JPH02139871A - Activation method for fuel cell power generation system - Google Patents

Activation method for fuel cell power generation system

Info

Publication number
JPH02139871A
JPH02139871A JP63292863A JP29286388A JPH02139871A JP H02139871 A JPH02139871 A JP H02139871A JP 63292863 A JP63292863 A JP 63292863A JP 29286388 A JP29286388 A JP 29286388A JP H02139871 A JPH02139871 A JP H02139871A
Authority
JP
Japan
Prior art keywords
temperature
stack
air
heat exchanger
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63292863A
Other languages
Japanese (ja)
Inventor
Hideo Hagino
秀雄 萩野
Isao Furukawa
古川 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63292863A priority Critical patent/JPH02139871A/en
Publication of JPH02139871A publication Critical patent/JPH02139871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep a temperature gradient small within the plane of a full cell during a temperature rise and take out power early even at a low temperature via the earlier activation of the cell at the upstream side of a circulation passage by dividing the cell proper into a pair of cell stacks integrated with a heat exchanger. CONSTITUTION:In a temperature rise at cell activation, an activation burner 4 is supplied with a mixed solution of a reform in a reformer 7 and methanol from a tank 8 and atomized for burning, and heated air is thereby circulated for supply to a cell proper 1. The heated air after cooled is exhausted from a damper 5 and combustion air is taken from an intake 6. Flue gas 9 from the reformer 7 flows into a heat exchanger 2 between both stacks 1, and 12, and a heat exchange process takes place with heated gas cooled with the upstream side stack 11, while heated gas having a high temperature flows into the downstream side stack 12. Combustion at a burner 4 is stopped and the introduction of the flue gas to the heat exchanger 2 is shut with a valve 10. In addition, another valve 11 is opened and fresh air drawn with a blower 12 is introduced to the heat exchanger 2, thereby preheating circulation air. Then, the preheated air is fed to the stack 11 and gas from the reformer 7 is supplied, thereby raising the temperature via cell reaction.

Description

【発明の詳細な説明】 l(l  産業上の利用分野 本発明は山間僻地や可搬用の独立電源として利用される
りん酸燃料電池発電システムにおける起動方式特に電池
起動時の昇温に関するものである。
[Detailed Description of the Invention] l(l Industrial Field of Application) The present invention relates to a startup method in a phosphoric acid fuel cell power generation system used in remote mountainous areas or as a portable independent power source, and in particular to temperature rise at the time of battery startup. .

(ロ)従来の技術 りん酸燃料電池は通常180℃前後で運転されるが、休
止時には環境温度(−20℃〜40℃)で保存される。
(b) Conventional technology Phosphoric acid fuel cells are normally operated at around 180°C, but when they are not in use, they are stored at ambient temperatures (-20°C to 40°C).

電池始動に際し一般に電池本体を加熱して後、電池反応
熱を利用して規定作動温度に昇温する方法がとられる。
When starting a battery, a method is generally used in which the battery body is heated and then the temperature is raised to a specified operating temperature using the heat of battery reaction.

従来の昇温方法は第3図に示すよう冷却空気の循環路0
に介在する始動バーナーば)にて空気を加熱し、この加
熱空気を循環して電池本体(ロ)を昇温していたが、特
に極低温から起動する場合、熱容量の大きい電池本体内
に温度勾配が生じ最高温度曲線と最低温度曲線の格差が
大きくなり、電池の発電電力が最低温度lこ依存するた
め電池の起動時間が長くなる。又加熱空気の温度がセル
構成材の熱許容値から200℃程度に制限されるんめ昇
温速度を上げるにはブロワ容量及びバーナー燃料の増大
を要する。又電池に供給される反応空気は特に寒冷地で
は予熱のため別個に予熱器(ハ)を必要とするなど種々
の問題があった。
The conventional temperature raising method uses a cooling air circulation path 0 as shown in Figure 3.
Air is heated by a starting burner (b) located in the battery, and this heated air is circulated to raise the temperature of the battery body (b). A gradient occurs and the difference between the maximum temperature curve and the minimum temperature curve becomes large, and the power generated by the battery depends on the minimum temperature l, so that the startup time of the battery becomes longer. Furthermore, since the temperature of the heated air is limited to about 200° C. due to the thermal tolerance of the cell constituent materials, increasing the temperature increase rate requires an increase in the blower capacity and burner fuel. In addition, there are various problems such as the need for a separate preheater (c) to preheat the reaction air supplied to the battery, especially in cold regions.

ej  発明が解決しようとする課題 本発明は規定容量(例えば10KW)の電池をその半分
の容量(5KW)の2つの電池に分割することで、昇温
時の電池面内温度勾配を小さくして循環経路上流側の電
池を先に立上らせることにより、極低温からでも半分の
容量の電力を早期に取出し得る。ようにして前記問題点
を解消するものである。
ej Problems to be Solved by the Invention The present invention divides a battery with a specified capacity (for example, 10KW) into two batteries with half the capacity (5KW), thereby reducing the temperature gradient within the battery surface when the temperature rises. By starting up the batteries on the upstream side of the circulation path first, half the capacity of power can be quickly extracted even from extremely low temperatures. In this way, the above-mentioned problems are solved.

に)課題を解決するための手段 本発明は、対向する冷却空気流通面に熱交換器を介して
一体化した一対の電池スタックからなる電池本体がブロ
ワを有する循環経路に介在しており、前記電池本体の昇
温時始動用バーナーの燃焼がスで加熱した空気を前記循
環経路に供給すると共に、前記熱交換器に加熱媒体とし
て改質器の煙道ガスを導入し、上流側スタックが電池反
応可能な温度に昇温後、前記バーナーの燃焼を停止し且
熱交換器への煙道ガスの導入を遮断し、代りに外気を導
入して上流側、スタックの排熱で予熱し、この予熱空気
を反応空気として又前記改質器の生成ガスを燃料ガスと
して夫々供給して上流側スタックの電池反応熱による昇
温を開始し、このスタックが規定作動温度に達するとそ
の発生電力を部分負荷に給電し、その後立上った下流側
スタックの発生電力を上流側スタックの発生電力と並列
的に全負荷に給電するようにした燃料電池発電システム
の起動法である。
B) Means for Solving the Problems The present invention provides a battery main body consisting of a pair of battery stacks integrated on opposing cooling air circulation surfaces via a heat exchanger, which is interposed in a circulation path having a blower. When the temperature of the battery body rises, the combustion of the starting burner supplies air heated by the gas to the circulation path, and the flue gas of the reformer is introduced as a heating medium to the heat exchanger, so that the upstream stack After raising the temperature to a temperature at which the reaction is possible, the combustion of the burner is stopped and the introduction of flue gas to the heat exchanger is cut off, and outside air is introduced instead and preheated by the exhaust heat of the stack on the upstream side. The preheated air is supplied as reaction air and the gas generated from the reformer is supplied as fuel gas to start raising the temperature of the upstream stack due to the heat of cell reaction, and when this stack reaches the specified operating temperature, the generated power is partially used. This is a startup method for a fuel cell power generation system in which power is supplied to the load, and then the power generated by the downstream stack is supplied to the entire load in parallel with the power generated by the upstream stack.

(ホ)作用 本発明では熱交換器を介して一体化した一対の電池スタ
ックの各々は熱容量が半減するので昇温特上流側スタッ
クが先に立上って部分負荷例えば燃料電池を電源とする
送・受信器収納室のエアコンなどを運転することができ
、おくれで立上った下流側スタックの電力を加えて全負
荷に給電できるため、特に極寒冷地における独立電源と
して起動時間を短縮することができる。
(E) Function In the present invention, the heat capacity of each of the pair of battery stacks integrated via the heat exchanger is halved, so the upstream stack rises first to handle a partial load, for example, the fuel cell is used as the power source. It can operate the air conditioner in the transmitter/receiver storage room, and can supply power to the entire load by adding power from the downstream stack that starts up later, reducing start-up time as an independent power source, especially in extremely cold regions. be able to.

又一対のスタック間に介在する熱交換器は、昇温時改質
器の煙道ガスを導入し上流側スタックから下流側スタッ
クに送られる加熱空気を昇温しで下流側スタックの昇温
を速めると共に、上流側スタックの電池反応可能な温度
への昇温後煙道ガスに代え低温の外気を導入し、これを
上流側スタックから熱を奪って高温となった空気により
予熱し反応空気として電池に供給される 更に両スタックの運転時、熱交換器に導入される低温空
気により上流側スタック反応熱を奪って昇温した冷却空
気を降温して下流側スタックに送るので、冷却能が向上
しブロワの風量を低減することができる。
In addition, the heat exchanger interposed between the pair of stacks introduces the flue gas from the reformer when the temperature rises, raises the temperature of the heated air sent from the upstream stack to the downstream stack, and thereby raises the temperature of the downstream stack. At the same time, after raising the temperature of the upstream stack to a temperature that allows the battery to react, low-temperature outside air is introduced instead of flue gas, and this is preheated by the high-temperature air that removes heat from the upstream stack and used as reaction air. Furthermore, when both stacks are operating, the low temperature air introduced into the heat exchanger removes the reaction heat from the upstream stack and cools the heated cooling air, which is then sent to the downstream stack, improving cooling performance. The air volume of the blower can be reduced.

(へ)実施例 第1図は本発明燃料電池発電システムのフロー図を示し
、電池本体(1)は対向する冷却空気流通面に熱交換器
(2)を介して一体化した一対の電池スタック(11)
(1□bらなり、両スタック(11X12)の冷却通路
は共通であるが、各反応ガス(燃料ガス及び空気)の供
給路は夫々独立して設けられている。この電池本体(1
)は循環ブロワ(3)、始動バーナー(4)及び排気ダ
ンパ(5)、吸気口(6)を有する冷却空気の循環経路
Cに介在しているっ 電池始動時の昇温に際し始動バーナー(4)に燃料例え
ば改質器(7)の改質及び燃焼用のメタノール混合液を
タンク(8)より供給して噴霧燃焼し、約200℃に加
熱された空気を電池本体(1)に循環供給する。
(f) Embodiment Figure 1 shows a flow diagram of the fuel cell power generation system of the present invention, in which the battery main body (1) is a pair of battery stacks integrated on opposing cooling air circulation surfaces via a heat exchanger (2). (11)
The cooling passage for both stacks (11x12) is common, but the supply passages for each reaction gas (fuel gas and air) are provided independently.
) is interposed in a cooling air circulation path C having a circulation blower (3), a starting burner (4), an exhaust damper (5), and an intake port (6). ) is supplied with fuel, such as a methanol mixture for reforming and combustion in the reformer (7), from the tank (8) and is spray-burned, and air heated to about 200°C is circulated and supplied to the battery body (1). do.

この場合、電池本体に熱を奪われて降温した加熱側スタ
ック(11)(1□)間に介在する熱交換器(21には
改質器(7)の煙道ガス(9)が導入されて上流側スタ
ック(11)で降温した加熱ガスとの間で熱交換し、こ
の加熱ガスを昇温しで下流側スタック(1□)に送る。
In this case, the flue gas (9) of the reformer (7) is introduced into the heat exchanger (21) interposed between the heating side stack (11) (1□) whose temperature has decreased due to heat being taken away by the battery body. It exchanges heat with the heated gas whose temperature has been lowered in the upstream stack (11), raises the temperature of this heated gas, and sends it to the downstream stack (1□).

このように電池本体(1)は2分割されているため各ス
タックの熱容量は半分となり、第3図には雰囲気温度−
20℃から上記昇温方法による各スタック(11)(1
2)の昇温特性(P)Qが示されている。
Since the battery body (1) is divided into two parts in this way, the heat capacity of each stack is halved, and as shown in Figure 3, the ambient temperature -
Each stack (11) (1) by the above heating method from 20°C
2) temperature increase characteristics (P)Q are shown.

上流側スタック(1,)は下流側スタック(1□)に比
し、電池反応熱による昇温か可能な温度(約100℃)
に達する時間が著しく短縮される。昇温開始時の温度(
雰囲気温度)が第3図のように一20℃の場合上流側ス
タック(1,)は約15分で100℃に達する。
Compared to the downstream stack (1□), the upstream stack (1,) has a temperature that can be increased by battery reaction heat (approximately 100°C).
The time it takes to reach is significantly reduced. Temperature at the start of heating (
When the ambient temperature (ambient temperature) is -20°C as shown in FIG. 3, the upstream stack (1,) reaches 100°C in about 15 minutes.

この状態で始動バーナー(4)の燃焼を停止し、上流側
スタック(11)の負荷昇温を開始するが、先づ熱交換
器(2)への煙道ガスの導入を弁αυで遮断すると同時
に弁α℃を開放して反応空気供給ブロワ(2)で吸引し
た外気を熱交換器[2+に導入し、循環空気で予熱して
後反応空気として上流側スタック(11)に供給する。
In this state, the combustion of the starting burner (4) is stopped and the load temperature rise of the upstream stack (11) is started, but first, the introduction of flue gas to the heat exchanger (2) is shut off with the valve αυ. At the same time, the valve α° C. is opened, and the outside air sucked in by the reaction air supply blower (2) is introduced into the heat exchanger [2+, preheated with circulating air, and supplied to the upstream stack (11) as post-reaction air.

同じく改質器(7)で気化改質されたガスを燃料ガスと
して供給し電池反応熱による昇温を開始する。負荷昇温
は効率がよいので約10分後規定作動温度(約180〜
200℃)に達し、電池本体(11の半分の出力(5K
W)で負荷例えば送・受信器収納室などのエアコンを作
動して室を暖める。
Similarly, the gas vaporized and reformed in the reformer (7) is supplied as fuel gas, and the temperature starts to rise due to the heat of cell reaction. The load temperature rise is efficient, so the specified operating temperature (approximately 180 ~
200℃), and half the output (5K) of the battery itself (11
W) activates the air conditioner in a load such as a transmitter/receiver storage room to warm the room.

を奪って約180℃に昇温した冷却空気により下流側ス
タック(12)の昇温を続ける。
The temperature of the downstream stack (12) continues to rise with the cooling air that has been heated to about 180°C by taking away the heat.

やがて下流側スタック(1□)が始動倹約30分で電池
反応可能な温度に達すると前記と同様電池反応熱による
昇温過程を経て規定作動温度になる。
When the downstream stack (1□) reaches a temperature at which the battery can react within 30 minutes of starting, the temperature rises due to the heat of battery reaction as described above and reaches the specified operating temperature.

かくて下流側スタック(12)の発生電力は上流側スタ
ック(11)と並列6ζ接続されて全負荷(10KW)
に給電する。
In this way, the power generated by the downstream stack (12) is connected in parallel with the upstream stack (11), resulting in a full load (10KW).
to supply power.

両スタック(1,)(1□)が正常運転中循環冷却空気
で各スタックを冷却し、規定作動温度に維持する。この
場合、上流側スタック(1,)を冷却して昇温した冷却
空気は熱交換器(21に導入される外気により冷されて
後下流側スタック(1,)に送られる。電池本体(1)
の温度制御はダンパー(5)の調整により昇温した排冷
却空気の一部を系外に排出すると同時に吸入口(6)よ
り冷たい外気を循環経路に導入することにより行われる
During normal operation of both stacks (1,) (1□), circulating cooling air cools each stack and maintains it at the specified operating temperature. In this case, the cooling air whose temperature has been raised by cooling the upstream stack (1,) is cooled by the outside air introduced into the heat exchanger (21) and then sent to the downstream stack (1,). )
Temperature control is performed by discharging a portion of the exhaust cooling air whose temperature has increased by adjusting the damper (5) to the outside of the system, and at the same time introducing cold outside air from the inlet (6) into the circulation path.

(ト)発明の効果 上述の如く本発明によれば、電池本体は熱交換器を介し
て一体化した一対の電池スタックに分割されているので
、各スタックの熱容量が半減し、昇温時循環経路上流側
スタックが先に立上って部分負荷に短時間で給電しつる
と共に、おくれで立上った下流側スタックの電力を加え
て全負荷に給電でき、特に極寒冷地における独立電源と
して起動時間を短縮する上で有利となる。
(G) Effects of the Invention As described above, according to the present invention, the battery main body is divided into a pair of integrated battery stacks via a heat exchanger, so the heat capacity of each stack is halved, and circulation during heating is reduced. The stack on the upstream side of the path starts up first and supplies power to partial loads in a short time, and the stack on the downstream side starts up later and can supply power to the entire load, making it especially useful as an independent power source in extremely cold regions. This is advantageous in reducing startup time.

又スタック間に介在する熱交換器は、加熱された循環空
気による昇温時改質器の煙道ガスの導入により加熱空気
の降温を償うと共に、電池反応熱による昇温時外気を導
入して反応空気の予熱を可能とする。更に両スタックの
運転時上流側スタックの反応熱を奪って昇温した冷却空
気の降温にも働いて冷却能が向上するため、ブロワの風
量を低減することができるなどの特長を有するっ
In addition, the heat exchanger interposed between the stacks compensates for the temperature drop of the heated air by introducing the flue gas of the reformer when the temperature rises due to the heated circulating air, and also introduces outside air when the temperature rises due to the heat of battery reaction. Allows preheating of reaction air. Furthermore, when both stacks are in operation, the reaction heat of the upstream stack is taken away and the temperature of the heated cooling air is lowered, improving the cooling capacity, so it has features such as being able to reduce the air volume of the blower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明燃料電池発電システムのフロー図、第2
図は同上電池本体を構成する一対の電池スタックの昇温
特性図、第3図は従来の発電システムのフロー図である
。 (1)・・・電池・本体、(1,)(1□)・・・一対
の電池スタ′ツク、(2)・・・熱交換器、(3)・・
・循環ブロワ、(4)・・・始動バーナー、(7)・・
・改質器、(8)・・・燃料タンク、(9)・・・煙道
ガス、5
Figure 1 is a flow diagram of the fuel cell power generation system of the present invention;
The figure is a temperature rise characteristic diagram of a pair of battery stacks constituting the battery body, and FIG. 3 is a flow diagram of a conventional power generation system. (1)...Battery/main body, (1,)(1□)...Pair of battery stacks, (2)...Heat exchanger, (3)...
・Circulation blower, (4)...starting burner, (7)...
・Reformer, (8)...fuel tank, (9)...flue gas, 5

Claims (1)

【特許請求の範囲】[Claims] (1)対向する冷却空気流通面に熱交換器を介して一体
化した一対の電池スタックよりなる電池本体が、冷却空
気の循環経路に介在しており、前記電池本体の昇温時始
動バーナーの燃焼ガスで加熱した空気を前記循環経路に
循環供給すると共に、前記熱交換器に加熱媒体として改
質器の煙道ガスを導入し、上流側の前記スタックが電池
反応可能な温度に昇温後、前記バーナーの燃焼を停止し
且前記熱交換器への煙道ガスの導入を遮断し、代りに外
気を導入して上流側スタックの排熱で予熱し、これを反
応空気として又前記改質器の生成ガスを燃料ガスとして
夫々供給して上流側スタックの電池反応熱による昇温を
開始し、このスタックが規定作動温度に達するとその発
生電力を部分負荷に給電し、おくれて立上った下流側ス
タックが規定作動温度に達すると、その発電電力を上流
側スタックに並列的に接続して全負荷に給電するように
したことを特徴とする燃料電池発電システムの起動方式
(1) A battery body consisting of a pair of battery stacks integrated with opposing cooling air circulation surfaces via a heat exchanger is interposed in the cooling air circulation path, and a starting burner when the temperature of the battery body rises. Air heated by combustion gas is circulated and supplied to the circulation path, and flue gas from the reformer is introduced into the heat exchanger as a heating medium, and after the stack on the upstream side is heated to a temperature at which battery reaction is possible. , the combustion of the burner is stopped and the introduction of flue gas to the heat exchanger is cut off, and outside air is introduced instead and preheated by the exhaust heat of the upstream stack, and this is used as reaction air and the reforming air is The gas produced by the reactors is supplied as fuel gas to start raising the temperature of the upstream stack due to the heat of cell reaction.When this stack reaches the specified operating temperature, the generated power is supplied to the partial load, and the startup is delayed. When the downstream stack reaches a specified operating temperature, the generated power is connected in parallel to the upstream stack to supply power to the entire load.
JP63292863A 1988-11-18 1988-11-18 Activation method for fuel cell power generation system Pending JPH02139871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292863A JPH02139871A (en) 1988-11-18 1988-11-18 Activation method for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292863A JPH02139871A (en) 1988-11-18 1988-11-18 Activation method for fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPH02139871A true JPH02139871A (en) 1990-05-29

Family

ID=17787348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292863A Pending JPH02139871A (en) 1988-11-18 1988-11-18 Activation method for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH02139871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054355A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with heating and improved cold start performance and method for cold starting a fuel cell battery
JP2000294263A (en) * 1999-04-08 2000-10-20 Toyota Motor Corp Fuel cell system and heating method for fuel cell
EP1639660A2 (en) * 2003-06-27 2006-03-29 Ultracell Corporation Efficient micro fuel cell systems and methods
EP2061113A1 (en) * 2007-11-19 2009-05-20 EnyMotion GmbH Fuel cell system and method for its operation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054355A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with heating and improved cold start performance and method for cold starting a fuel cell battery
JP2000294263A (en) * 1999-04-08 2000-10-20 Toyota Motor Corp Fuel cell system and heating method for fuel cell
EP1639660A2 (en) * 2003-06-27 2006-03-29 Ultracell Corporation Efficient micro fuel cell systems and methods
EP1639660A4 (en) * 2003-06-27 2009-12-02 Ultracell Corp Efficient micro fuel cell systems and methods
US7763368B2 (en) 2003-06-27 2010-07-27 Ultracell Corporation Efficient micro fuel cell systems and methods
EP2061113A1 (en) * 2007-11-19 2009-05-20 EnyMotion GmbH Fuel cell system and method for its operation
US8163428B2 (en) 2007-11-19 2012-04-24 Enymotion Gmbh Fuel cell system and method for operating the same

Similar Documents

Publication Publication Date Title
US8202656B2 (en) Thermally integrated fuel cell system
JPH0794202A (en) Warming-up system of fuel cell
JP2005038817A (en) Fuel cell/normal pressure turbine/hybrid system
JP5064861B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
KR20220108796A (en) Improved fuel cell systems and methods
US20080318091A1 (en) Method and system of operating a high-temperature fuel cell
JP2001167779A (en) Fuel cell system for car
US20100092822A1 (en) Fuel Cell System for a Vehicle
JP2889807B2 (en) Fuel cell system
JPH02139871A (en) Activation method for fuel cell power generation system
US20050019633A1 (en) Fuel cell system
JP3986430B2 (en) Hydrogen utilization system using solid oxide fuel cell
JPH02197057A (en) Fuel cell power generator
JP2007103034A (en) Fuel cell system and its starting method
JP3897149B2 (en) Solid oxide fuel cell and Stirling engine combined system
JP2003132921A (en) Solid electrolyte fuel cell system
JPS6321760A (en) Fuel cell power generating system
JPH03163761A (en) Solid electrolyte type fuel cell power generating system
WO2023054719A1 (en) Cogeneration system
JPH04269460A (en) Method of raising temperature in fuel cell plant
JPH03108270A (en) Power generating system for fuel cell
JPH05343088A (en) Fuel cell temperature control method
JPS6386365A (en) Starting equipment for air cooled fuel cell power generator
JPH01132062A (en) Starting device of fuel cell generator system
JP4519221B2 (en) Solid oxide fuel cell