to SE8204382A priority patent/SE8204382L/en
Priority to FR8212541A priority patent/FR2513124B1/en
Priority to CH4420/82A priority patent/CH664974A5/en
Priority to AU86200/82A priority patent/AU560793B2/en
Priority to KR8203215A priority patent/KR870001433B1/en
Priority to IT48855/82A priority patent/IT1196549B/en
Priority to AT0283582A priority patent/AT387980B/en
Priority to ES514210A priority patent/ES8308923A1/en
Priority to US06/400,487 priority patent/US4495282A/en
Priority to GB08221100A priority patent/GB2106117B/en
Priority to DE3227262A priority patent/DE3227262C3/en
Priority to DE3249946A priority patent/DE3249946C2/en
Publication of JPS5816687A publication Critical patent/JPS5816687A/en
Priority to SE9000532A priority patent/SE9000532L/en
Publication of JPH0214039B2 publication Critical patent/JPH0214039B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、リンホトキシン製造に際し、リンホ
トキシン産生能を有し、かつヒト以外の温血動物
の体内に移植して増殖する培養株化されたヒト由
来の細胞をヒト以外の温血動物体内に直接移植す
るか、または拡散チヤンバー内へ接種して、その
温血動物の体液の供給を受けながら増殖させて得
られる細胞に、生体内または生体外でリンホトキ
シン誘導剤を作用させてリンホトキシンを生成さ
せ、生成したリンホトキシンを精製分取すること
を特徴とするリンホトキシンの製造方法に関す
る。 リンホトキシンは、青木隆一ほか共著「リンホ
カイン」、新免疫学叢書6、1979年、医学書院、
Bloom、B.R.& Glade、P.R.共編「In vitro
methods in cell mediated immunity」
Academic Press、1971年、などにも記載されて
いるように、例えば、感作されたリンパ細胞に抗
原を作用させるか、ミトーゲンとしてフイトヘマ
グルチニン、コンカナバリンAをはじめとするリ
ンホトキシン誘導剤を細胞に作用させることによ
つて、その細胞内外に誘導生成され蛋白様物質で
あつて、細胞障害機能を持つ物質に与えられた名
称であり、特に腫瘍細胞に対して細胞障害機能を
持つていることは公知である。 リンホトキシンの持つこのような機能から、リ
ンホトキシンはその発見の当初より悪性腫瘍治療
剤として期待されて来た。 リンホトキシンは、ヒトをはじめ種々の動物の
リンパ細胞から調製されて来たが、ヒトの治療に
供するには、ヒトの生細胞由来であることが、治
療上に生ずる抗原性などの副作用面において極め
て安全であり、優れている。 従来から、リンホトキシンの調製に使用されて
来たヒトの生細胞には白血球がある。しかしなが
ら、白血球はヒトの新鮮血から分離して調製され
るものであり、その保存が困難であつて、大量に
安価に供給することは極めて困難である。このよ
うな理由から、ヒトの治療に供し得るリンホトキ
シンの製造は、未だ工業的規模で実施されるまで
に至つていない。 本発明者らは、工業的規模で容易に実施し得る
リンホトキシンの製造方法を検討し、そのリンホ
トキシンが悪性腫瘍の治療剤として有用であるか
否かを鋭意研究して来た。 その結果、リンホトキシン産生能を有し、かつ
ヒト以外の温血動物の体内に移植して増殖する培
養株化されたヒト由来の細胞を生体外(in
vitro)の栄養培地に接種し、増殖させるのでは
なく、ヒト以外の温血動物体内に移植し、また
は、拡散チヤンバー内に接種してその動物体から
栄養物を含有する体液の供給を受けつつ増殖さ
せ、得られる細胞に生体内または生体外でリンホ
トキシン誘導剤を作用させることによつて、その
ヒト由来の細胞を生体外(in vitro)で組織培養
して得られる場合よりリンホトキシンが高活性で
誘導生成され、これを精製分取することによつて
リンホトキシンが多量容易に製造し得ることを見
いだし、そのリンホトキシンが悪性腫瘍の治療剤
として優れていることを確認して本発明を完成し
た。 本発明において使用されるリンホトキシンの製
造方法は、生細胞を生体外(in vitro)で増殖さ
せる場合とは違つて、高価な血清などを含む栄養
培地が不要または大幅に節約できるばかりでな
く、細胞増殖中の維持管理も極めて容易であり、
その上誘導生成されるリンホトキシン活性が高い
特徴を有している。即ち、リンホトキシン産生能
を有し、かつヒト以外の温血動物の体内に移植し
て増殖する培養株化されたヒト由来の細胞をヒト
以外の温血動物体内に移植し、あるいは、その動
物の体液の供給を受けることのできる拡散チヤン
バー内に収容し、このチヤンバーを動物体内に埋
設して通常の飼育をすれば、温血動物体から供給
される栄養物を含有する体液を利用してその細胞
が容易に増殖しうるのである。更に、生体外(in
vitro)で増殖させる場合と比較して、この細胞
の増殖が安定していること、その増殖速度が大き
いこと、得られる細胞量が多いこと、更には細胞
当りのリンホトキシンの収量が著増することも大
きな特徴である。本発明で使用する培養株化され
たヒト由来の細胞は、ヒト以外の温血動物体内に
移植して容易に増殖し得て、しかもリンホトキシ
ン産生を有するものであればよく、例えば
「Journal of Clinical Microbiology Vol.1」116
〜117頁(1975)に記載されているNamalva細
胞、I.Miyoshi著「Nature Vol.267」843〜844頁
(1977年)に記載されているBALL−1細胞、
TALL−1細胞、NALL−1細胞、「Journal of
Immunology Vol.113」1334〜1345頁(1974年)
記載のM−7002細胞、B−7101細胞などのほか、
マクロフアージ、繊維芽細胞なども自由に使用さ
れ、また、これら細胞のリンホトキシン産生能を
持つ遺伝子を、例えばポリエチレングリコール、
センダイウイルスなどを利用する細胞融合の手段
や、DNAリガーゼ、制限酵素(ヌクレアーゼ)、
DNAポリメラーゼなどの酵素を利用する遺伝子
組み換えの手段などによつて、より容易に継代培
養しうる培養株化されたリンパ芽様細胞などに導
入し、その増殖速度を高めたり、細胞当りのリン
ホトキシン産生能を高めたりして使用してもよ
く、本明細書に記載する株化細胞のみに限定され
るものではない。これらの細胞は、後に述べるリ
ンホトキシンを誘導生成させるまでの過程で、単
独で又は2種以上を混合して自由に使用される。
必要ならば、これに、例えばヒトの新鮮血から調
製される白血球を併用することもできる。 本発明で使用する温血動物は、ヒト由来の細胞
が増殖し得るものであればよく、例えばニワト
リ、ハトなどの鳥類、イヌ、ネコ、サル、ウサ
ギ、ヤギ、ブタ、ウマ、ウシ、モルモツト、ラツ
ト、ハムスター、普通マウス、ヌードマウスなど
の哺乳類が使用できる。 これらの動物にヒト由来の細胞を移植すると好
ましくない免疫反応を起すおそれがあるので、そ
の反応をできるだけ抑えるため、使用する動物は
できるだけ幼若な状態、即ち卵、胚、胎児、また
は新生期、幼少期のものの方が好ましい。 また、これら動物に例えば200〜600レム程度の
エツクス線若しくはガンマ線を照射するか、また
は抗血清若しくは免疫抑制剤などを注射するなど
の前処理をほどこして、免疫反応を弱めて移植し
てもよい。 使用する動物がヌードマウスの場合には、成長
したものであつても免疫反応が弱いので、これら
の前処理を必要とすることなく、培養株化された
ヒト由来の細胞が移植でき、急速に増殖できるの
で特に好都合である。 また、培養株化されたヒト由来の細胞を、例え
ば先づハムスターに移植し増殖させた後、この細
胞を更にヌードマウスに移植するなどのように、
ヒト以外の温血動物間で移植してヒト由来の細胞
の増殖をより安定化したり、さらにそれらから誘
導・生成されるリンホトキシン量を増加させるこ
とも自由である。 この場合、同種間、同属間は勿論のこと同綱
間、同門間移植であつてもよい。ヒト由来の細胞
を移植する動物体内の部位は、移植した細胞が増
殖しうる部位であればよく、例えば尿液腔、静
脈、腹腔、皮下など自由に選ばれる。 また、直接動物体内にヒト由来の細胞を移植す
ることなく、動物細胞の通過を阻止し得る多孔性
の過膜、例えば孔径約10-7〜10-5mを有するメ
ンブランフイルター、限外過膜またはホローフ
アイバーなどを設けた公知の各種形状、大きさの
拡散チヤンバーを動物体内、例えば腹腔内に埋設
して、動物体からの栄養物を含む体液の供給を受
けつつ、そのチヤンバー内で前述の培養株化され
たヒト由来の細胞を何れも増殖させることができ
る。 また必要に応じて、このチヤンバー内の栄養物
を含む溶液を動物体内の体液と接続し、潅流させ
るようにしたチヤンバーを、例えば動物体表に取
付け、チヤンバー内のヒト由来の細胞の増殖状態
を透視できるようにすることも、また、このチヤ
ンバー部分のみを着脱交換できるようにして動物
を屠殺せずに寿命一杯細胞を増殖させて、動物個
体当りの細胞生産量を更に高めることもできる。 これらの拡散チヤンバーを利用する方法は、ヒ
ト由来の細胞が動物細胞と直接接触しないので、
ヒト由来の細胞のみが容易に採取できるだけでな
く、好ましくない免疫反応を起す心配も少ないの
で、免疫反応を抑制する前処置の必要もなく、各
種温血動物を自由に利用できる特徴を有してい
る。 移植した動物の維持管理は、その動物の通常の
飼育管理を続ければよく、移植後といえども特別
の取扱いは何ら必要としないので好都合である。 ヒト由来の細胞を増殖させるための期間は通常
1〜10週の期間で目的を達成することができる。
このようにして得られるヒト由来の細胞数は動物
個体当り約107〜1012個、またはそれ以上に達す
ることも見出した。 換言すれば、本発明で使用するリンホトキシン
の製造方法により増殖させたヒト由来細胞数は、
動物個体当り移植した細胞数の約102〜107倍、ま
たはそれ以上にも達し、生体外の栄養培地に接種
して増殖させる場合の約101〜106倍、またはそれ
以上にも達して、リンホトキシンの製造のために
極めて好都合である。 このようにして増殖させたヒト由来の生細胞か
ら、リンホトキシンを誘導生成させる方法は自由
である。それが増殖した動物体内のままでリンホ
トキシン誘導剤を作用させることもできる。例え
ば、腹腔内の腹水に浮遊状で増殖したヒト由来の
細胞に、または皮下に生じた腫瘍細胞に、リンホ
トキシン誘導剤を直接作用させてリンホトキシン
を誘導生成させ、次いでその腹水または腫瘍から
リンホトキシンを精製分取すればよい。 また、ヒト由来の増殖細胞を動物体内から取り
出し、生体外でリンホトキシン誘導剤を作用させ
てリンホトキシンを誘導生成させることもでき
る。例えば、腹水中で増殖したヒト由来の細胞を
分取し、または皮下に生じたヒト由来の細胞を含
む腫瘍を摘出、分取し、得られる細胞を約20〜40
℃に保つた栄養培地に細胞濃度が約105〜108/ml
になるように浮遊させ、これにリンホトキシン誘
導剤を作用させることによつてリンホトキシンを
誘導生成させ、これを精製分取すればよい。 更に、ヒト由来の細胞を拡散チヤンバー内で増
殖させた場合は、増殖させた細胞をチヤンバー内
のままで、またはチヤンバーから取り出して、リ
ンホトキシン誘導剤を作用させ、リンホトキシン
を誘導生成させることもできる。 また、例えば増殖させたヒト由来の細胞に先づ
動物体内のままでリンホトキシンを誘導生成させ
た後、次いで同一動物固体の特定の部位または全
体から採取したヒト由来の細胞に動物体外でリン
ホトキシンを誘導生成させる方法、また一度リン
ホトキシンの誘導生成に使用した細胞を更に2度
以上リンホトキシンの誘導生成に使用する方法、
または動物体内に埋設、若しくは接続するチヤン
バーを交換して得られる細胞数を増加させる方法
などによつて、使用する動物個体当りのリンホト
キシン生成量を更に高めることも自由である。 リンホトキシン誘導剤としては、通常、例えば
フイトヘマグルチニン、コンカナバリンA、ポー
クウイードミトーゲン、リボポリサツカリド、エ
ンドトキシン、多糖類、細菌などのミトーゲンお
よびウイルス、核酸などの一種若しくは二種以上
が用いられる。 また、感作化された細胞にとつては抗原もリン
ホトキシン誘導剤である。 このようにして誘導生成されたリンホトキシン
は、公知の精製分離法、例えば、塩析、透析、
過、遠心分離、濃縮、凍結乾燥などを行うことに
よつて、同時に誘導生成されたインターフエロン
などと容易に精製分離し、採取することができ
る。更に高度の精製を必要とする場合には、例え
ばイオン交換体への吸着−溶出、ゲル濾過、等電
点分画、電気泳動、イオン交換クロマトグラフイ
ー、高速液体クロマトグラフイー、カラムクロマ
トグラフイーなどの公知の方法を組合せれば、最
高純度のリンホトキシンを採取することも可能だ
が、フイトヘマグルチニン−セフアロースを用い
たアフイニテイクロマトグラフイーにより、高純
度のリンホトキシンを極めて簡便かつ迅速に製造
できるので、非常に好都合である。この場合、フ
イトヘマグルチニンはフイトヘマグルチニン−
P、フイトヘマグルチニン−M、フイトヘマグル
チニン−Eなどどんなフイトヘマグルチニンを用
いても良い。 本発明のリンホトキシンは、リンホトキシン感
受性疾患の予防剤、治療剤として用いることがで
きる。リンホトキシン感受性疾患とは、リンホト
キシンによつて予防され、若しくは治療される疾
患であり、例えば乳癌、肺癌、肝癌、膀胱癌、子
宮癌、大腸癌、胃癌、白血病、リンパ腫、皮膚癌
などの悪性腫瘍である。さらには、悪性腫瘍に適
用するにあたつては、例えば患者の腫瘍の一部を
取り、本発明のリンホトキシンと生体外で処理す
ることによつて腫瘍の免疫原性を高めた後、腫瘍
患者の体内に戻すことにより、この悪性腫瘍の治
療を行うこともできる。 リンホトキシンは、その分子量から、7〜9
万、3.5〜5万、1〜2万の3種、すなわち、α、
βおよびγ−リンホトキシンが存在することが記
載されている〔Cohenら編「Biology of the
Lymphokines」Academic Press(1979年)〕。リ
ンホトキシンの活性は、Bloom、B.R.&
Glade、P.R.共編「In vitro methods in cell−
mediated immunity」Academic Press(1971年)
に報告されているマウスL細胞を使用して、一定
時間培養後の生残細胞数を測定する公知の方法を
用いた。 以下、実験例で有効性、用法、用量を説明す
る。 実験例 1 BALB/C由来ヌードマウスに人乳癌組織片
を背部皮下に移植する。腫瘍体積が約200mm3の時
期から、後に述べる実施例9で得られたα−、β
−、γ−リンホトキシン混合品(以下、単にリン
ホトキシンと称する。)を4及び40単位/Kg、1
日2回に分けて静注し、15日目にマウスを殺し、
腫瘍重量を測定した。その結果を第1表に示し
た。なお、対照はリンホトキシン無含有生理食塩
水を静注した。
In the production of lymphotoxin, the present invention involves direct transplantation of cultured human-derived cells that have the ability to produce lymphotoxin and that can be transplanted and proliferated into the body of a warm-blooded animal other than humans into the body of a warm-blooded animal other than humans. Or, the cells are inoculated into a diffusion chamber and grown while being supplied with the body fluids of the warm-blooded animal. The cells are then treated with a lymphotoxin inducer in vivo or in vitro to produce lymphotoxin. The present invention relates to a method for producing lymphotoxin, which comprises purifying and fractionating lymphotoxin. Lymphotoxins are co-authored by Ryuichi Aoki and others, “Lymphokines,” New Immunology Series 6, 1979, Igaku Shoin,
Bloom, BR & Glade, PR co-ed. “In vitro
"methods in cell-mediated immunity"
Academic Press, 1971. This is the name given to a protein-like substance that is induced to be produced inside and outside of cells by cells and has a cytotoxic function, and is known to have a cytotoxic function, especially against tumor cells. It is. Because of these functions of lymphotoxin, lymphotoxin has been expected to be a therapeutic agent for malignant tumors since its discovery. Lymphotoxin has been prepared from lymph cells of various animals including humans, but in order to be used for human treatment, it is extremely important to derive it from living human cells in order to avoid side effects such as antigenicity that may occur during treatment. It's safe and good. Live human cells that have traditionally been used to prepare lymphotoxin include white blood cells. However, leukocytes are prepared by separating them from fresh human blood, and it is difficult to preserve them, and it is extremely difficult to supply them in large quantities at low cost. For these reasons, the production of lymphotoxin that can be used for human treatment has not yet been carried out on an industrial scale. The present inventors have investigated a method for producing lymphotoxin that can be easily implemented on an industrial scale, and have conducted intensive research to determine whether the lymphotoxin is useful as a therapeutic agent for malignant tumors. As a result, we have developed cultured human-derived cells that have the ability to produce lymphotoxin and that can be transplanted and proliferated into the bodies of warm-blooded animals other than humans.
Instead of being inoculated and grown in a nutrient medium (in vitro), they can be transplanted into a warm-blooded non-human animal, or they can be inoculated into a diffusion chamber and supplied with nutrient-containing body fluids from that animal. By multiplying the cells and treating the resulting cells with a lymphotoxin inducer in vivo or in vitro, the lymphotoxin activity is higher than that obtained by culturing human-derived cells in vitro. The inventors discovered that lymphotoxin can be easily produced in large quantities by purifying and fractionating the induced product, and confirmed that the lymphotoxin is excellent as a therapeutic agent for malignant tumors, thereby completing the present invention. Unlike when living cells are grown in vitro, the method for producing lymphotoxin used in the present invention not only eliminates or significantly saves nutrient media containing expensive serum, but also Maintenance and management during proliferation is extremely easy,
Moreover, it is characterized by high induced lymphotoxin activity. That is, cultured human-derived cells that have the ability to produce lymphotoxin and can be transplanted and proliferated into the body of a warm-blooded animal other than humans are transplanted into the body of a warm-blooded animal other than humans, or If the animal is housed in a diffusion chamber that can receive a supply of body fluids, and this chamber is buried inside the animal's body and reared normally, the body fluids containing nutrients supplied by the warm-blooded animal's body will be utilized. Cells can easily proliferate. Furthermore, in vitro
Compared to when grown in vitro), the growth of these cells is stable, the growth rate is high, the amount of cells obtained is large, and the yield of lymphotoxin per cell is significantly increased. is also a major feature. The cultured human-derived cells used in the present invention may be those that can be transplanted into the body of a warm-blooded animal other than humans and easily proliferate, and that also have lymphotoxin production. Microbiology Vol.1” 116
- Namalva cells described in pages 117 (1975), BALL-1 cells described in "Nature Vol. 267" by I. Miyoshi, pages 843-844 (1977),
TALL-1 cells, NALL-1 cells, “Journal of
Immunology Vol.113” pages 1334-1345 (1974)
In addition to the M-7002 cells, B-7101 cells, etc. described,
Macrophages, fibroblasts, etc. are also freely used, and the genes with lymphotoxin-producing ability of these cells can be expressed using polyethylene glycol, for example.
Cell fusion methods using Sendai virus, DNA ligase, restriction enzymes (nucleases),
By genetic recombination using enzymes such as DNA polymerase, it can be introduced into cultured lymphoblast-like cells that can be more easily subcultivated to increase their proliferation rate and reduce the amount of lymphotoxin per cell. They may be used by increasing their productivity, and are not limited to the established cell lines described herein. These cells can be freely used alone or in combination of two or more types in the process of inducing and producing lymphotoxin, which will be described later.
If necessary, leukocytes prepared from fresh human blood, for example, can also be used in combination. The warm-blooded animals used in the present invention may be any animal in which human-derived cells can proliferate, such as birds such as chickens and pigeons, dogs, cats, monkeys, rabbits, goats, pigs, horses, cows, guinea pigs, Mammals such as rats, hamsters, normal mice, and nude mice can be used. Transplanting human-derived cells into these animals may cause an unfavorable immune reaction, so in order to suppress such reactions as much as possible, the animals used should be kept as young as possible, i.e. eggs, embryos, fetuses, or newborns. Preferably from childhood. In addition, these animals may be subjected to pretreatment such as irradiation with X-rays or gamma rays at a dose of about 200 to 600 rem, or injection of antiserum or immunosuppressants, etc., to weaken the immune response before transplantation. . When the animals used are nude mice, the immune response is weak even when they are grown, so cultured human-derived cells can be transplanted without the need for these pretreatments, and the cells can be rapidly transplanted. This is particularly advantageous since it can be propagated. In addition, human-derived cells that have been cultured are first transplanted into hamsters and allowed to proliferate, and then these cells are further transplanted into nude mice.
It is also possible to stabilize the growth of human-derived cells by transplanting them between warm-blooded animals other than humans, and to increase the amount of lymphotoxin induced and produced from them. In this case, the transplant may be between the same species, the same genus, the same class, or the same phylum. The site within the animal body to which human-derived cells are transplanted may be any site where the transplanted cells can proliferate, such as the allantoic cavity, vein, abdominal cavity, or subcutaneous site. In addition, porous membranes that can block the passage of animal cells without directly transplanting human-derived cells into the animal body, such as membrane filters and ultrafiltration membranes with pore diameters of approximately 10 -7 to 10 -5 m, are also available. Alternatively, a diffusion chamber of various known shapes and sizes equipped with hollow eye bars or the like is buried in the animal's body, for example, in the abdominal cavity, and while receiving body fluids containing nutrients from the animal body, the above-mentioned Any cultured human-derived cells can be grown. If necessary, a chamber that connects and perfuses the solution containing nutrients within the chamber with body fluids within the animal's body is attached to the surface of the animal's body, for example, to check the proliferation status of human-derived cells within the chamber. It is also possible to make it transparent, or to make only this chamber part removable and replaceable, allowing cells to proliferate throughout the lifespan of the animal without having to sacrifice it, thereby further increasing the amount of cells produced per individual animal. These diffusion chamber-based methods do not allow direct contact between human-derived cells and animal cells;
Not only can only human-derived cells be easily collected, but there is also little risk of causing undesirable immune reactions, so there is no need for pretreatment to suppress immune reactions, and various warm-blooded animals can be used freely. There is. The transplanted animal can be maintained and managed simply by continuing the normal care and management of the animal, and is convenient because no special handling is required even after transplantation. The purpose can usually be achieved in a period of 1 to 10 weeks for growing human-derived cells.
It has also been found that the number of human-derived cells obtained in this manner reaches about 10 7 to 10 12 or more per animal. In other words, the number of human-derived cells grown by the method for producing lymphotoxin used in the present invention is
The number of cells transplanted per individual animal reaches approximately 10 2 to 10 7 times, or more, and it reaches approximately 10 1 to 10 6 times, or more, than the number of cells grown by inoculation in an in vitro nutrient medium. Therefore, it is extremely convenient for the production of lymphotoxin. Any method can be used to induce and produce lymphotoxin from human-derived living cells grown in this manner. The lymphotoxin-inducing agent can also be applied to the animal in which it has grown. For example, a lymphotoxin-inducing agent is directly applied to human-derived cells grown in suspension in ascites in the peritoneal cavity or tumor cells generated subcutaneously to induce the production of lymphotoxin, and then lymphotoxin is purified from the ascites or tumor. All you have to do is separate it. Furthermore, human-derived proliferating cells can be removed from an animal body and lymphotoxin-inducing agents can be applied to the cells in vitro to induce lymphotoxin production. For example, human-derived cells grown in ascites are sorted, or a subcutaneous tumor containing human-derived cells is removed and sorted, and the resulting cells are approximately 20 to 40
The cell concentration is approximately 10 5 - 10 8 /ml in the nutrient medium kept at ℃.
Lymphotoxin can be induced and produced by suspending the protein and treating it with a lymphotoxin inducing agent, which can then be purified and fractionated. Furthermore, when human-derived cells are grown in a diffusion chamber, the grown cells can be left in the chamber or removed from the chamber and treated with a lymphotoxin-inducing agent to induce lymphotoxin production. In addition, for example, lymphotoxin is first induced to be produced in grown human-derived cells in the animal body, and then lymphotoxin is induced outside the animal body in human-derived cells collected from a specific part or the whole of the same animal. a method of producing lymphotoxin, and a method of using cells once used for the induced production of lymphotoxin two or more times,
Alternatively, it is also possible to further increase the amount of lymphotoxin produced per individual animal used, such as by increasing the number of cells obtained by implanting or replacing the chamber connected to the animal body. As the lymphotoxin inducer, one or more of phytohemagglutinin, concanavalin A, pork weed mitogen, ribopolysaccharide, endotoxin, polysaccharides, mitogens such as bacteria, viruses, and nucleic acids are usually used. Antigens are also lymphotoxin inducers for sensitized cells. The lymphotoxin induced and produced in this way can be purified using known purification and separation methods such as salting out, dialysis,
By performing filtration, centrifugation, concentration, freeze-drying, etc., it can be easily purified and separated from interferon, which is induced and produced at the same time, and collected. If a higher level of purification is required, for example, adsorption-elution to an ion exchanger, gel filtration, isoelectric point fractionation, electrophoresis, ion exchange chromatography, high performance liquid chromatography, column chromatography. Although it is possible to collect the highest purity lymphotoxin by combining known methods such as , very convenient. In this case, phytohemagglutinin is phytohemagglutinin-
Any phytohemagglutinin such as P, phytohemagglutinin-M, and phytohemagglutinin-E may be used. The lymphotoxin of the present invention can be used as a prophylactic or therapeutic agent for lymphotoxin-sensitive diseases. Lymphotoxin-sensitive diseases are diseases that are prevented or treated by lymphotoxin, such as malignant tumors such as breast cancer, lung cancer, liver cancer, bladder cancer, uterine cancer, colorectal cancer, gastric cancer, leukemia, lymphoma, and skin cancer. be. Furthermore, when applied to malignant tumors, for example, a part of a patient's tumor is taken and treated with the lymphotoxin of the present invention in vitro to increase the immunogenicity of the tumor, and then It is also possible to treat this malignant tumor by returning it to the body of the patient. Lymphotoxin has a molecular weight of 7 to 9.
Three types: 10,000, 35,000 to 50,000, and 1 to 20,000, namely α,
The existence of β- and γ-lymphotoxins has been described [Biology of the
Lymphokines” Academic Press (1979)]. The activity of lymphotoxin is determined by Bloom, BR &
Glade, PR co-editor “In vitro methods in cell−
mediated immunity” Academic Press (1971)
A known method of measuring the number of surviving cells after culturing for a certain period of time was used using mouse L cells as reported in . The efficacy, usage, and dosage will be explained below using experimental examples. Experimental Example 1 A piece of human breast cancer tissue is subcutaneously transplanted into the back of a BALB/C-derived nude mouse. From the time when the tumor volume was about 200 mm3 , α- and β obtained in Example 9 described later
-, γ-lymphotoxin mixture (hereinafter simply referred to as lymphotoxin) at 4 and 40 units/Kg, 1
Injected intravenously twice a day, and killed mice on the 15th day.
Tumor weight was measured. The results are shown in Table 1. As a control, lymphotoxin-free physiological saline was intravenously injected.

【表】 的に有意差あり
実験例 2 体重25g前後のBDF1雄マウスを1群10匹と
し、2mm角に切断したルイス肺癌を背部皮下に移
植した。移植後8日目から、後に述べる実施例9
で得られたリンホトキシン、及びγ−リンホトキ
シンをそれぞれ4及び40単位/Kg、1日2回に分
けて連日静注し、21日目にマウスを殺して腫瘍重
量を測定した。その結果を第2表に示した。な
お、対照はリンホトキシン無含有生理食塩水を静
注した。
[Table] Experimental Example with Significant Differences 2 A group of 10 BDF 1 male mice weighing around 25 g were subcutaneously implanted with Lewis lung carcinoma cut into 2 mm squares on the back. From the 8th day after transplantation, Example 9 described later
Lymphotoxin and γ-lymphotoxin obtained in 4 and 40 units/kg, respectively, were administered intravenously twice a day, and on the 21st day, the mice were sacrificed and tumor weights were measured. The results are shown in Table 2. As a control, lymphotoxin-free physiological saline was intravenously injected.

【表】 的に有意差あり。
以下、本発明のリンホトキシンの製造方法に関
する実施例を示す。 実施例 1 成長したヌードマウスの皮下に、培養株化され
たBALL−1細胞を移植した後、通常の方法で3
週間飼育した。皮下に生じた約10gの腫瘍を摘出
し細切した後、トリプシン含有の生理食塩水に懸
濁して細胞を分散分取した。この細胞をヒト血清
5V/V%含有するPH7.2のEagleの最少基本培地
で洗浄し37℃に保つた同じ組成の培地に細胞濃度
が約5×106/mlになよう希釈し、これにフイト
ヘマグルチニンを約200μg/mlの割合で加えて
2日間保ちリンホトキシンを誘導生成せしめた。
これを約4℃、約1000gで遠心分離し、沈殿物を
除去し、得られた上清をPH7.2、0.01Mリン酸塩
緩衝液を含有する生理食塩水で21時間透析し、更
に精密過して得た液を濃縮し、凍結乾燥して
リンホトキシン活性を含有する粉末を得た。得ら
れたリンホトキシン活性は、ヌードマウス1匹当
り約360000単位であつた。 実施例 2 成長したヌードマウスの腹腔内に培養株化され
たヒト由来のBALL−1細胞とTALL−1細胞と
を移植後、通常の方法で5週間飼育した。この腹
腔内へフイトヘマグルチニン1mgを注入し、24時
間後に屠殺して腹水を得た。これを4℃、約1000
gで遠心分離し、得られた上清をPH7.2、0.01M
リン酸塩緩衝液を含有する生理食塩水で15時間透
析し、更に精密過して得た液を濃縮してリン
ホトキシン活性を含有する溶液を得た。得られた
リンホトキシン活性は、ヌードマウス1匹当り約
190000単位であつた。 実施例 3 新生児のハムスターにウサギから公知の方法で
調製した抗血清を予め注射し、ハムスターの免疫
能を弱めた後、その皮下に培養株化されたヒト由
来のJBL細胞を移植し、その後通常の方法で4週
間飼育した。 皮下に生じた約30gの腫瘍を摘出した後、実施
例1と同様の方法で細胞を分散させた。 この細胞を仔ウシ血清10V/V%を含むPH7.4
のRPMI 1640培地で洗浄した後、37℃に保つた
同じ組成の培地に細胞濃度が約2×107/mlにな
るよう希釈した。これにコンカナバリンA500n
g/mlおよびセンダイウイルス1000赤血球凝集
価/mlの割合で加え、3日間保ちリンホトキシン
を誘導生成させた。 以後、実施例1と同様に精製し濃縮してリンホ
トキシン活性を有する溶液を得た。得られたリン
ホトキシン活性は、ハムスター1匹当り約
1960000単位であつた。 実施例 4 成長した普通マウスに約400レムのエツクス線
を予め照射してマウスの免疫能を弱めた後、その
マウスの皮下に培養株化されたヒト由来のTALL
−1細胞を移植し、その後通常の方法で3週間飼
育した。 皮下に生じた約10gの腫瘍を摘出した後、実施
例1と同様にして細胞を分散させた。 この細胞を実施例2と同様に処理してリンホト
キシンを誘導生成させ、以後、実施例2と同様に
精製し濃縮してリンホトキシン活性を有する濃縮
液を得た。得られたリンホトキシン活性は、普通
マウス1匹当り約310000単位であつた。 実施例 5 新生児のラツトの皮下に培養株化されたヒト由
来のNamalva細胞を移植した後、通常の方法で
4週間飼育した。 皮下に生じた約50gの腫瘍を摘出した後、実施
例1と同様にして細胞を分散させた。 次いで、フイトヘマグルチニンの代りに丸山ワ
クチンを1μg/mlの割合で加えたことを除いて
は実施例1と同様に処理してリンホトキシンを誘
導生成させ、更に実施例1と同様に精製し、凍結
乾燥してリンホトキシン活性を有する粉末を得
た。得られたリンホトキシン活性は、ラツト1匹
当り約410000単位であつた。 実施例 6 培養株化されたMOLT−3細胞を、先づハム
スターの皮下に実施例3の方法で移植し、3週間
増殖させて得た細胞を、生後10日目のヌードマウ
スの腹腔内に再移植した。このヌードマウスを通
常の方法で5週間飼育した後、腹水を採取し、遠
水分離して増殖細胞を得た。この細胞を実施例1
の方法で洗浄した後、実施例1と同様にリンホト
キシンを誘導生成させ、次いで実施例2と同様に
精製し濃縮してリンホトキシン活性を有する濃縮
液を得た。得られたリンホトキシン活性は、ヌー
ドマウス1匹当り約250000単位であつた。 実施例 7 孔径約0.5ミクロンのメンブランフイルターを
設けた内容量約10mlのプラスチツク製円筒型チヤ
ンバー内に、培養株化されたヒト由来のJBL細胞
を生理食塩水で浮遊させ、これを成長したラツト
の腹腔内に埋設した。 このラツトを通常の方法で4週間飼育した後、
このチヤンバーを取り出した。 これにより得られたヒト由来の細胞濃度は、約
5×109/mlであつて、生体外の栄養培地に炭酸
ガスインキユベーター中で増殖させる場合の約
103倍以上にも達することがわかつた。 この細胞を実施例1と同様に処理してリンホト
キシンを誘導生成させ、精製濃縮し、凍結乾燥し
てリンホトキシン活性を有する粉末を得た。得ら
れたリンホトキシン活性は、ラツト1匹当り約
420000単位であつた。 実施例 8 37℃で5日間保つたニワトリの受精卵に、培養
株化されたヒト由来のNALL−1細胞を移植し
た後、37℃で1週間保つた。この卵を割卵した
後、増殖細胞を採取し、その細胞に実施例4で得
たTALL−1細胞を50%添加した後、実施例1と
同様に処理してリンホトキシンを誘導生成させ、
次いで実施例2と同様に精製濃縮してリンホトキ
シン活性を有する濃縮液を得た。得られたリンホ
トキシン活性は、受精卵10個当り約180000単位で
あつた。 実施例 9 実施例1の方法で調製したリンホトキシン粉末
をG.Bodoの報告(Sympotium on preparation.
standardization and clinical use of
interferon、11th International
Immunobiological Symposium.8&9 June
1977、Zagreb.Yugoslavia)に準じてイオン交換
体への吸脱着、ゲル過による分子量分画、濃縮
及び精密過などの手段によりインターフエロン
を除去し、さらに硫安塩析により濃縮精製を行な
い、その後、PH7.4、0.01Mリン酸塩緩衝液中で
フイトヘマグルチニン−セフアロースアフイニテ
イ−クロマトグラフイーを行ない、吸着画分を
0.1MN−アセチル−D−ガラクトサミン含有上
記緩衝液で溶出させ、得られた画分を上記緩衝液
で透析し、濃縮後、凍結乾燥してリンホトキシン
活性を含有する粉末を得た。 このようにして得られたリンホトキシンは、比
活性30000単位/mgであつた。 さらに、ゲル過法により分子量分画したとこ
ろ、α−リンホトキシン(分子量7〜9万)、β
−リンホトキシン(分子量3.5〜5万)およびγ
−リンホトキシン(分子量1〜2万)の3種類
が、活性量比約1:1:2の割合で分取された。
[Table] There is a significant difference.
Examples of the method for producing lymphotoxin of the present invention will be shown below. Example 1 After subcutaneously transplanting cultured BALL-1 cells into adult nude mice, they were cultured for 3 days in a normal manner.
They were kept for a week. Approximately 10 g of tumor that had occurred under the skin was excised and cut into small pieces, and then suspended in trypsin-containing physiological saline to disperse and separate the cells. These cells were added to human serum.
Cells were diluted to a cell concentration of approximately 5 x 10 6 /ml in a medium of the same composition washed with Eagle's minimal basal medium of PH 7.2 containing 5V/V% and kept at 37°C, and phytohemagglutinin was added to this. It was added at a rate of about 200 μg/ml and kept for 2 days to induce the production of lymphotoxin.
This was centrifuged at about 4°C and about 1000g to remove the precipitate, and the resulting supernatant was dialyzed for 21 hours against physiological saline containing PH7.2 and 0.01M phosphate buffer. The solution obtained through filtration was concentrated and lyophilized to obtain a powder containing lymphotoxin activity. The lymphotoxin activity obtained was approximately 360,000 units per nude mouse. Example 2 Cultured human-derived BALL-1 cells and TALL-1 cells were transplanted into the peritoneal cavity of grown nude mice, and then raised for 5 weeks in a conventional manner. 1 mg of phytohemagglutinin was injected into the abdominal cavity, and 24 hours later, the animals were sacrificed to obtain ascites. This is 4℃, about 1000
Centrifugation at
Dialysis was performed for 15 hours against physiological saline containing phosphate buffer, and the resulting solution was concentrated to obtain a solution containing lymphotoxin activity. The lymphotoxin activity obtained was approximately
It was 190,000 units. Example 3 Newborn hamsters were injected in advance with antiserum prepared from rabbits using a known method to weaken the hamster's immune capacity, and cultured human-derived JBL cells were subcutaneously transplanted into the hamsters, followed by regular injections. The animals were reared for 4 weeks using the following method. After about 30 g of tumor that had occurred under the skin was removed, the cells were dispersed in the same manner as in Example 1. The cells were incubated at PH7.4 containing 10V/V% calf serum.
After washing with RPMI 1640 medium, the cells were diluted to a cell concentration of approximately 2×10 7 /ml in a medium of the same composition kept at 37°C. Concanavalin A500n for this
g/ml and Sendai virus hemagglutination titer 1000/ml and kept for 3 days to induce lymphotoxin production. Thereafter, it was purified and concentrated in the same manner as in Example 1 to obtain a solution having lymphotoxin activity. The lymphotoxin activity obtained was approximately
It was 1,960,000 units. Example 4 After pre-irradiating an adult normal mouse with X-rays at approximately 400 rem to weaken the immune system of the mouse, human-derived TALL was cultured subcutaneously in the mouse.
-1 cells were transplanted and then reared for 3 weeks in the usual manner. After about 10 g of tumor that had occurred under the skin was removed, the cells were dispersed in the same manner as in Example 1. These cells were treated in the same manner as in Example 2 to induce the production of lymphotoxin, and thereafter purified and concentrated in the same manner as in Example 2 to obtain a concentrate having lymphotoxin activity. The lymphotoxin activity obtained was approximately 310,000 units per normal mouse. Example 5 Neonatal rats were subcutaneously transplanted with cultured human-derived Namalva cells and then reared for 4 weeks in a conventional manner. After about 50 g of tumor that had occurred under the skin was removed, the cells were dispersed in the same manner as in Example 1. Next, lymphotoxin was induced and produced in the same manner as in Example 1 except that Maruyama vaccine was added at a rate of 1 μg/ml instead of phytohemagglutinin, and further purified and frozen in the same manner as in Example 1. After drying, a powder with lymphotoxin activity was obtained. The lymphotoxin activity obtained was approximately 410,000 units per rat. Example 6 Cultured MOLT-3 cells were first transplanted subcutaneously into hamsters by the method of Example 3, and the cells obtained by growing for 3 weeks were intraperitoneally injected into the peritoneal cavity of nude mice on the 10th day after birth. Re-implanted. After the nude mice were raised in a conventional manner for 5 weeks, ascites was collected and centrifuged to obtain proliferating cells. Example 1
After washing by the method described above, lymphotoxin was induced to be produced in the same manner as in Example 1, and then purified and concentrated in the same manner as in Example 2 to obtain a concentrated liquid having lymphotoxin activity. The lymphotoxin activity obtained was approximately 250,000 units per nude mouse. Example 7 Cultured human-derived JBL cells were suspended in physiological saline in a plastic cylindrical chamber with a capacity of about 10 ml and equipped with a membrane filter with a pore size of about 0.5 microns, and then grown into rat cells. It was implanted intraperitoneally. After raising these rats in the usual manner for 4 weeks,
I took out this chamber. The concentration of human-derived cells obtained in this way was about 5 x 10 9 /ml, which is about the same as when grown in an in vitro nutrient medium in a carbon dioxide incubator.
It was found that the increase was more than 10 3 times. These cells were treated in the same manner as in Example 1 to induce the production of lymphotoxin, purified and concentrated, and lyophilized to obtain a powder having lymphotoxin activity. The lymphotoxin activity obtained was approximately
It was 420,000 units. Example 8 Cultured human-derived NALL-1 cells were transplanted into fertilized chicken eggs kept at 37°C for 5 days, and then kept at 37°C for 1 week. After breaking the eggs, proliferating cells were collected, and 50% of the TALL-1 cells obtained in Example 4 were added to the cells, and then treated in the same manner as in Example 1 to induce lymphotoxin production.
Next, the product was purified and concentrated in the same manner as in Example 2 to obtain a concentrated solution having lymphotoxin activity. The lymphotoxin activity obtained was approximately 180,000 units per 10 fertilized eggs. Example 9 Lymphotoxin powder prepared by the method of Example 1 was prepared as reported by G. Bodo (Sympotium on preparation.
standardization and clinical use of
interferon, 11th International
Immunobiological Symposium.8&9 June
1977, Zagreb.Yugoslavia), interferon was removed by means such as adsorption and desorption onto an ion exchanger, molecular weight fractionation by gel filtration, concentration and precision filtration, and further concentrated and purified by ammonium sulfate salting out. Phytohemagglutinin-Sepharose affinity chromatography was performed in 0.01M phosphate buffer at pH 7.4, and the adsorbed fraction was collected.
Elution was performed with the above buffer containing 0.1 MN-acetyl-D-galactosamine, and the resulting fraction was dialyzed against the above buffer, concentrated, and lyophilized to obtain a powder containing lymphotoxin activity. The lymphotoxin thus obtained had a specific activity of 30,000 units/mg. Furthermore, molecular weight fractionation by gel filtration revealed that α-lymphotoxin (molecular weight 70,000 to 90,000), β
- Lymphotoxin (molecular weight 35,000-50,000) and γ
-Three types of lymphotoxin (molecular weight 10,000 to 20,000) were separated at an activity ratio of approximately 1:1:2.

Claims (1)

【特許請求の範囲】 1 リンホトキシン産生能を有し、かつヒト以外
の温血動物の体内に移植して増殖する培養株化さ
れたヒト由来の細胞をヒト以外の温血動物体内に
移植するか、または拡散チヤンバー内へ接種し
て、その温血動物の体液の供給を受けながら増殖
させて得られる細胞に、生体内または生体外でリ
ンホトキシン誘導剤を作用させてリンホトキシン
を生成させ、生成するリンホトキシンを精製分取
することを特徴とするリンホトキシンの製造方
法。 2 精製分取の方法が、フイトヘマグルチニン−
セフアロースを用いたアフイニテイ−カラムクロ
マトグラフイーによることを特徴とする特許請求
の範囲第1項記載のリンホトキシンの製造方法。
[Scope of Claims] 1. Is it possible to transplant cultured human-derived cells that have the ability to produce lymphotoxin and proliferate by transplanting them into the body of a warm-blooded animal other than humans into the body of a warm-blooded animal other than humans? , or by inoculating the cells into a diffusion chamber and growing them while receiving the body fluids of the warm-blooded animal, and then treating the cells with a lymphotoxin inducer in vivo or in vitro to produce lymphotoxin. A method for producing lymphotoxin, which comprises purifying and preparatively separating the lymphotoxin. 2 The purification and preparative method is phytohemagglutinin-
The method for producing lymphotoxin according to claim 1, which is carried out by affinity column chromatography using Sepharose.
JP56112913A 1981-07-21 1981-07-21 Preparation of lymphotoxin Granted JPS5816687A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP56112913A JPS5816687A (en) 1981-07-21 1981-07-21 Preparation of lymphotoxin
SE8204382A SE8204382L (en) 1981-07-21 1982-07-19 PUT TO MAKE MALCELLY FACTOR AND USE THEREOF
FR8212541A FR2513124B1 (en) 1981-07-21 1982-07-19 PRODUCTION AND APPLICATIONS OF THE TARGET CELL LYSE FACTOR
CH4420/82A CH664974A5 (en) 1981-07-21 1982-07-20 PRODUCTION OF THE TARGET CELL LYSE FACTOR.
AU86200/82A AU560793B2 (en) 1981-07-21 1982-07-20 Production of target cell lysis factor
KR8203215A KR870001433B1 (en) 1981-07-21 1982-07-20 A process for producing tclf
IT48855/82A IT1196549B (en) 1981-07-21 1982-07-20 PROCEDURE FOR THE PRODUCTION OF THE TARGET CELL LYSIS FACTOR (TCLF), PRODUCT OBTAINED FOR ITS USE IN CLINICAL THERAPY, IN PARTICULAR AS A CITOLITHIC ANTITUMURAL AGENT
AT0283582A AT387980B (en) 1981-07-21 1982-07-21 METHOD FOR PRODUCING A FACTOR EFFECTING THE RESOLUTION OF HUMAN CELLS
ES514210A ES8308923A1 (en) 1981-07-21 1982-07-21 Target cell lysis factor prodn.
US06/400,487 US4495282A (en) 1981-07-21 1982-07-21 Process for producing target cell lysis factor and uses therewith
GB08221100A GB2106117B (en) 1981-07-21 1982-07-21 Process for producing target cell lysis factor
DE3227262A DE3227262C3 (en) 1981-07-21 1982-07-21 Process for the preparation of human tumor necrosis factor and human tumor necrosis factor
DE3249946A DE3249946C2 (en) 1981-07-21 1982-07-21 Target cell lysis factor prodn.
SE9000532A SE9000532L (en) 1981-07-21 1990-02-14 PHARMACEUTICAL TCLF COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112913A JPS5816687A (en) 1981-07-21 1981-07-21 Preparation of lymphotoxin

Publications (2)

Publication Number Publication Date
JPS5816687A JPS5816687A (en) 1983-01-31
JPH0214039B2 true JPH0214039B2 (en) 1990-04-05

Family

ID=14598617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112913A Granted JPS5816687A (en) 1981-07-21 1981-07-21 Preparation of lymphotoxin

Country Status (1)

Country Link
JP (1) JPS5816687A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764744B2 (en) * 1981-11-21 1995-07-12 株式会社林原生物化学研究所 Remedy for malignant tumor containing target cytotoxic factor and human interferon as active ingredients
JPS5889195A (en) * 1981-11-21 1983-05-27 Hayashibara Biochem Lab Inc Preparation of target cell lysis factor
JPS5821621A (en) * 1981-07-31 1983-02-08 Hayashibara Biochem Lab Inc Remedy for malignant tumor containing tnf (tumor necrosis factor)
JP2518634B2 (en) * 1981-07-31 1996-07-24 株式会社 林原生物化学研究所 Method for producing Hitstumore Necrosis Factor
JP2518635B2 (en) * 1981-07-31 1996-07-24 株式会社 林原生物化学研究所 Hitstumore Necrosis Factor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498307A (en) * 1978-01-22 1979-08-03 Hayashibara Takeshi Production of interferon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498307A (en) * 1978-01-22 1979-08-03 Hayashibara Takeshi Production of interferon

Also Published As

Publication number Publication date
JPS5816687A (en) 1983-01-31

Similar Documents

Publication Publication Date Title
US4621050A (en) Process for the production of human colony-stimulating factor
JPS631296B2 (en)
JPS6045849B2 (en) Method for producing human erythropoietin
JPS585671B2 (en) Method for producing human follicle stimulating hormone
JPS5852634B2 (en) Production method of urokinase
JPS586475B2 (en) Method for producing human chorionic gonadotropin
JPH0214039B2 (en)
JPS58107197A (en) Preparation of tumor necrosis factor
JPS6045848B2 (en) Method for producing human growth hormone
JPS5823793A (en) Production of human t-cell growth factor (htcgf)
JPS6245208B2 (en)
JP2926409B2 (en) Method for producing cancer metastasis inhibitor
JPH0446928B2 (en)
CA1295241C (en) Lymphokine and its production and uses
JPS5888322A (en) Remedy for malignant tumor containing target cell lysis factor and its production
KR830001817B1 (en) Method for preparing type II interferon
JP2532025B2 (en) Lymphokine activity enhancer having an antitumor effect, which comprises a new lymphokine III as an active ingredient
KR820001174B1 (en) Process for producing human-specific interferon
JPS6045850B2 (en) Production method of human adrenocorticotropic hormone
JP2518635B2 (en) Hitstumore Necrosis Factor
JPH0523755B2 (en)
JPH0214038B2 (en)
JPH0526468B2 (en)
JPS62236495A (en) Production of human tumor necrosis factor
JPS61115099A (en) Monoclonal antibody and preparation thereof