JPH02138783A - Method and device for determining moment of changeover of system for active thermal stabilization of cavity length of frequency stability laser - Google Patents

Method and device for determining moment of changeover of system for active thermal stabilization of cavity length of frequency stability laser

Info

Publication number
JPH02138783A
JPH02138783A JP63301104A JP30110488A JPH02138783A JP H02138783 A JPH02138783 A JP H02138783A JP 63301104 A JP63301104 A JP 63301104A JP 30110488 A JP30110488 A JP 30110488A JP H02138783 A JPH02138783 A JP H02138783A
Authority
JP
Japan
Prior art keywords
laser
active thermal
frequency
thermal stabilization
cavity length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63301104A
Other languages
Japanese (ja)
Inventor
Vassil P Kruglii
バシル・パブロフ・クルグリイ
Stanislav P Shurulinkov
スタニスラフ・ペトロフ・シュルリンコフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOFIJSKI UNIV KLIMENT OHRIDSKI
Original Assignee
SOFIJSKI UNIV KLIMENT OHRIDSKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOFIJSKI UNIV KLIMENT OHRIDSKI filed Critical SOFIJSKI UNIV KLIMENT OHRIDSKI
Publication of JPH02138783A publication Critical patent/JPH02138783A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Abstract

PURPOSE: To shorten time for activation and to enlarge the range allowable to an ambient temperature change by switching a system at the moment when an electric signal proportional to the speed of temperature rise at a laser resonator gets equal with a prescribed value. CONSTITUTION: When the supply source of a laser tube 3 is switched, a radiated beam from the rear mirror of the laser resonator is split by a polarized beam splitter 4 and made incident to light receivers 5 and 6. Signals from the receivers 5 and 6 change their cycles with the change of polarization strength corresponding to a change in the length of the resonator at the tube 3. The speed increase in the laser cavity length caused by thermal expansion is gradually decreased with the rise of the temperature, and the cycle of signals from the receivers 5 and 6 is increased in proportion to the speed of the temperature rise. This signal is passed through operational amplifiers 7 and 8, a differential amplifier 9 and a molder 10 and integrated by an integrator 11 and at the moment when the level of that output signal F reaches a prescribed level G, a device 22 for active thermal stabilization is switched. Thus, the time can be shortened and the range allowable to the ambient temperature change is enlarged.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は測定のためのレーザの製造において使用される
周波数安定レーザの共振器長のアクティブ熱安定化のた
めのシステムの切換えの瞬間を決定するための方法およ
び装置に関するものである。
Detailed description of the invention [Industrial field of application] The present invention determines the switching moment of a system for active thermal stabilization of the cavity length of frequency stabilized lasers used in the production of lasers for measurements. The present invention relates to a method and apparatus for doing so.

[従来の技術] 周波数安定レーザの共振器長のアクティブな熱安定化の
ためのシステムの切換えの瞬間が最初の切換えの瞬間後
に経過した経験的に最適化された時間後に決定されるよ
うな周波数安定レーザの共振器長をアクティブに熱安定
化するためのシステムの切換えの瞬間を決定するための
方法が知られている(J、  1. of appli
ed  Ph 、  19巻11号2181〜2185
頁参照)。
[Prior Art] System for active thermal stabilization of the cavity length of a frequency-stabilized laser at a frequency such that the switching moment is determined after an empirically optimized time elapsed after the first switching moment Methods are known for determining the switching moment of a system for active thermal stabilization of the cavity length of a stable laser (J, 1. of appli
ed Ph, Volume 19, No. 11, 2181-2185
(see page).

周波数安定レーザの共振器長をアクティブに熱安定化す
るためのシステムの切換えの瞬間を決定するための既知
の方法の欠点は、レーザ放射の周波数の再現性を減少し
、レーザがreglIIle内に入っている間の動作位
置における熱変化および空気の対流の変化を考慮しない
ので、安定化の状態に入る後に周囲の温度における許容
可能な変化範囲が減少することである。
The disadvantages of known methods for determining the switching moment of systems for actively thermally stabilizing the cavity length of frequency-stabilized lasers are that they reduce the frequency reproducibility of the laser radiation and that the laser enters the reglIIle. Because it does not take into account thermal changes in the operating position and air convection changes during the stabilization period, the range of permissible changes in ambient temperature after entering the stabilization state is reduced.

また別の方法として、切換え後にレーザ管供給状態が連
続して1lllJ定されレーザ共振器温度に依存する電
気信号が取出され、それは支持電気信号と比較され、周
波数安定レーザの共振器長のアクティブな熱安定化のた
めのシステムが両信号が均等化したときに切換えられる
ような周波数安定レーザのための共振器長をアクティブ
に熱安定化するためのシステムの切換えの瞬間を決定す
るための方法が知られている。レーザ共振器の温度に依
存する電気信号は共振器に取付けられている熱感知素子
によって生成される。
Alternatively, after switching, the laser tube supply state is continuously determined by 1llllJ and an electrical signal dependent on the laser cavity temperature is extracted, which is compared with the supporting electrical signal and the active signal of the cavity length of the frequency stabilized laser is extracted. A method for determining the switching moment of a system for actively thermally stabilizing the cavity length for a frequency stabilized laser is such that the system for thermally stabilizing is switched when both signals are equalized. Are known. An electrical signal dependent on the temperature of the laser cavity is generated by a heat sensing element attached to the cavity.

(5oro −F rance −Metrilas 
M、 1001 EManuel  d  ut!1l
saHon  et  de  maintenanc
e1976参照) 周波数安定レーザの共振器長をアクティブ熱安定化する
ためのシステムのスイッチングの瞬間を決定するための
この既知の方法の欠点は、レーザの切換えの瞬間に周囲
の温度のインパクトを考慮しないため、再現性を減少し
その体制へ入るための時間が増加することである。
(5oro-France-Metrilas
M, 1001 EManuel d ut! 1l
sahon et de maintenanc
The disadvantage of this known method for determining the switching moment of a system for active thermal stabilization of the cavity length of a frequency-stable laser is that it does not take into account the impact of the ambient temperature on the switching moment of the laser. This reduces reproducibility and increases the time to enter the regime.

周波数安定レーザの共振器長をアクティブに熱安定化す
るためのシステムの切換えの瞬間を決定するためのこの
第2の既知の装置は比較器を具備し、その出力は周波数
安定レーザの共振器長をアクティブに熱安定化するだめ
のシステムの宿り御入力と接続される。その第1の入力
はレーザ共振器の温度に依存する電気信号を発生する装
置と接続される。その第2の入力は支持信号源と接続さ
れる。レーザ共振器の温度に依存する電気信号を発生す
る装置は電圧分割器中に設けられている熱抵抗によって
生成される。熱抵抗はレーザ管上に取付けられる。
This second known device for determining the switching moment of a system for actively thermally stabilizing the cavity length of a frequency-stable laser comprises a comparator, the output of which is equal to the cavity length of the frequency-stable laser. The active thermal stabilization device is connected to the input of the system. Its first input is connected to a device that generates an electrical signal dependent on the temperature of the laser cavity. Its second input is connected to a support signal source. A device for generating an electrical signal that is dependent on the temperature of the laser cavity is generated by a thermal resistor provided in the voltage divider. A thermal resistor is mounted on the laser tube.

周波数安定レーザの共振器長をアクティブに熱安定化す
るためのシステムのスイッチングの瞬間を決定するため
の既知の装置の欠点は、この装置がレーザ共振器の常に
同じ温度で周波数安定レーザの共振器長のアクティブ熱
安定化のためのシステムを切換えるので、レーザ放射線
の設定された周波数に入るための時間がレーザの切換え
の瞬間の動作位置における周囲の温度の値に依存するこ
とである。
The disadvantage of the known device for determining the switching moment of the system for actively thermally stabilizing the cavity length of frequency-stabilized lasers is that this device does not allow the resonator of frequency-stabilized lasers to always be at the same temperature of the laser cavity. Because of the long switching system for active thermal stabilization, the time to enter the set frequency of the laser radiation is dependent on the value of the ambient temperature at the operating position at the moment of switching of the laser.

[発明の解決すべき課題] 本発明の目的は周波数安定レーザの共振器長のアクティ
ブ熱安定化のためのシステムの切換えの瞬間を決定する
ための方法および装置において、それはその体制に入る
期間中温度および空気の対流の変化と、レーザ安定化の
その体制に入るだめの時間の減少と、レーザの切換えの
瞬間での周囲の温度の値とに依存せずに安定化する体制
に入った後に、レーザ放射線周波数の再現性における増
加および周囲の温度における許容可能な変化における増
加を確立することである。
[Problem to be Solved by the Invention] The object of the present invention is a method and a device for determining the switching moment of a system for active thermal stabilization of the cavity length of a frequency stabilized laser, which during the period of entering the regime. After entering the stabilizing regime, independent of changes in temperature and air convection and the reduction of the time for entering that regime of laser stabilization and the value of the ambient temperature at the moment of switching of the laser. , to establish an increase in the reproducibility of the laser radiation frequency and an increase in the acceptable variation in ambient temperature.

[課題解決のための手段および作用コ この目的は、切換え後に、レーザ管の供給状態が連続的
に支持電気信号と比較されるレーザ共振器の温度に依存
する電気信号を測定され、周波数安定レーザの共振器長
をアクティブ熱安定化するためのシステムは両信号が等
しくなったときに切換えられる周波 数安定レーザのための共振器長をアクティブ熱安定化す
るためのシステムの切換えの瞬間を決定するための方法
によって達成される。レーザ共振器の温度に依存する電
気信号はその7R度−L昇速度に比例している。
[Means and effects for solving the problem] The purpose is to measure the temperature-dependent electrical signal of the laser resonator, in which, after switching, the supply state of the laser tube is continuously compared with the supporting electrical signal, and the frequency-stable laser To determine the switching moment of the system for active thermal stabilization of the cavity length for a frequency stabilized laser, the system for active thermal stabilization of the cavity length is switched when both signals become equal. This is achieved by the following method. The temperature-dependent electrical signal of the laser cavity is proportional to its 7R degrees-L rise rate.

本発明の目的はまた比較器を具備し、前記方法を実施す
る周波数安定レーザの共振器長をアクティブ熱安定化す
るためのシステムの切換えの瞬間を決定するための装置
によって達成され、比較器の出力は周波数安定レーザた
めの共振器長をアクティブ熱安定化するためのシステム
の制御入力と接続される。その第1の入力はレーザ共振
器の温度に依存した電気信号を生成する装置と接続され
る。その第2の入力は支持信号源と接続される。
The object of the invention is also achieved by a device for determining the switching moment of a system for active thermal stabilization of the cavity length of a frequency-stabilized laser implementing the method, comprising a comparator; The output is connected to the control input of a system for active thermal stabilization of the cavity length for frequency stabilized lasers. Its first input is connected to a device that generates an electrical signal dependent on the temperature of the laser cavity. Its second input is connected to a support signal source.

レーザ共振器の温度に依存した電気信号を発生する装置
は周波数安定レーザの共振器長をアクティブ熱安定化す
るためのシステムの2つの光受信器から形成され、一方
比較器の第1の入力との接続は差動増幅器、成形器およ
び積分器の直列接続を介して行われる。
The device for generating an electrical signal dependent on the temperature of the laser cavity is formed by two optical receivers of the system for active thermal stabilization of the cavity length of a frequency stabilized laser, while the first input of the comparator and The connection is made through a series connection of a differential amplifier, a shaper and an integrator.

本発明に従った周波数安定レーザのレーザ共振器長をア
クティブ熱安定化するためのシステムの切換えの瞬間を
決定するための方法および装置の利点は、体制に入る時
間を減少させることができると共にその体制に入る期間
と温度および空気の対流における変化に依存せずに、レ
ーザ放射周波数の再現性の増加および安定化の体制に入
った後に動作位置の周囲の温度の変化における許容範囲
の増加である。
The advantage of the method and device for determining the switching moment of a system for active thermal stabilization of the laser cavity length of a frequency-stable laser according to the invention is that it can reduce the regime time and that An increase in the reproducibility of the laser emission frequency and an increase in the tolerance in changes in the temperature surrounding the operating position after entering the regime of stabilization, independent of changes in temperature and air convection during the period of entry into the regime .

[実施例] 本発明を図面に示された実施例によって更に詳細に説明
する。
[Example] The present invention will be explained in more detail by means of an example shown in the drawings.

周波数安定レーザの共振器長をアクティブ熱安定化する
ためのシステムの切換えの瞬間を決定するための装置は
比較器1を具備し、その出力は周波数安定レーザ12の
共振器のアクティブ熱安定化のだめの装置2の制御入力
と接続され、装置2の出力はレーザ管3の熱素子と接続
され、それは偏光分割器4を経て、その後方に配置され
た光受信器5および6に光学的に接続される。光受信器
5および6は増幅器7および8を経て周波数安定レーザ
の共振器のアクティブ熱安定化のための装置2と電気的
に接続される。比較器1の第1の入力は光受信器5およ
び6の出力と直列に接続された差動増幅器9、成形器l
Oおよび積分器11を経て接続される。比較器1の第2
の入力は電源Gと接続される。レーザ管3、共振器のア
クティブ熱安定化のための装置2、偏光分割器4、光受
信器5および6、および増幅器7および8は周波数安定
レーザ12の共振器長のアクティブ熱安定化のためのシ
ステムを形成する。
The device for determining the switching moment of the system for active thermal stabilization of the cavity length of a frequency-stable laser 12 comprises a comparator 1 whose output is connected to the active thermal stabilization of the cavity of the frequency-stable laser 12. The output of the device 2 is connected to the thermal element of the laser tube 3, which is optically connected via a polarization splitter 4 to the optical receivers 5 and 6 arranged behind it. be done. The optical receivers 5 and 6 are electrically connected via amplifiers 7 and 8 to the device 2 for active thermal stabilization of the resonator of a frequency-stable laser. A first input of the comparator 1 is a differential amplifier 9 connected in series with the outputs of the optical receivers 5 and 6, a shaper l
0 and an integrator 11. 2nd of comparator 1
The input of is connected to power supply G. Laser tube 3 , device 2 for active thermal stabilization of the cavity, polarization splitter 4 , optical receivers 5 and 6 and amplifiers 7 and 8 for active thermal stabilization of the cavity length of frequency stabilized laser 12 form a system of

周波数安定レーザの共振器部分の長さのアクティブ熱安
定化のだめのシステムの切換えの瞬間を決定するための
装置の動作は以下の通りである。
The operation of the apparatus for determining the switching moment of a system of active thermal stabilization reservoirs of the length of the cavity section of a frequency stabilized laser is as follows.

最初にレーザ管3の供給源が切換えられる。レーザ共振
器の後部ミラーのレーザ放射は偏光分割器4で分割され
、光受信器5および6へ入る。レーザ管3は内部ミラー
および不定偏光を存する。偏光分割器4はレーザ管3に
関して調整され、光受信器5および6からの信号はレー
ザ管3の共振器の長さの変化におけるレーザ放射の両方
の偏光強度における変化に対応し、結果として温度歪み
を生じる。レーザ管3の放電の開始および最大パワーを
角゛する加熱器の切換え後に、レーザ共振器長は増加し
始めるか、その速度は徐々に減少する。
First the source of the laser tube 3 is switched. The laser radiation of the rear mirror of the laser cavity is split in a polarization splitter 4 and passes into optical receivers 5 and 6. The laser tube 3 has internal mirrors and undefined polarization. The polarization splitter 4 is adjusted with respect to the laser tube 3 and the signals from the optical receivers 5 and 6 correspond to changes in the intensity of both polarizations of the laser radiation on changes in the length of the resonator of the laser tube 3 and, as a result, in the temperature causes distortion. After the start of the discharge of the laser tube 3 and the switching of the heater to the maximum power, the laser cavity length begins to increase or its speed gradually decreases.

光受信器5および6からの電気信号は周期的である。そ
れらの周期はレーザ管3の共振器の熱膨張の速度におけ
る減少に比例して増加している。先受信器後の信号は演
算増幅器7および8によって増幅され、差動増幅器9の
両入力へ送られる。差動増幅器9の入力でレーザ放射の
両部光の強度に対応する信号AおよびBが入力する。両
信号AおよびBの差は成形器10に入るが、一方バイボ
ーラ信号Eが形成され積分器11によって積分される。
The electrical signals from optical receivers 5 and 6 are periodic. Their period increases in proportion to the decrease in the rate of thermal expansion of the resonator of the laser tube 3. The post-pre-receiver signal is amplified by operational amplifiers 7 and 8 and sent to both inputs of differential amplifier 9. At the input of the differential amplifier 9 are input signals A and B corresponding to the intensities of both beams of laser radiation. The difference between both signals A and B enters a shaper 10, while a bipolar signal E is formed and integrated by an integrator 11.

後者の積分器11は正信号に対しては非常に小さい時定
数を有し、−力負信号に対しては時定数はt−(15〜
30)秒である。比較器1は積分器11の出力信号Fの
レベルを受け、それが支持電圧源によって予めセットさ
れたレベルGに到達するとアクティブ熱安定化のための
システムを具備する周波数安定レーザ12の共振器のア
クティブ熱安定化のための装置2の切換えのため信号H
を発生する。従ってレーザ12は周囲の媒体の温度、空
気の対流およびその体制に入る間のそれらの変化に依存
せずに常に同じ速度で安定化する体制へ入る。
The latter integrator 11 has a very small time constant for positive signals, and for negative signals the time constant is t-(15~
30) seconds. The comparator 1 receives the level of the output signal F of the integrator 11 and, when it reaches the level G preset by the support voltage source, activates the resonator of the frequency stabilized laser 12 with a system for active thermal stabilization. Signal H for switching device 2 for active thermal stabilization
occurs. Laser 12 thus enters the regime stabilizing at the same rate at all times, independent of the temperature of the surrounding medium, air convection, and their changes during entry into the regime.

この速度は一般に毎分6乃至8λ/2であり、ここでは
λは使用されたレーザ管3の波長である。
This speed is generally between 6 and 8 λ/2 per minute, where λ is the wavelength of the laser tube 3 used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周波数安定レーザの共振器長のアクティブ熱安
定化のためのシステムを切換える瞬間を決定するための
装置のブロック図である。 第2図は装置の特徴的な点における信号の時間図を表わ
す。 1・・・比較器、2・・・共振器、3・・・レーザ管、
4・・・偏光分割器、5,6・・・光受信器、7,8増
幅器、9・・・差動増幅器、IO・・・成形器、11・
・・積分器、12・・・周波数安定レーザ。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a block diagram of a device for determining the switching moment of a system for active thermal stabilization of the cavity length of a frequency-stable laser. FIG. 2 represents the time diagram of the signals at characteristic points of the device. 1... Comparator, 2... Resonator, 3... Laser tube,
4... Polarization splitter, 5, 6... Optical receiver, 7, 8 amplifier, 9... Differential amplifier, IO... Shaper, 11.
... Integrator, 12... Frequency stable laser. Applicant's agent Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ管の切換え後に供給状態により支持電気信
号と比較されるレーザ共振器の温度に依存する電気信号
を測定され、周波数安定レーザの共振器長のアクティブ
熱安定化のための装置が両信号が等しくなったときに切
換えられる、周波数安定レーザの共振器長のアクティブ
熱安定化のためのシステムの切換えの瞬間を決定するた
めの方法において、 レーザ共振器の温度に依存する電気信号がその温度増加
の速度に比例することを特徴とする方法。
(1) After switching the laser tube, the temperature-dependent electrical signal of the laser cavity is measured, which is compared with the supporting electrical signal according to the supply conditions, and the device for active thermal stabilization of the cavity length of the frequency-stabilized laser is installed on both sides. In a method for determining the switching moment of a system for active thermal stabilization of the cavity length of a frequency-stable laser, which is switched when the signals become equal, an electrical signal that is dependent on the temperature of the laser cavity is A method characterized in that it is proportional to the rate of temperature increase.
(2)比較器を具備し、その出力が周波数安定レーザの
共振器長のアクティブ熱安定化のための装置の制御入力
と接続され、その第1の入力がレーザ共振器の温度に依
存する電気信号を発生する装置と接続され、一方その第
2の入力が支持信号源と接続されている、周波数安定レ
ーザの共振器長のアクティブ熱安定化のためのシステム
の切換えの瞬間を決定するための装置において、 レーザ共振器の温度に依存する電気信号を発生する装置
が周波数安定レーザの共振器長をアクティブ熱安定化す
るための装置の2つの受信器によって構成され、これら
受信器の比較器の第1の入力との接続は直列接続された
差動増幅器、成形器および積分器を経て行われることを
特徴とする請求項1記載の方法を実施するための装置。
(2) comprising a comparator, the output of which is connected to the control input of a device for active thermal stabilization of the cavity length of a frequency-stabilized laser, the first input of which is an electric current dependent on the temperature of the laser cavity; for determining the switching moment of a system for active thermal stabilization of the cavity length of a frequency-stabilized laser, connected to a device for generating a signal, while a second input thereof is connected to a supporting signal source; In the device, the device for generating an electrical signal dependent on the temperature of the laser cavity is constituted by two receivers of the device for active thermal stabilization of the cavity length of the frequency-stabilized laser, and the comparator of these receivers is 2. Device for carrying out the method according to claim 1, characterized in that the connection to the first input is made via a series connected differential amplifier, shaper and integrator.
JP63301104A 1987-11-30 1988-11-30 Method and device for determining moment of changeover of system for active thermal stabilization of cavity length of frequency stability laser Pending JPH02138783A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BG82012A BG47632A1 (en) 1987-11-30 1987-11-30 Method and device for determining moment of switching of system for active thermostabilizing of resonator lenght in frequency stabilized lasers
BG82012 1987-11-30

Publications (1)

Publication Number Publication Date
JPH02138783A true JPH02138783A (en) 1990-05-28

Family

ID=3919801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301104A Pending JPH02138783A (en) 1987-11-30 1988-11-30 Method and device for determining moment of changeover of system for active thermal stabilization of cavity length of frequency stability laser

Country Status (7)

Country Link
US (1) US4908829A (en)
JP (1) JPH02138783A (en)
CN (1) CN1035589A (en)
BG (1) BG47632A1 (en)
DE (1) DE3840255A1 (en)
FR (1) FR2623947B3 (en)
GB (1) GB2212973A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324404B1 (en) * 1991-12-26 2001-11-27 Sycord Limited Partnership Cellular telephone system that uses position of a mobile unit to make call management decisions
US5392303A (en) * 1993-03-30 1995-02-21 Nec Corporation Frequency stabilization method of semiconductor laser, frequency-stabilized light source and laser module
JP3218999B2 (en) * 1996-12-18 2001-10-15 安藤電気株式会社 External cavity type tunable semiconductor laser light source
JP3466441B2 (en) * 1997-11-10 2003-11-10 株式会社ミツトヨ Laser device wavelength stabilization device
US6120190A (en) * 1997-11-26 2000-09-19 Lasertron, Inc. Spatially variable bandpass filter monitoring and feedback control of laser wavelength especially in wavelength division multiplexing communication systems
CN106383346B (en) * 2016-09-14 2019-04-02 深圳天眼激光科技有限公司 Pulse laser scan echo receives circuit, method of reseptance and pulse type laser scanner
JP2019087550A (en) * 2017-11-01 2019-06-06 株式会社ミツトヨ Laser device and laser stabilization method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3042666C2 (en) * 1980-11-12 1985-10-10 Moskovskoe vysšee techničeskoe učilišče imeni N.E. Baumana, Moskva Laser spectrophone for analyzing gases
DD203435A1 (en) * 1982-02-01 1983-10-19 Adw Ddr ARRANGEMENT FOR STABILIZING THE RESONATOR LENGTH MODERN SYNCHRONIZED GAS LASER
JPS58176988A (en) * 1982-04-09 1983-10-17 Olympus Optical Co Ltd Semiconductor laser temperature control apparatus
JPS6021582A (en) * 1983-07-15 1985-02-02 Fuji Photo Film Co Ltd Device for laser temperature adjustment
US4834477A (en) * 1984-07-05 1989-05-30 Ricoh Company, Ltd. Method of controlling the temperature of semiconductor laser in an optical device
JPS61189657A (en) * 1985-02-18 1986-08-23 Fuji Photo Film Co Ltd Semiconductor element temperature controller
JPS61189658A (en) * 1985-02-18 1986-08-23 Fuji Photo Film Co Ltd Semiconductor element temperature controller
US4701607A (en) * 1985-04-15 1987-10-20 Arel Control Systems, Ltd. Temperature control laser detection apparatus
US4631728A (en) * 1985-07-22 1986-12-23 The United States Of America As Represented By The Secretary Of The Navy Thermoelectric cooler control circuit
EP0238484A1 (en) * 1985-09-24 1987-09-30 Bell Communications Research, Inc. Temperature stabilization of injection lasers
GB8621037D0 (en) * 1986-08-30 1986-10-08 Renishaw Plc Pre-heat control system
DE3706635A1 (en) * 1987-03-02 1988-09-15 Spindler & Hoyer Kg Method for stabilising the frequency of a laser diode independently of the diode current

Also Published As

Publication number Publication date
US4908829A (en) 1990-03-13
FR2623947B3 (en) 1990-03-02
BG47632A1 (en) 1990-08-15
CN1035589A (en) 1989-09-13
DE3840255A1 (en) 1989-06-08
FR2623947A1 (en) 1989-06-02
GB8827638D0 (en) 1988-12-29
GB2212973A (en) 1989-08-02

Similar Documents

Publication Publication Date Title
JP3133411B2 (en) Stabilizing apparatus and method for SFS
US5204867A (en) Method and apparatus to dynamically control the resonator gain of a laser
EP0196856B1 (en) Dual-wavelength laser apparatus
JPH02138783A (en) Method and device for determining moment of changeover of system for active thermal stabilization of cavity length of frequency stability laser
JP2644315B2 (en) High frequency discharge pumped laser device
CA1045234A (en) Laser amplifier system
JPH06196795A (en) Stabilizing device of sfs background and its method
US5926495A (en) Laser diode pump wavelength sensing and control apparatus and method
GB1320967A (en) Laser system comprising means for controlling the frequency of a laser beam
US4949345A (en) Method and apparatus for reducing the effect of random polarization on the power/energy output of lasers
US6034977A (en) Optical path difference control system and method for solid state lasers
JPH02299277A (en) Method and apparatus for stabilizing optical component temperature
JP2003075877A (en) Laser light source and temperature control method for nonlinear optical element
JPH0246787A (en) Pulse oscillation solid-state laser device
US4998254A (en) Stabilized synchronously pumped dye laser
JP2584209B2 (en) Laser output control device
JP3465048B2 (en) Optical amplification method, optical amplification device, and optical resonator for optical amplification
JPH0416031B2 (en)
JPS60217679A (en) Laser output controller
WO1988001798A1 (en) Pre-heat control system for a laser
KR950002067B1 (en) Second harmonic generator
CA1139869A (en) Laser control apparatus
JPH0456479B2 (en)
GB2217101A (en) Metal vapour laser device
JP3333242B2 (en) Pulse laser beam amplification method and amplification device