JPH02139010A - Filter device and manufacture of filter medium used for the same device - Google Patents

Filter device and manufacture of filter medium used for the same device

Info

Publication number
JPH02139010A
JPH02139010A JP29340288A JP29340288A JPH02139010A JP H02139010 A JPH02139010 A JP H02139010A JP 29340288 A JP29340288 A JP 29340288A JP 29340288 A JP29340288 A JP 29340288A JP H02139010 A JPH02139010 A JP H02139010A
Authority
JP
Japan
Prior art keywords
wall surface
filter medium
mandrel
filter
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29340288A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Noda
泰義 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KTX Corp
Original Assignee
KTX Corp
Konan Tokushu Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KTX Corp, Konan Tokushu Sangyo Co Ltd filed Critical KTX Corp
Priority to JP29340288A priority Critical patent/JPH02139010A/en
Publication of JPH02139010A publication Critical patent/JPH02139010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower required filter pressure, increase filter speed and make clogging of filter medium hard to generate by driving a cake peeling component slidable in the axial direction to an inner wall surface of a cylindrical filter medium with a driving means in the axial direction. CONSTITUTION:An inner wall surface 3 formed smoothly and a number of micro-through-holes 5 increasing their diameters from the inner wall surface 3 closer to an outer wall surface 4 are provided in a cylindrical filter medium 2. A cake peeling component 22 is installed slidable in the axial direction to an inner wall surface of said filter medium 2 with a driving means 20. As a result, required filter pressure can be lowered and filter speed can be increased, and also clogging of the filter medium can be made hard to generate, and also a cake can easily and securely be peeled off the filter medium so that said filter medium can be used continuously for a long time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は濾過装置及び該装置に使用するP材の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a filtration device and a method for producing P material used in the device.

[従来の技術] 従来より濾過装置には多くの種類があり、これらは通常
、圧P器、葉状沢過器等の回分式濾過装置と、減圧回転
濾過器、減圧円板濾過器、重力円筒形濾過器等の連続式
濾過装置とに大別することができるが、いずれの方式の
濾過装置においてもその装置に使用するr材の選択が非
常に重要でrる。濾材には、原液の種類、圧力、温度、
粘度等の濾過条件に応じて、耐食性、機械的強度、耐久
性、耐熱性、濾滓!II離の容易性等の各種性能が要求
されるからである。
[Prior Art] Conventionally, there are many types of filtration devices, and these are usually batch-type filtration devices such as pressure filters and leaf filters, vacuum rotary filters, vacuum disk filters, and gravity cylinders. The filtration devices can be broadly divided into continuous filtration devices such as shaped filters, but in any type of filtration device, the selection of the material used in the device is very important. The filter media has various characteristics such as the type of stock solution, pressure, temperature,
Depending on the filtration conditions such as viscosity, corrosion resistance, mechanical strength, durability, heat resistance, filter slag! This is because various performances such as ease of separation are required.

しかし、現在使用されている濾材としては沢紙、炉布(
綿布、合成繊維布等)、繊維体(ガラス繊維、アスベス
ト等)、網状体(金網、合成樹脂網等)、微小な貫通孔
を機械加工した金属板、スポンジ状金属板、多孔質セラ
ミック板等の旧来からのものしかなく、これらのうちか
ら濾過装置や濾過条件に最も適したものを選んで使用し
ているのが実状である。
However, the filter media currently in use are sawa paper, furnace cloth (
(cotton cloth, synthetic fiber cloth, etc.), fibrous bodies (glass fiber, asbestos, etc.), mesh bodies (wire mesh, synthetic resin mesh, etc.), metal plates machined with minute through holes, sponge-like metal plates, porous ceramic plates, etc. There are only traditional methods available, and the reality is that among these, the one most suitable for the filtration device and filtration conditions is selected and used.

[発明が解決しようとする課題] 上記のいずれの方式の濾過装置も、上記従来の沢材を使
用することに起因して次のような問題点を抱えている。
[Problems to be Solved by the Invention] Both of the above-mentioned types of filtration devices have the following problems due to the use of the above-mentioned conventional swamp material.

■ 濾紙、炉布、繊維体等を使用する濾材は損耗が激し
い。また、これらのP材の表面には原液から分離された
濾滓が付着するが、同時にこの濾滓の一部である不溶解
固体粒子が濾材の微小な目に詰りやすいため、P材から
濾滓を剥離させたとしても目詰りは解消しにくい。従っ
て、これらの沢材は短期間で使い捨てとなってしまい、
長期間の連続使用は不可能である。
■ Filter media using filter paper, furnace cloth, fiber bodies, etc. are subject to severe wear and tear. In addition, filter sludge separated from the stock solution adheres to the surface of these P materials, but at the same time, undissolved solid particles that are part of this filter sludge tend to clog the microscopic holes of the filter media, so the filter sludge is removed from the P material. Even if the slag is peeled off, clogging is difficult to eliminate. Therefore, these sawn materials become disposable after a short period of time,
Continuous use for a long period of time is not possible.

■ 網状体を使用するP材は、金属線や合成樹脂線の細
組による細かい起伏を有しており、原液から分離された
濾滓は該起伏の凹所に入り込むようにして付着するため
、この濾滓を完全に剥離させることは非常に難しい。従
って、結局は目詰りが激しくなり、比較的短期間で使い
捨てとなることも多い。
■ The P material that uses the mesh has fine undulations made of thin metal wires and synthetic resin wires, and the filter slag separated from the stock solution adheres to the undulations by entering the recesses of the undulations. It is very difficult to completely remove this filter cake. Therefore, they often end up becoming severely clogged and become disposable after a relatively short period of time.

■ 微小な貫通孔を機械加工した金属板を使用するP材
は、該貫通孔の直径が全板厚にわたって小さいまま一定
であるため、P液のaE動抵抗が太きい。従って、所要
濾過圧力が太きく、?過速度が低いという致命的な問題
がある。また、前記貫通孔内に不溶解固体粒子が詰りや
すくしかも除去しにくいため、やはり長期間の連続使用
は難しい。
(2) In the P material using a metal plate machined with minute through-holes, the diameter of the through-holes remains small and constant throughout the entire plate thickness, so the aE dynamic resistance of the P liquid is large. Therefore, the required filtration pressure is large. There is a fatal problem of low overspeed. Further, since the through-holes are easily clogged with undissolved solid particles and difficult to remove, continuous use over a long period of time is also difficult.

■ スポンジ状金属板や多孔質セラミック板を使用した
濾材は、その多数の孔が板厚内で複雑に迂回して連通ず
る構造となっていて、ス1ヘレートには貫通していない
ため、鎖孔に詰った不溶解固体粒子の除去はほぼ不可能
である。従って、目詰りが激しく、やはり短期間で使い
捨てとなってしまつ。
■ Filter media using sponge-like metal plates or porous ceramic plates have a structure in which the numerous pores communicate in a complicated detour within the thickness of the plate, and do not penetrate through the slate, resulting in a chain. Removal of undissolved solid particles that clog the pores is nearly impossible. Therefore, it gets clogged severely and becomes disposable after a short period of time.

本発明は、所要濾過圧力を低め、濾過速度を高めること
ができるとともに、沢材の目詰りが起こりにくく、沢材
から濾滓を容易かつ確実に剥離させることができ、従っ
て濾材を長期間連続使用することもできる新規な濾過装
置と、前記濾材を容易かつ効率的に製造し得る方法とを
提供することを目的としている。
The present invention can lower the required filtration pressure and increase the filtration speed, and the filter material is less likely to be clogged and the filter slag can be easily and reliably peeled off from the filter material. Therefore, the filter material can be continuously used for a long period of time. It is an object of the present invention to provide a novel filtration device that can also be used and a method that allows the filter medium to be manufactured easily and efficiently.

[課題を解決するための手段] 請求項1の濾過装置は、平滑に形成された内壁面と、該
内壁面から外壁面に向かうにつれて直径が増加する多数
の微小な貫通孔とを備えた筒状の濾材と、前記濾材の内
壁面に対して軸方向に摺動し得る濾滓剥離部材と、前記
濾滓剥離部材を軸方向に駆動するための駆動手段とを備
えている。
[Means for Solving the Problems] A filtration device according to claim 1 includes a cylinder having a smooth inner wall surface and a large number of minute through holes whose diameter increases from the inner wall surface toward the outer wall surface. The filter includes a filter medium having a shape, a filter dregs peeling member that can slide in the axial direction with respect to an inner wall surface of the filter medium, and a driving means for driving the filter dregs peeling member in the axial direction.

請求項2の濾過装置は、平滑に形成された外壁面と、該
外壁面から内壁面に向かうにつれて直径が増加する多数
の微小な貫通孔とを備えた筒状のP材と、前記沢材の外
壁面に対して軸方向に摺動し得るr滓剥離部材と、前記
濾滓剥離部材を軸方向に駆動するための駆動手段とを備
えている。
A filtration device according to a second aspect of the present invention includes a cylindrical P material having a smoothly formed outer wall surface and a large number of minute through holes whose diameter increases from the outer wall surface toward the inner wall surface; The filter includes a slag peeling member that can slide in the axial direction with respect to the outer wall surface of the filter, and a driving means for driving the sludge peeling member in the axial direction.

請求項3のr材の製造方法は、柱状又は筒状に形成した
マンドレルの外壁面又は内壁面を平滑に仕上げる工程と
、前記マンドレルの外壁面又は内壁面に導電被膜を設け
るとともに、該導電被膜に多数の微小な非導電部を設け
る工程と、前記導電被膜の表面に電鋳を行うことにより
筒状の枦材を形成すると同時に、前記非導電部に発生さ
せた微小な非電着部を電鋳の進行とともに成長させるこ
とによりr材に多数の微小な貫通孔を形成する工程と、
前記マンドレルの全部又は表面部を溶解、軟化、溶融又
は破壊することにより、該P材からマンドレルを取り除
く工程とからなる。
The method for manufacturing R material according to claim 3 includes the steps of: smoothing the outer wall surface or inner wall surface of a mandrel formed in a columnar or cylindrical shape; providing a conductive coating on the outer wall surface or inner wall surface of the mandrel; A step of forming a large number of minute non-electroconductive parts on the conductive film, and forming a cylindrical rod material by electroforming the surface of the conductive film, and at the same time forming minute non-electrodeposited parts on the non-conductive parts. A step of forming a large number of minute through holes in the R material by growing them as electroforming progresses;
The method includes a step of removing the mandrel from the P material by melting, softening, melting, or destroying the entire or surface portion of the mandrel.

請求項4の濾材の製造方法は、柱状又は筒状に形成した
マンドレルの外壁面又は内壁面を平滑に仕上げる工程と
、前記マンドレルの外壁面又は内壁面に導電被膜を設け
るとともに、該導電被膜に多数の微小な非導電部を設け
る工程と、前記導電被膜の表面に電鋳を行うことにより
筒状の濾材を形成すると同時に、前記非導電部に発生さ
せた微小な非電着部を電鋳の進行とともに成長させるこ
とにより濾材に多数の微小な貫通孔を形成する工程と、
前記濾材とマンドレルに熱膨張差を与えて両者を剥離さ
せることにより、該濾材からマンドレルを取り除く工程
とからなる。
The method for producing a filter medium according to claim 4 includes the steps of: smoothing the outer wall surface or inner wall surface of a mandrel formed in a columnar or cylindrical shape; providing a conductive coating on the outer wall surface or inner wall surface of the mandrel; A process of providing a large number of minute non-electroconductive parts and forming a cylindrical filter medium by electroforming the surface of the conductive coating, and at the same time electroforming the minute non-electrodeposited parts generated in the non-conductive parts. a step of forming a large number of minute through holes in the filter medium by growing it as the process progresses;
The method includes the step of removing the mandrel from the filter medium by applying a thermal expansion difference between the filter medium and the mandrel to separate them.

[作用] 請求項1の濾過装置において、P材に設けられた貫通孔
は内壁面から外壁面に向かうにつれて直径が増加してい
るため、炉液の流動抵抗が小さい。
[Function] In the filtration device according to the first aspect, since the diameter of the through-hole provided in the P material increases from the inner wall surface toward the outer wall surface, the flow resistance of the furnace liquid is small.

従って、所要濾過圧力が小さくて済むとともに、濾過速
度を高めることができる。また、この貫通孔に不溶解固
体粒子が詰まることもほとんどない。
Therefore, the required filtration pressure can be reduced and the filtration rate can be increased. Further, the through holes are hardly clogged with undissolved solid particles.

また、前記内壁面は平滑に形成されているため、前記濾
滓剥離部材を摺動させるだけで、該内壁面に付着した濾
滓をほとんど残すことなく容易かつ確実に剥離させるこ
とができる。
Further, since the inner wall surface is formed smoothly, the filter dregs attached to the inner wall surface can be easily and reliably removed by simply sliding the filter dregs removing member, leaving almost no residue behind.

請求項2の濾過装置においても、p材に設けられた貫通
孔は外壁面から内壁面に向かうにつれて直径が増加して
おり、さらに該外壁面は平滑に形成されているため、請
求項1の濾過装置と同様の作用を奏する。
Also in the filtration device of claim 2, the diameter of the through hole provided in the p-material increases from the outer wall surface toward the inner wall surface, and furthermore, the outer wall surface is formed smooth, so that It has the same effect as a filtration device.

請求項3のr材の製造方法においては、マンドレルの外
壁面又は内壁面を平滑に仕上げているので、平滑な内壁
面又は外壁面を備えた濾材を電鋳形成することができる
。また、枦材の電鋳形成と同時に微小な非電着部を成長
させることにより貫通孔を形成するため、P材の内壁面
から外壁面へ又は外壁面から内壁面へ向かうにつれて直
径が増加する貫通孔を容易かつ効率的に形成することが
できる。また、濾材の電鋳形成後においてマンドレルの
平滑な外壁面又は内壁面と、濾材の平滑な内壁面又は外
壁面とは導電被膜を介して強く付着するが、水洗におい
てはマンドレルの全部又は表面部を溶解、軟化、溶融又
は破壊するため、大きい力を加えなくてもP材からマン
ドレルを容易に取り除くことができる。
In the method for manufacturing R material according to claim 3, since the outer wall surface or inner wall surface of the mandrel is finished smooth, a filter medium having a smooth inner wall surface or outer wall surface can be formed by electroforming. In addition, because the through holes are formed by growing minute non-electrodeposited parts at the same time as the electroforming of the P material, the diameter increases from the inner wall surface to the outer wall surface or from the outer wall surface to the inner wall surface of the P material. Through holes can be formed easily and efficiently. In addition, after the electroforming of the filter medium, the smooth outer wall surface or inner wall surface of the mandrel and the smooth inner wall surface or outer wall surface of the filter medium strongly adhere to each other through the conductive coating, but when washing with water, the entire or surface portion of the mandrel The mandrel can be easily removed from the P material without applying great force.

請求項4のr材の製造方法においても、請求項3のP材
の製造方法と同様、平滑な内壁面又は外壁面と、内壁面
から外壁面へ又は外壁面から内壁面へ向かうにつれて直
径が増加する貫通孔とを備えたP材を容易に形成するこ
とができる。また、P材の電鋳形成後に該濾材とマンド
レルに熱膨張差を与えて両者を剥離させるため、大きい
力を加えなくても濾材からマンドレルを容易に取り除く
ことができる。
Similarly to the method for manufacturing P material according to claim 4, the method for manufacturing R material according to claim 4 also has a smooth inner wall surface or outer wall surface, and a diameter that increases from the inner wall surface to the outer wall surface or from the outer wall surface to the inner wall surface. A P material having an increasing number of through holes can be easily formed. Further, after the P material is electroformed, a difference in thermal expansion is applied to the filter medium and the mandrel to separate them, so that the mandrel can be easily removed from the filter medium without applying a large force.

[実施例] 以下、本発明を具体化した濾過装置の実施例について第
1図〜第6図を参照して説明する。
[Example] Hereinafter, an example of a filtration device embodying the present invention will be described with reference to FIGS. 1 to 6.

本実施例の濾過装置1に使用する濾材2は、ニッケルそ
の他の金属を電鋳することにより形成された円筒状のも
のであって、平滑に形成された内壁面3と、必ずしも平
滑であることを要しない外側壁4とを備えている。ここ
で、「平滑」とは次の貫通孔5を除く部分について鏡面
又は微細な梨地やヘアNンの状態にまで平滑度が高めら
れた状態をいう。この濾材2の寸法は原液の通過量や濾
過速度等に応じて適宜決定することができるが、本実施
例においては内径60mm、外径68mm、肉厚4mm
、高さ75mmとして髪)る。
The filter medium 2 used in the filter device 1 of this embodiment is a cylindrical one formed by electroforming nickel or other metal, and has a smooth inner wall surface 3. It is equipped with an outer wall 4 that does not require an outer wall. Here, "smooth" refers to a state in which the smoothness of the portion excluding the next through hole 5 is increased to a mirror surface or a fine satin finish or a hair-like state. The dimensions of this filter medium 2 can be determined as appropriate depending on the amount of passing stock solution, filtration speed, etc., but in this example, the inner diameter is 60 mm, the outer diameter is 68 mm, and the wall thickness is 4 mm.
, the height is 75mm).

また、濾材2には内壁面3から外壁面4に向かうにつれ
て直径が増加する多数の微細な貫通孔5が前記電幼と同
時に形成されている。これらの貫通孔5の直径や単位面
積当りの数は濾滓粒子の大きさや必要濾過速度等に応じ
て適宜決定することができるが、本実施例においては貫
通孔5の直径を内壁面3において10〜200μm、外
壁面4において1〜4mmとしく従って貫通孔5同士が
途中で繋ることもある)、貫通孔5の単位面積当りの数
を50〜200個/Cm2としている。また、貫通孔5
の拡径の仕方も特に限定されないが、本実施例において
は第6図に示すように内壁面3の近傍において少ししか
拡径せず、該近傍を離れた後には多少の歪みを伴って椀
状に拡径するようになっている。
Further, a large number of fine through holes 5 whose diameter increases from the inner wall surface 3 toward the outer wall surface 4 are formed in the filter medium 2 at the same time as the electrode formation. The diameter of these through holes 5 and the number per unit area can be determined as appropriate depending on the size of the filter dregs particles, the required filtration rate, etc., but in this example, the diameter of the through holes 5 is set at the inner wall surface 3. 10 to 200 μm, and 1 to 4 mm on the outer wall surface 4 (therefore, the through holes 5 may be connected in the middle), and the number of through holes 5 per unit area is 50 to 200/cm 2 . In addition, through hole 5
Although there is no particular limitation on how the diameter of the bowl expands, in this embodiment, as shown in FIG. It is designed to expand in diameter.

前記濾材2の周囲にはこれを覆う内径約100mm、高
さ75mmの円筒状の外筒6が同軸上に配設され、これ
らの濾材2及び外筒6は次に述べる蓋体7及び底板体8
によって挾み付けられている。すなわち、濾材2及び外
筒6の上端には、隆起部9を中央部に備えた円板状の蓋
体7が被せられ、該蓋体7の下面に設けられた内側の環
状溝10に前記r材2の上端部が、同じく外側の環状溝
11に前記外筒6の上端部が各々嵌入している。
A cylindrical outer cylinder 6 with an inner diameter of approximately 100 mm and a height of 75 mm is disposed coaxially around the filter medium 2 to cover it, and these filter medium 2 and outer cylinder 6 are connected to a lid body 7 and a bottom plate body described below. 8
It is clamped by. That is, the upper ends of the filter medium 2 and the outer cylinder 6 are covered with a disc-shaped lid 7 having a raised portion 9 in the center, and the inner annular groove 10 provided on the lower surface of the lid 7 is covered with the lid 7. The upper end of the r material 2 and the upper end of the outer cylinder 6 are respectively fitted into the annular groove 11 on the outside.

また、濾材2及び外筒6の下端には、濾材2の内壁面3
と連続する透孔12を中央部に備えた円板状の底板体8
が配設され、該底板体8の上面に設けられた内側の環状
溝13に前記濾材2の下端部が、同じく外側の環状溝1
4に前記外筒6の下端部が各々嵌入している。そして、
前記蓋体7及び底板体8はこれらと外筒6に設けられた
突出板15とに挿通されたボルト16及びナツト17に
よって該外筒6に固定されている。
Further, at the lower ends of the filter medium 2 and the outer cylinder 6, an inner wall surface 3 of the filter medium 2 is provided.
A disc-shaped bottom plate body 8 with a through hole 12 in the center that is continuous with the
is arranged, and the lower end of the filter medium 2 is placed in the inner annular groove 13 provided on the upper surface of the bottom plate body 8.
The lower end portions of the outer tubes 6 are fitted into the outer tubes 4, respectively. and,
The lid body 7 and the bottom plate body 8 are fixed to the outer cylinder 6 by bolts 16 and nuts 17 inserted through them and a protruding plate 15 provided on the outer cylinder 6.

前記蓋体7の隆起部9の側部には濾材2内部の濾過前室
18に開口する供給プラグ19が取り付けられ、該供給
プラグ19には原液Pを供給するための供給管39が接
続されている。また、この隆起部9の上面には次のr滓
剥離部材22を軸方向に駆動する駆動手段としての剥離
用シリンダ20が下向きに収り付けられ、該シリンダ2
0のロッド21には濾材2の内壁面3に対して軸方向に
摺動し得る円板状の濾滓剥離部材22がボルト23によ
り取り付けられている。また、前記隆起部9の内壁面に
は後述する濾滓Rの残りが一時的に溜る環状の炉滞溜り
講51が設けられ、蓋体7の外部からP滞溜り講51に
はエア通路52が開通している。
A supply plug 19 that opens into the pre-filtration chamber 18 inside the filter medium 2 is attached to the side of the raised portion 9 of the lid 7, and a supply pipe 39 for supplying the stock solution P is connected to the supply plug 19. ing. Further, a peeling cylinder 20 as a driving means for driving the next r slag peeling member 22 in the axial direction is housed downward on the upper surface of this raised portion 9.
A disk-shaped filter dregs peeling member 22 that can slide in the axial direction against the inner wall surface 3 of the filter medium 2 is attached to the rod 21 of No. 0 by bolts 23. Further, an annular furnace stagnation hole 51 is provided on the inner wall surface of the raised portion 9, in which the remainder of filter dregs R (described later) is temporarily collected, and an air passage 52 is connected to the P stagnation hole 51 from the outside of the lid body 7. is now open.

前記底板体8にはr材2外部の濾過後室24に開口する
排出プラグ25が取り付けられ、該排出プラグ25には
炉液Qを排出するための排出管40が接続されている。
A discharge plug 25 that opens into the post-filtration chamber 24 outside the r material 2 is attached to the bottom plate 8, and a discharge pipe 40 for discharging the furnace liquid Q is connected to the discharge plug 25.

また、この底板体8の下面には基台26とその下部の基
板27とがボルト28により固定されており、基台26
の内部には底板体8の透孔12と連続する斜状孔29と
円筒面付きの排出孔30とが設けられ、基板527には
前記排出孔30と連続する排出口31が設けられている
Further, a base 26 and a substrate 27 at the bottom thereof are fixed to the lower surface of the bottom plate body 8 with bolts 28.
An oblique hole 29 that is continuous with the through hole 12 of the bottom plate body 8 and a discharge hole 30 with a cylindrical surface are provided inside the base plate 527, and a discharge port 31 that is continuous with the discharge hole 30 is provided in the base plate 527. .

また、前記基台26の排出孔30には円柱体の一部に平
面部33を切り欠いてなる排出部材32が摺接可能に配
設され、該排出部材32は支軸34を介して基台26に
回動可能に軸着されている。この支軸34の基台26か
ら突出した端部にはピニオン35が止着され、該ビニオ
ン35には、基板27に固定された排出用シリンダ36
のロッド37に設けられたラック38が噛合するように
なっている。
Further, a discharge member 32 formed by cutting out a plane part 33 in a part of a cylindrical body is slidably disposed in the discharge hole 30 of the base 26, and the discharge member 32 is attached to the base via a support shaft 34. It is rotatably pivoted to the stand 26. A pinion 35 is fixed to the end of the support shaft 34 protruding from the base 26, and a discharge cylinder 36 fixed to the base plate 27 is attached to the pinion 35.
A rack 38 provided on a rod 37 is engaged with the rack 38.

次に、上記濾過装置1に使用されているr材2の製造方
法について第7図〜第10図を参照して説明する。
Next, a method for manufacturing the r-material 2 used in the filter device 1 will be explained with reference to FIGS. 7 to 10.

■ 第7図に示すように、金属製の円柱状心材42の外
壁面であって、該円柱状心材42の両縁に設けたフラン
ジ43に挾まれる部分に、切削又は研削が可能でかつ少
なくとも1種の溶剤に溶解する高分子材料を塗布及び硬
化させることにより表面部44を形成し、該円柱状心材
42及び表面部A4をむって円柱状のマンドレル41を
構成する。
■ As shown in FIG. 7, the outer wall surface of the metal cylindrical core material 42, which is sandwiched between the flanges 43 provided on both edges of the cylindrical core material 42, can be cut or ground. A surface portion 44 is formed by applying and curing a polymeric material soluble in at least one type of solvent, and a cylindrical mandrel 41 is constructed by peeling off the cylindrical core material 42 and surface portion A4.

前記高分子材料としては、例えば硬質塩化ビニル樹脂、
ポリスチレン樹脂、AS樹脂、ABS樹脂、メタクリル
樹脂、ポリアミド樹脂、ポリカーボネイト樹脂、ポリエ
ステル樹脂、エポキシ樹脂等の合成樹脂材料や、硬質ゴ
ム等のゴム材料を挙げることができる。
Examples of the polymer material include hard vinyl chloride resin,
Examples include synthetic resin materials such as polystyrene resin, AS resin, ABS resin, methacrylic resin, polyamide resin, polycarbonate resin, polyester resin, and epoxy resin, and rubber materials such as hard rubber.

■ 前記マンドレル41の両端面中央部に突設した軸4
5を図示しない旋盤等にチャックし、第7図に示すよう
に、該マンドレル41の円筒面状の外壁面46を切削工
具47又は研削工具により平滑に仕上げる。必要に応じ
てこのマンドレル41を水、洗剤、溶剤等により洗浄し
、外壁面46に付着したダストや油分を除去した後、乾
燥させる。
■ A shaft 4 protruding from the center of both end faces of the mandrel 41
5 is chucked onto a lathe (not shown) or the like, and the cylindrical outer wall surface 46 of the mandrel 41 is smoothed using a cutting tool 47 or a grinding tool, as shown in FIG. If necessary, the mandrel 41 is washed with water, detergent, solvent, etc. to remove dust and oil adhering to the outer wall surface 46, and then dried.

■ 前記マンドレル41の外壁面46にペースト状銀ラ
ッカー、酢酸ブチル及び塩化ビニルラッカーの混合液を
スプレーして乾燥させることにより、第8図及び第9図
に示すように導電被膜48を形成するとともに、前記塩
化ビニルラッカー粒子による多数の微小な非導電部49
を点在的に形成する。この導電被膜48の表面は、前記
マンドレル41の外壁面46に倣って平滑に形成される
(2) Spray a mixture of pasty silver lacquer, butyl acetate and vinyl chloride lacquer on the outer wall surface 46 of the mandrel 41 and dry it to form a conductive coating 48 as shown in FIGS. 8 and 9. , a large number of minute non-conductive parts 49 made of the vinyl chloride lacquer particles.
are formed in a scattered manner. The surface of this conductive coating 48 is formed to be smooth and follow the outer wall surface 46 of the mandrel 41 .

なお、前記塩化ビニルラッカーの混入割合を加減して非
導電部49の大きさや単位面積当りの数を変化させるこ
とにより、次の電鋳工程において貫通孔5の直径や単位
面積当りの数を任意に変化させることができる。
In addition, by adjusting the mixing ratio of the vinyl chloride lacquer and changing the size and number of non-conductive parts 49 per unit area, the diameter and number of through holes 5 per unit area can be adjusted arbitrarily in the next electroforming process. can be changed to

■ 続いて、スルファミン酸ニッケルと硼酸を主成分と
し、ピンホール抑制用の界面活性剤を含まない特殊なメ
ツキ液(図示略)に前記マンドレル41を浸漬する。そ
して、このマンドレル41(カソード)と図示しないニ
ッケル電極(アノード)との間に通電すると、第8図に
示すように導電被膜48にニッケルが電着してゆき、第
9図に示すように濾材2がその両端の不要部分をも含め
て電鋳形成される。
(2) Subsequently, the mandrel 41 is immersed in a special plating solution (not shown) that contains nickel sulfamate and boric acid as main components and does not contain a surfactant for suppressing pinholes. When electricity is applied between this mandrel 41 (cathode) and a nickel electrode (anode) (not shown), nickel is electrodeposited on the conductive coating 48 as shown in FIG. 9, and as shown in FIG. 2 is electroformed including unnecessary parts at both ends.

このとき、第8図に示すようにニッケルは非導電部49
には電着せず、従って微小な非電着部50が発生するた
め、この非電着部50を電鋳の進行ととともに成長させ
ることにより、前記拡径を伴う多数の微小な貫通孔5を
形成することができる。
At this time, as shown in FIG.
Therefore, by growing these non-electrodeposited parts 50 as the electroforming progresses, the large number of minute through-holes 5 with the enlarged diameter can be formed. can be formed.

また、上記濾材2の内壁面3は前記マンドレル41の外
壁面46及び導電被膜48の表面に倣って平滑に形成さ
れる。
Further, the inner wall surface 3 of the filter medium 2 is formed to be smooth and follow the outer wall surface 46 of the mandrel 41 and the surface of the conductive coating 48 .

■ 前記マンドレル41の軸45を図示しない旋盤等に
チャックし、第9図に示すように、濾材2の外壁面4を
切削工具47により切削する。この切削は濾材2の厚さ
を均一にするとともに、貫通孔5の縁の出張りを除去す
るために行うものであり、必ずしも外壁面4を平滑に仕
上げることは要求されない。
(2) The shaft 45 of the mandrel 41 is chucked in a lathe (not shown), and the outer wall surface 4 of the filter medium 2 is cut with a cutting tool 47 as shown in FIG. This cutting is performed to make the thickness of the filter medium 2 uniform and to remove protrusions on the edges of the through holes 5, and it is not necessarily required to finish the outer wall surface 4 smoothly.

■ 次に、第10図に示すように前記r材2の両端の不
要部分をマンドレル41(フランジ43の全部を含む)
とともに切り落とす。
■ Next, as shown in FIG.
Cut it off along with it.

いま、この状態において濾材2からマンドレル41を抜
き取ろうとしても、通常の力で抜き取ることは困難であ
る。マンドレル41の平滑な外壁面46と濾材2の平滑
な内壁面3とが、同じく平滑な導電被膜48を介して強
く付着しているからである。特に鏡面どうしの密着は強
く付着するため、抜き取りはほとんど不可能である。
Even if an attempt is made to remove the mandrel 41 from the filter medium 2 in this state, it is difficult to remove it with normal force. This is because the smooth outer wall surface 46 of the mandrel 41 and the smooth inner wall surface 3 of the filter medium 2 are strongly attached to each other via the similarly smooth conductive coating 48. In particular, mirror surfaces adhere strongly to each other, making it almost impossible to remove them.

しかし、本実施例においては、前記濾材2及びマンドレ
ル41を溶剤(図示略)に浸漬して、該マンドレル41
の表面部44を形成している高分子材料を溶解させるた
め、大きい力を加えなくても沢材2からマンドレル41
を容易に取り除くことができる。
However, in this embodiment, the filter medium 2 and the mandrel 41 are immersed in a solvent (not shown), and the mandrel 41 is
In order to melt the polymeric material forming the surface portion 44 of
can be easily removed.

以上により濾材2が完成する。Through the above steps, the filter medium 2 is completed.

次に、上記濾過装置1を使用した原液Pのr過方法及び
濾滓Rの剥離方法について説明する。
Next, a method for filtering the stock solution P and a method for peeling off the filter dregs R using the above-mentioned filtration device 1 will be explained.

(1)まず、第1図に示すように排出用シリンダ36の
ロッド37を後進させることにより、排出部材32の平
面部33を上方に向けさせ、該排出部材32によって排
出孔30を塞ぐ。そして、濾過ずべき原液Pを図示しな
いポンプ−図示しないバルブ装置−供給管39−供給プ
ラグ19−の流路を経て濾過前室18に供給する。この
原液Pは濾材2に設けられた多数の微小な貫通孔5によ
って不溶解固体粒子と炉液Qとに分離され、不溶解固体
粒子は濾材2の内壁面3に付着して濾滓Rとなる。また
、炉液Qは貫通孔5を通って濾過後室24に流入し、排
出プラグ25及び排出管40を経て排出される。
(1) First, as shown in FIG. 1, by moving the rod 37 of the discharge cylinder 36 backward, the flat portion 33 of the discharge member 32 is directed upward, and the discharge hole 30 is closed by the discharge member 32. Then, the stock solution P to be filtered is supplied to the pre-filtration chamber 18 through the flow path of a pump (not shown), a valve device (not shown), a supply pipe 39, and a supply plug 19. This stock solution P is separated into insoluble solid particles and furnace liquid Q by a large number of minute through-holes 5 provided in the filter medium 2, and the insoluble solid particles adhere to the inner wall surface 3 of the filter medium 2 and become filter dregs R. Become. Further, the furnace liquid Q flows into the post-filtration chamber 24 through the through hole 5 and is discharged through the discharge plug 25 and the discharge pipe 40.

このとき、前記貫通孔5は内壁面3から外壁面4に向か
うにつれて直径が増加しているため、炉液Qの流動抵抗
は小さい。従って、所要濾過圧力が小さくて済むととも
に、濾過速度を高めることができる。また、この貫通孔
5に不溶解固体粒子が詰まることもほとんどない。
At this time, since the diameter of the through hole 5 increases from the inner wall surface 3 toward the outer wall surface 4, the flow resistance of the furnace liquid Q is small. Therefore, the required filtration pressure can be reduced and the filtration rate can be increased. Furthermore, the through holes 5 are hardly clogged with undissolved solid particles.

(2)上記−過の進行につれて、沢材2の内壁面3に付
着する濾滓Rの厚さが増し、濾過効率が低下してくる。
(2) As the above-mentioned filtration progresses, the thickness of the filter dregs R adhering to the inner wall surface 3 of the baffle material 2 increases, and the filtration efficiency decreases.

そこで、所定時間が経過した後に、図示しないバルブ装
置を一時的に切り替えることにより、原液Pを供給管3
9以前の管路において循環させ、濾過前室18へは供給
しないようにする。
Therefore, after a predetermined period of time has elapsed, by temporarily switching the valve device (not shown), the stock solution P is transferred to the supply pipe 3.
The water is circulated in the pipe line before 9 and is not supplied to the pre-filtration chamber 18.

そして、第2図に示すように剥離用シリンダ20のロッ
ド21を下降させることにより、濾滓剥離部材22を内
壁面3に摺動させながら下降させて、該内壁面3から濾
滓Rを剥離させる。この ・□とき、前記内壁面3は平
滑に形成されているため、沢瀉Rを内壁面3にほとんど
残すことなく容易かつ確実に剥離させることができる。
Then, as shown in FIG. 2, by lowering the rod 21 of the peeling cylinder 20, the filter cake peeling member 22 is lowered while sliding on the inner wall surface 3, and the filter cake R is peeled off from the inner wall surface 3. let At this time, since the inner wall surface 3 is formed smoothly, it is possible to easily and reliably peel off the ridge R without leaving much of it on the inner wall surface 3.

このように、本実施例の濾過装置1によれば、所定時間
毎に上記濾滓Rの剥離作業をわずかな時間かけて行うだ
けで、濾材2を全く取り替えることなく長期間連続的に
使用することができる。
In this way, according to the filtration device 1 of the present embodiment, by only taking a short time to peel off the filter slag R at predetermined intervals, the filter medium 2 can be used continuously for a long period of time without being replaced at all. be able to.

(3)前記濾滓剥離部材22は、第3図に示すように底
板体8の透孔12内まで下降し、前記濾滓Rを濾滓剥離
部材22と斜状孔29と平面部33とで囲むことによっ
て圧縮する。従って、濾滓Rに含まれる液分が絞られく
脱液)、塊状の濾滓Rが得られる。
(3) The filter dregs peeling member 22 descends into the through hole 12 of the bottom plate body 8 as shown in FIG. Compress it by surrounding it with . Therefore, the liquid contained in the filter cake R is squeezed out (deliquified), and a lumpy filter cake R is obtained.

この濾滓Rの圧縮作業は本発明の必須要件ではないが、
濾滓Rが塊状となることによってその体積が減少し、取
扱性も格段に向上するという効果がある。また、本実施
例では濾滓Rの剥離と圧縮とを一度に行うことができる
ため、効率も高いという効果がある。
Although this compressing operation of the filter dregs R is not an essential requirement of the present invention,
By forming the filter dregs R into a lump, its volume is reduced, and the handling properties are also significantly improved. Further, in this embodiment, since the peeling and compression of the filter dregs R can be performed at the same time, the efficiency is also high.

(4)続いて、第4図に示すように排出用シリンダ36
のロッド37を前進させることにより、排出部材32を
平面部33に載った塊状の沢瀉Rとともに回動させ、最
終的には平面部33を下方へ向けて濾滓Rを排出口31
から排出する。
(4) Next, as shown in FIG.
By moving the rod 37 forward, the discharge member 32 is rotated together with the lumpy slag R placed on the flat part 33, and finally the flat part 33 is directed downward and the slag R is delivered to the discharge port 31.
discharge from.

その後は、剥離用シリンダ20のロッド21を上昇させ
る。このとき、もし濾材2の内壁面3に微量の濾滓Rが
残っていたしても、該濾滓Rは濾滓剥離部材22により
押し上げられて前記P滞溜り講51内に溜るので、濾滓
剥離部材22が完全に上昇した後に、前記エア通路52
がら炉滞溜り講51内にエアを吹き込んでやれば、該濾
滓Rを落下させることができる。
After that, the rod 21 of the peeling cylinder 20 is raised. At this time, even if a small amount of filter dregs R remains on the inner wall surface 3 of the filter medium 2, the filter dregs R is pushed up by the filter dregs peeling member 22 and accumulates in the P retention chamber 51, so that the filter dregs R remains. After the peeling member 22 is completely raised, the air passage 52
By blowing air into the slag tank 51, the filter dregs R can be dropped.

その後、図示しないバルブ装置を切り替えて上記(1)
〜(4)の工程を繰り返せばよい。
After that, switch the valve device (not shown) and perform the above (1).
What is necessary is just to repeat the process of - (4).

なお、本発明は前記実施例の構成に限定されるものでは
なく、例えば以下のように発明の趣旨から逸脱しない範
囲で任意に変更して具体化することもできる。
It should be noted that the present invention is not limited to the configuration of the above-mentioned embodiments, and may be modified and embodied as desired without departing from the spirit of the invention, for example, as described below.

(1)前記実施例とは逆に、平滑に形成された外壁面と
、該外壁面から内壁面に向かうにつれて直径が増加する
多数の微小な貫通孔とを備えた筒状の濾材を形成し、原
液を前記外壁面から内壁面へ流すようにして濾過するこ
ともできる。この場合、濾滓剥離部材は濾材の外壁面に
対して軸方向に摺動し得る穴あき円板状となる。濾滓剥
離部材の駆動手段については前記実施例と同等のものを
使用することができる。
(1) Contrary to the above embodiment, a cylindrical filter medium is formed with a smooth outer wall surface and a large number of minute through holes whose diameter increases from the outer wall surface toward the inner wall surface. It is also possible to filter the stock solution by flowing it from the outer wall surface to the inner wall surface. In this case, the filter dregs peeling member has a perforated disc shape that can slide in the axial direction with respect to the outer wall surface of the filter medium. As for the driving means for the filter dregs peeling member, the same one as in the above embodiment can be used.

また、上記沢材の製造方法は、筒状に形成したマンドレ
ルの内壁面を平滑に仕上げ、該マンドレルの内壁面に導
電被膜を設けること以外、前記実施例と同様である。
Further, the method for manufacturing the above-mentioned sill material is the same as that of the above embodiment except that the inner wall surface of the cylindrical mandrel is smoothed and a conductive coating is provided on the inner wall surface of the mandrel.

(2)濾材2を円筒以外の筒状、例えば四角筒状に形成
してもよい。これに応じて、マンドレル41は円柱以外
の柱状、例えば四角桂状に形成することができる。また
、マンドレル41は中空の筒状のものであってもよい。
(2) The filter medium 2 may be formed into a tubular shape other than a cylinder, for example, a square tubular shape. Accordingly, the mandrel 41 can be formed in a column shape other than a cylinder, for example, in a square gauze shape. Further, the mandrel 41 may have a hollow cylindrical shape.

(3〉濾滓剥離部材22の駆動手段は前記剥離用シリン
ダ20に限定されず、例えば電磁ソレノイドでもよい。
(3> The drive means for the filter dregs peeling member 22 is not limited to the peeling cylinder 20, and may be an electromagnetic solenoid, for example.

【4)マンドレル41の外壁面46に導電被膜48を設
ける方法は前記実施例の方法に限定されず、例えば銀鏡
反応によることもできる。
(4) The method of providing the conductive film 48 on the outer wall surface 46 of the mandrel 41 is not limited to the method of the above embodiment, and for example, silver mirror reaction may be used.

(5)導電被膜48に多数の微小な非導電部49を設け
る方法についても前記実施例の方法に限定されず、例え
ば導電被膜48の表面に絶縁性の粒子(例えば塩化ビニ
ルラッカー)をスプレーすることにより非導電部49を
設けることもできる。
(5) The method of providing a large number of minute non-conductive parts 49 on the conductive coating 48 is not limited to the method of the above embodiment, and for example, insulating particles (for example, vinyl chloride lacquer) may be sprayed on the surface of the conductive coating 48. Accordingly, a non-conductive portion 49 can also be provided.

(6)P材2から′マンドレル41を収り除く工程につ
いては、次のような別例によることもできる。
(6) Regarding the step of fitting and removing the 'mandrel 41 from the P material 2, the following alternative example may be used.

■ マンドレル41の全部を前記実施例の高分子材料に
より形成し、P材2を電鋳形成した後に、該マンドレル
41の全部を溶剤で溶解させることにより、P材2から
マンドレル41を取り除く。
(2) The entire mandrel 41 is formed from the polymeric material of the above embodiment, and after electroforming the P material 2, the mandrel 41 is removed from the P material 2 by dissolving the entire mandrel 41 with a solvent.

■ マンドレル41の全部又は表面部44を石膏により
形成し、濾材2を電鋳形成した後に、該マンドレル41
の全部又は表面部44を塩酸で溶解させることにより、
濾材2がらマンドレル41を収り除く。なお、発泡石膏
を使用したときは水で溶解させることもできる。
■ After forming the entire or surface portion 44 of the mandrel 41 from plaster and electroforming the filter medium 2, the mandrel 41
By dissolving the whole or surface part 44 with hydrochloric acid,
The mandrel 41 is removed from the filter medium 2. Note that when foamed gypsum is used, it can also be dissolved with water.

■ マンドレル41の全部又は表面部44を(a)済材
2の溶融温度よりも軟化温度の低い熱可塑性樹脂、(b
)溶融温度の低い金属、(C)ワックス等により形成し
、P材2を電鋳形成した後に、該マンドレル41の全部
又は表面部44を加熱して軟化又は溶融させることによ
り、P材2がらマンドレル41を取り除く。
■ The entire or surface portion 44 of the mandrel 41 is coated with (a) a thermoplastic resin whose softening temperature is lower than the melting temperature of the finished material 2, (b)
) of a metal with a low melting temperature, (C) wax, etc., and after electroforming the P material 2, heat the entire or surface portion 44 of the mandrel 41 to soften or melt the P material 2. Remove mandrel 41.

■ マンドレル41の全部又は表面部44を容易に破壊
できる石膏等の材料により形成し、済材2を電鋳形成し
た後に、該マンドレル41の全部又は表面部44を破壊
することにより、濾材2がらマンドレル41を取り除く
(2) The entire mandrel 41 or the surface portion 44 is made of a material such as plaster that can be easily destroyed, and after the finished material 2 is electroformed, the entire mandrel 41 or the surface portion 44 is destroyed, so that the filter medium 2 is completely removed. Remove mandrel 41.

■ マンドレル41のほぼ全部を濾材2の材料とは熱膨
張率が異なる材料により形成し、済材2を電鋳形成した
後に、該濾材2とマンドレル41に熱膨張差を与えて両
者を剥離させることにより、濾材2からマンドレル41
を取り除く。この方法によっても、前記実施例と同様の
効果を奏する。
■ Almost all of the mandrel 41 is made of a material with a coefficient of thermal expansion different from that of the material of the filter medium 2, and after electroforming the finished material 2, a difference in thermal expansion is applied to the filter medium 2 and the mandrel 41 to separate them. By this, from the filter medium 2 to the mandrel 41
remove. This method also produces the same effects as the embodiments described above.

[発明の効果] 本発明は、上記の通り構成されているため、下記のよう
な優れた効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it has the following excellent effects.

請求項1又は請求項2の濾過装置によれば、所要濾過圧
力を低め、濾過速度を高めることができるとともに、濾
材の目詰りが起こりにくく、済材から濾滓を容易かつ確
実に剥離させることができ、従って、該P材を長期間連
続使用することができる。
According to the filtration device of claim 1 or claim 2, the required filtration pressure can be lowered and the filtration speed can be increased, the filter material is less likely to be clogged, and the filter slag can be easily and reliably peeled off from the finished material. Therefore, the P material can be used continuously for a long period of time.

請求項3又は請求項4の濾材の製造方法によれば、上記
濾過装置に使用する濾材を容易かつ効率的に製造するこ
とができる。
According to the method for manufacturing a filter medium according to claim 3 or 4, it is possible to easily and efficiently manufacture a filter medium used in the above-mentioned filtration device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は本発明を具体化した濾過装置の実施例を示
し、第1図は濾過進行時の側断面図、第2図は濾滓剥離
時の側断面図、第3図は濾滓圧縮時の側断面図、第4図
は濾滓排出時の側断面図、第5図は濾過進行時の正断面
図、第6図は濾材の部分拡大斜視図である。 第7〜10図は濾材の製造方法の実施例を示し、第7図
はマンドレル製造時の断面図、第8図は該マンドレルに
濾材を電鋳形成したときの要部拡大断面図、第9図は該
濾材の外壁面を切削するときの断面図、第10図は該濾
材及びマンドレルの両端部を切り落としたときの断面図
である。 1・・・濾過装置、2・・・濾材、3・・・内壁面44
・・・外壁面、5・・・貫通孔、 20・・・剥離用シリンダ、22・・・濾滓剥離部材、
41・・・マンドレル、44・・・表面部、46・・・
外壁面、48・・・導電被膜、49・・・非導電部、5
0・・・非電着部。
1 to 6 show examples of the filtration device embodying the present invention, FIG. 1 is a side sectional view when filtration is progressing, FIG. 2 is a side sectional view when filter dregs are peeled off, and FIG. FIG. 4 is a side sectional view when dregs are being compressed, FIG. 4 is a side sectional view when dregs are being discharged, FIG. 5 is a front sectional view when filtration is progressing, and FIG. 6 is a partially enlarged perspective view of the filter medium. 7 to 10 show examples of the method for producing filter media, FIG. 7 is a cross-sectional view when manufacturing the mandrel, FIG. 8 is an enlarged cross-sectional view of the main part when the filter media is electroformed on the mandrel, and FIG. The figure is a cross-sectional view when the outer wall surface of the filter medium is cut, and FIG. 10 is a cross-sectional view when both ends of the filter medium and the mandrel are cut off. 1... Filter device, 2... Filter medium, 3... Inner wall surface 44
... Outer wall surface, 5 ... Through hole, 20 ... Peeling cylinder, 22 ... Filter dregs peeling member,
41... Mandrel, 44... Surface portion, 46...
Outer wall surface, 48... Conductive coating, 49... Non-conductive part, 5
0...Non-electrodeposition part.

Claims (1)

【特許請求の範囲】 1、平滑に形成された内壁面(3)と、該内壁面(3)
から外壁面(4)に向かうにつれて直径が増加する多数
の微小な貫通孔(5)とを備えた筒状の濾材(2)と、 前記濾材(2)の内壁面(3)に対して軸方向に摺動し
得る濾滓剥離部材(22)と、 前記濾滓剥離部材(22)を軸方向に駆動するための駆
動手段(20)とを備えたことを特徴とする濾過装置。 2、平滑に形成された外壁面と、該外壁面から内壁面に
向かうにつれて直径が増加する多数の微小な貫通孔とを
備えた筒状の濾材と、 前記濾材の外壁面に対して軸方向に摺動し得る濾滓剥離
部材と、 前記濾滓剥離部材を軸方向に駆動するための駆動手段と
を備えたことを特徴とする濾過装置。 3、柱状又は筒状に形成したマンドレル(41)の外壁
面(46)又は内壁面を平滑に仕上げる工程と、 前記マンドレル(41)の外壁面(46)又は内壁面に
導電被膜(48)を設けるとともに、該導電被膜(48
)に多数の微小な非導電部(49)を設ける工程と、 前記導電被膜(48)の表面に電鋳を行うことにより筒
状の濾材(2)を形成すると同時に、前記非導電部(4
9)に発生させた微小な非電着部(50)を電鋳の進行
とともに成長させることにより濾材(2)に多数の微小
な貫通孔(5)を形成する工程と、 前記マンドレル(41)の全部または表面部(44)を
溶解、軟化、溶融又は破壊することにより、該濾材(2
)からマンドレル(41)を取り除く工程とからなるこ
とを特徴とする濾材の製造方法。 4、柱状又は筒状に形成したマンドレル(41)の外壁
面(46)又は内壁面を平滑に仕上げる工程と、 前記マンドレル(41)の外壁面(46)又は内壁面に
導電被膜(48)を設けるとともに、該導電被膜(48
)に多数の微小な非導電部(49)を設ける工程と、 前記導電被膜(48)の表面に電鋳を行うことにより筒
状の濾材(2)を形成すると同時に、前記非導電部(4
9)に発生させた微小な非電着部(50)を電鋳の進行
とともに成長させることにより濾材(2)に多数の微小
な貫通孔(5)を形成する工程と、 前記濾材(2)とマンドレル(41)に熱膨張差を与え
て両者を剥離させることにより、該濾材(2)からマン
ドレル(41)を取り除く工程とからなることを特徴と
する濾材の製造方法。
[Claims] 1. Smoothly formed inner wall surface (3); and the inner wall surface (3)
A cylindrical filter medium (2) equipped with a large number of minute through holes (5) whose diameter increases as it goes toward the outer wall surface (4); A filtration device comprising: a sludge peeling member (22) that can slide in the axial direction; and a driving means (20) for driving the sludge peeling member (22) in the axial direction. 2. A cylindrical filter medium having a smoothly formed outer wall surface and a large number of minute through holes whose diameter increases from the outer wall surface toward the inner wall surface, and an axial direction with respect to the outer wall surface of the filter medium. A filtration device comprising: a filter dregs peeling member that can slide; and a driving means for driving the filter dregs peeling member in an axial direction. 3. Smoothly finishing the outer wall surface (46) or inner wall surface of the mandrel (41) formed in a columnar or cylindrical shape, and applying a conductive coating (48) on the outer wall surface (46) or the inner wall surface of the mandrel (41). In addition to providing the conductive coating (48
), forming a cylindrical filter medium (2) by electroforming the surface of the conductive coating (48), and at the same time forming a cylindrical filter medium (2).
9) forming a large number of minute through-holes (5) in the filter medium (2) by growing the minute non-electrodeposited portions (50) generated in step 9 as electroforming progresses; and the mandrel (41). By dissolving, softening, melting or destroying the whole or surface portion (44) of the filter medium (2
) removing the mandrel (41) from the filter medium. 4. Smoothly finishing the outer wall surface (46) or inner wall surface of the mandrel (41) formed in a columnar or cylindrical shape, and applying a conductive coating (48) on the outer wall surface (46) or the inner wall surface of the mandrel (41). In addition to providing the conductive coating (48
), forming a cylindrical filter medium (2) by electroforming the surface of the conductive coating (48), and at the same time forming a cylindrical filter medium (2).
forming a large number of minute through-holes (5) in the filter medium (2) by growing the minute non-electrodeposited portions (50) generated in step 9) as electroforming progresses; and a step of removing the mandrel (41) from the filter medium (2) by applying a thermal expansion difference to the mandrel (41) and peeling them apart.
JP29340288A 1988-11-18 1988-11-18 Filter device and manufacture of filter medium used for the same device Pending JPH02139010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29340288A JPH02139010A (en) 1988-11-18 1988-11-18 Filter device and manufacture of filter medium used for the same device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29340288A JPH02139010A (en) 1988-11-18 1988-11-18 Filter device and manufacture of filter medium used for the same device

Publications (1)

Publication Number Publication Date
JPH02139010A true JPH02139010A (en) 1990-05-29

Family

ID=17794303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29340288A Pending JPH02139010A (en) 1988-11-18 1988-11-18 Filter device and manufacture of filter medium used for the same device

Country Status (1)

Country Link
JP (1) JPH02139010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0494800A2 (en) * 1991-01-10 1992-07-15 Delaware Capital Formation Inc. Filter with reciprocating cleaner unit
JP2017094363A (en) * 2015-11-25 2017-06-01 富士フィルター工業株式会社 Method for manufacturing porous compact, molding die, method for manufacturing molding die and laminate including porous member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024315B2 (en) * 1976-06-23 1985-06-12 三菱電機株式会社 Refrigerant compressor operation control method
JPS62282611A (en) * 1986-05-30 1987-12-08 Kawasaki Heavy Ind Ltd Filter apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024315B2 (en) * 1976-06-23 1985-06-12 三菱電機株式会社 Refrigerant compressor operation control method
JPS62282611A (en) * 1986-05-30 1987-12-08 Kawasaki Heavy Ind Ltd Filter apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0494800A2 (en) * 1991-01-10 1992-07-15 Delaware Capital Formation Inc. Filter with reciprocating cleaner unit
JP2017094363A (en) * 2015-11-25 2017-06-01 富士フィルター工業株式会社 Method for manufacturing porous compact, molding die, method for manufacturing molding die and laminate including porous member

Similar Documents

Publication Publication Date Title
AU2014270290B2 (en) Ceramic filter element and method for manufacturing a ceramic filter element
TW593780B (en) Pad designs and structures for a versatile materials processing apparatus
US4435266A (en) Electroplating arrangements
US4056586A (en) Method of preparing molten metal filter
US4765833A (en) Porous ceramic structure and method of filtering aluminum
US6318565B1 (en) Filtration member for solid-liquid separation
JPS6255885B2 (en)
US7241383B2 (en) Fluid treating method and apparatus
JPH02139010A (en) Filter device and manufacture of filter medium used for the same device
JP3360857B2 (en) Filtration device
US4226716A (en) Rotary filter
JPS62171708A (en) Method for regenerating separator for liquid medium containing insoluble component
JP3114487B2 (en) Filtration equipment using an asymmetric filtration membrane.
JP2505395B2 (en) Method for manufacturing resin mold
JPS61238305A (en) Preparation of tubular double-layered filter
US20050194254A1 (en) Cellular metal structure
JPH01215318A (en) Filter device
JPS6041514A (en) Method and apparatus for filtering
JP3615026B2 (en) Ceramic filter and manufacturing method thereof
JPH08243323A (en) Production of laminated metallic fiber filter and laminated metallic fiber filter
JP2001062212A (en) Filter device
JPS6019012A (en) Screw type filtering method and apparatus thereof
JPS62186908A (en) Production of asymmetric membrane
JP2500893Y2 (en) Filter element
JPH051283Y2 (en)