JPH02138229A - Production of alkyl-substituted aromatic hydrocarbon - Google Patents

Production of alkyl-substituted aromatic hydrocarbon

Info

Publication number
JPH02138229A
JPH02138229A JP63282993A JP28299388A JPH02138229A JP H02138229 A JPH02138229 A JP H02138229A JP 63282993 A JP63282993 A JP 63282993A JP 28299388 A JP28299388 A JP 28299388A JP H02138229 A JPH02138229 A JP H02138229A
Authority
JP
Japan
Prior art keywords
alkali metal
solid base
alumina
reaction
aromatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63282993A
Other languages
Japanese (ja)
Other versions
JP2625985B2 (en
Inventor
Masami Fukao
正美 深尾
Takao Hibi
卓男 日比
Kazuo Kimura
和男 木村
Masahiro Usui
碓氷 昌宏
Takeo Suzukamo
鈴鴨 剛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63282993A priority Critical patent/JP2625985B2/en
Priority to CA000589666A priority patent/CA1308745C/en
Priority to DE8989101719T priority patent/DE68901786T2/en
Priority to EP89101719A priority patent/EP0328940B1/en
Priority to KR1019890001294A priority patent/KR0151107B1/en
Publication of JPH02138229A publication Critical patent/JPH02138229A/en
Priority to US07/815,889 priority patent/US5227559A/en
Priority to US08/021,852 priority patent/US5347062A/en
Application granted granted Critical
Publication of JP2625985B2 publication Critical patent/JP2625985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject substance useful as an intermediate raw material for fine chemicals in high yield and efficiency by reacting an olefin with an aromatic hydrocarbon having H on the alpha-site of a side chain in the presence of a solid base prepared from alumina, an alkali metal hydroxide and an alkali metal at a specific temperature. CONSTITUTION:The objective compound is produced by alkylating (A) an aromatic hydrocarbon having H on the alpha-site of a side chain (e.g., toluene) with (B) an olefin usually at 0-300 deg.C under a reaction pressure of usually from atmospheric pressure to 200kg/cm<2> in the presence of (C) a catalyst consisting of a solid base produced by heating alumina, an alkali metal hydroxide and an alkali metal in an inert gas atmosphere at 200-600 deg.C (preferably reacting alumina with alkali metal hydroxide at 250-550 deg.C, especially 260-480 deg.C and reacting the reaction product with alkali metal at 300-450 deg.C). The amounts of the alkali metal and alkali metal hydroxide in the catalyst are 2-15wt.% and 5-40wt.% based on the alumina, respectively.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はアルキル置換芳香族炭化水素の製造方法に関し
、詳しくは特定の温度下でアルミナ、アルカリ金属水酸
化物およびアルカリ金属から調製した固体塩基の存在下
に、側鎖のα位に水素原子を有する芳香族炭化水素とオ
レフィンとを反応させてα位をアルキル化せしめること
によるアルキル置換芳香族炭化水素の製造方法に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing an alkyl-substituted aromatic hydrocarbon, and more particularly, to a method for producing an alkyl-substituted aromatic hydrocarbon, in particular a solid base prepared from alumina, an alkali metal hydroxide, and an alkali metal at a specific temperature. The present invention relates to a method for producing an alkyl-substituted aromatic hydrocarbon by reacting an aromatic hydrocarbon having a hydrogen atom at the α-position of the side chain with an olefin in the presence of the present invention to alkylate the α-position.

〈従来の技術〉 アルキル置換芳香族炭化水素は農・医薬品、化成品等フ
ァインケミカルズの中間原料として有用であり、塩基触
媒の存在下に側鎖のα位に水素を有する芳香族炭化水素
とオレフィンとを反応させることにより得られる。
<Prior art> Alkyl-substituted aromatic hydrocarbons are useful as intermediate raw materials for fine chemicals such as agricultural products, pharmaceuticals, and chemical products, and in the presence of a base catalyst, aromatic hydrocarbons having hydrogen at the α-position of the side chain and olefins are combined. Obtained by reacting.

例えば、触媒として金属ナトリウムとクロルトルエンか
らなる触媒を用いる方法、金属ナトリウムを炭酸カリウ
ムに担持した触媒を用いる方法等が知られている(J、
Am、Chem、Soc、、78.4316(1956
)、英国特許第1269280号、特開昭61−532
29号公報)。
For example, a method using a catalyst consisting of metallic sodium and chlorotoluene as a catalyst, a method using a catalyst in which metallic sodium is supported on potassium carbonate, etc. are known (J,
Am, Chem, Soc, 78.4316 (1956
), British Patent No. 1269280, JP-A-61-532
Publication No. 29).

〈発明が解決しようとする課題〉 しかしながら、上記のような触媒を用いた場合、触媒活
性が充分ではなく、生成するアルキル置換芳香族炭化水
素の触媒当たりの収量が低いという問題、触媒と生成物
の分離が煩雑であるという問題、更には触媒が大気中の
空気、水分と接した場合に失活し易くまた発火の危険を
伴うという問題等があった。
<Problems to be Solved by the Invention> However, when the above-mentioned catalyst is used, there are problems such as insufficient catalytic activity and a low yield of alkyl-substituted aromatic hydrocarbons per catalyst, and problems between the catalyst and the product. There are problems in that the separation of catalysts is complicated, and furthermore, when the catalyst comes into contact with air or moisture in the atmosphere, it is easily deactivated and there is a risk of ignition.

く!I題を解決するための手段〉 本発明者らは芳香族炭化水素のα位のアルキル化による
アルキル置換芳香族炭化水素の優れた製造方法を開発す
べく、アルキル化触媒について鋭意検討を重ねた結果、
アルミナ、アルカリ金属水酸化物およびアルカリ金属を
加熱処理して得られる特定の固体塩基が、著しく高いア
ルキル化活性を示し、少ない触媒量で効率良く目的とす
るアルキル置換芳香族炭化水素を生成せしめ、しかも反
応生成物との分離も容易であり、そのうえ該固体塩基は
大気中の空気、水分と接触しても発火の危険が少なく、
取扱いが極めて容易であることを見出すとともに、更に
種々の検討を加えて本発明を完成した。
Ku! Means for Solving Problem I> The present inventors have conducted intensive studies on alkylation catalysts in order to develop an excellent method for producing alkyl-substituted aromatic hydrocarbons by alkylating the α-position of aromatic hydrocarbons. result,
A specific solid base obtained by heat treating alumina, an alkali metal hydroxide, and an alkali metal exhibits extremely high alkylation activity and efficiently produces the desired alkyl-substituted aromatic hydrocarbon with a small amount of catalyst. Moreover, it is easy to separate from reaction products, and the solid base has little risk of ignition even when it comes into contact with air or moisture in the atmosphere.
In addition to discovering that it is extremely easy to handle, the present invention was completed after further various studies.

すなわち本発明は、側鎖のα位に水素原子を有する芳香
族炭化水素をオレフィンでアルキル化して、アルキル置
換芳香族炭化水素を製造するに当たり、触媒としてアル
ミナ、アルカリ金属水酸化物およびアルカリ金属を不活
性ガス雰囲気中、200乃至600’Cの温度下で加熱
処理してなる固体塩基を用いることを特徴とする工業的
に優れたアルキル置換芳香族炭化水素の製造方法を提供
するものである。
That is, the present invention uses alumina, an alkali metal hydroxide, and an alkali metal as a catalyst when alkylating an aromatic hydrocarbon having a hydrogen atom at the α-position of the side chain with an olefin to produce an alkyl-substituted aromatic hydrocarbon. The present invention provides an industrially excellent method for producing alkyl-substituted aromatic hydrocarbons, which is characterized by using a solid base obtained by heat treatment at a temperature of 200 to 600'C in an inert gas atmosphere.

本発明はアルミナ、アルカリ金属水酸化物、アルカリ金
属を特定温度下で加熱処理してなる固体塩基を用いるこ
とを特徴とするものであるが、アルミナとしてはα−ア
ルミナ以外の種々の形態のものが使用し得、例えばT−
1χ−1ρ−アルミナなどが挙げられる。アルミナは表
面積が大きなものが好ましい。またアルカリ金属として
は周期律表第1族のリチウム、ナトリウム、カリウム、
ルビジウム等のアルカリ金属が用いられ、好ましくはナ
トリウム、カリウムもしくはこれ等の混合物、更に好ま
しくはカリウムが用いられる。アルカリ金属の使用量は
アルミナに対し通常2乃至15wt%である。
The present invention is characterized by using alumina, an alkali metal hydroxide, and a solid base obtained by heat-treating an alkali metal at a specific temperature, but the alumina may be in various forms other than α-alumina. can be used, for example T-
Examples include 1χ-1ρ-alumina. Alumina preferably has a large surface area. Also, examples of alkali metals include lithium, sodium, and potassium in Group 1 of the periodic table.
An alkali metal such as rubidium is used, preferably sodium, potassium or a mixture thereof, more preferably potassium. The amount of alkali metal used is usually 2 to 15 wt% based on alumina.

アルカリ金属水酸化物としては、例えば水酸化リチウム
、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウ
ム、水酸化セシウム等が挙げられるが、好ましくは水酸
化ナトリウム、水酸化カリウム、水酸化セシウムが用い
られる。アルカリ金属水酸化物は2種以上用いることも
できる。使用量はアルミナに対し、通常5乃至40wt
%である。
Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc., but sodium hydroxide, potassium hydroxide, and cesium hydroxide are preferably used. . Two or more types of alkali metal hydroxides can also be used. The amount used is usually 5 to 40wt for alumina.
%.

固体塩基を調製するに当たっては不活性ガス雰囲気下で
、先ずアルミナにアルカリ金属水酸化物を、次いでアル
カリ金属を作用させるのが好ましい。
In preparing the solid base, it is preferable to first treat alumina with an alkali metal hydroxide and then with an alkali metal under an inert gas atmosphere.

例えば、アルミナにアルカリ金属水酸化物を加えて加熱
作用せしめ、次いでこれにアルカリ金属を加えて加熱作
用せしめる方法、アルミナをアルカリ金属水酸化物の溶
液に含浸、乾燥した後、加熱作用せしめ、次いでこれに
アルカリ金属を加えて加熱作用せしめる方法等が挙げら
れる。
For example, a method of adding an alkali metal hydroxide to alumina and subjecting it to a heating action, then adding an alkali metal to this and subjecting it to a heating action, or impregnating alumina with a solution of an alkali metal hydroxide, drying it, subjecting it to a heating action, and then Examples include a method in which an alkali metal is added to this to cause a heating effect.

不活性ガスとしては窒素、ヘリウム、アルゴン等が挙げ
られる。
Examples of the inert gas include nitrogen, helium, and argon.

触媒調製温度は重要であり、通常200乃至600’C
The catalyst preparation temperature is important, usually 200 to 600'C.
.

好ましくはアルミナとアルカリ金属水酸化物とを作用せ
しめる温度は250乃至550℃1より好ましくは26
0乃至480℃であり、アルカリ金属を作用せしめる温
度は200乃至450℃である。
Preferably, the temperature at which alumina and alkali metal hydroxide are allowed to react is 250 to 550°C, more preferably 26°C.
The temperature range is 0 to 480°C, and the temperature at which the alkali metal is applied is 200 to 450°C.

加熱時間は選定する温度条件等にもよるが、アルカリ金
属水酸化物を作用せしめる工程は通常0.5乃至10時
間で充分であり、アルカリ金属を作用せしめる工程は通
常IO乃至300分である。
The heating time depends on the selected temperature conditions, etc., but usually 0.5 to 10 hours is sufficient for the step of applying an alkali metal hydroxide, and usually 10 to 300 minutes for the step of applying an alkali metal.

かくして、高活性なうえに流動性、操作性が良好でしか
も空気にふれても発火の危険性のない固体塩基が得られ
る。
In this way, a solid base is obtained which is highly active, has good fluidity and operability, and has no risk of ignition even when exposed to air.

本発明はかかる固体塩基を用いて、側鎖のα位に水素を
有する芳香族炭化水素とオレフィンとを反応させるもの
であるが、該芳香族炭化水素としては通常単環芳香族炭
化水素の他、縮合多環芳香族炭化水素が用いられる。側
鎖は結合して環を形成していても良い。
The present invention uses such a solid base to react an aromatic hydrocarbon having hydrogen at the α-position of its side chain with an olefin. , a fused polycyclic aromatic hydrocarbon is used. The side chains may be combined to form a ring.

例えばトルエン、エチルベンゼン、イソブチルベンゼン
、n−プロビルヘンゼン、n−ブチルベンゼン、5ec
−ブチルベンゼン、イソブチルベンゼン、キシレン、シ
メン、ジイソプロピルベンゼン、メチルナフタレン、テ
トラヒドロナフタレン、インダン等が例示できる。トル
エン、エチルベンゼン、イソプロピルベンゼンが好まし
く使用される。
For example, toluene, ethylbenzene, isobutylbenzene, n-propyrhenzene, n-butylbenzene, 5ec
Examples include -butylbenzene, isobutylbenzene, xylene, cymene, diisopropylbenzene, methylnaphthalene, tetrahydronaphthalene, and indane. Toluene, ethylbenzene and isopropylbenzene are preferably used.

またオレフィンとしては炭素数が2〜20のオレフィン
が通常用いられ、直鎖のもの、分岐のものいずれでも良
い。また二重結合が末端、内部いずれにあっても使用で
きる。末端オレフィンが好ましく用いられる。
Further, as the olefin, an olefin having 2 to 20 carbon atoms is usually used, and either a linear or branched olefin may be used. Further, it can be used regardless of whether the double bond is located at the terminal or internally. Terminal olefins are preferably used.

これらの具体化合物としては、例えばエチレン、プロピ
レン、■−ブテン、2−ブテン、イソブチレン、l−ペ
ンテン、2−ペンテン、1−ヘキセン、2=ヘキセン、
3−ヘキセン、l−ヘプテン、2〜ヘプテン、3−ヘプ
テン、オクテン、ノネン、3−メチル−1−ブテン、2
−メチル−2−ブテン、3−メチル−1〜ペンテン、3
−メチル−2ペンテン等が挙げられる。
Specific examples of these compounds include ethylene, propylene, ■-butene, 2-butene, isobutylene, l-pentene, 2-pentene, 1-hexene, 2=hexene,
3-hexene, 1-heptene, 2-heptene, 3-heptene, octene, nonene, 3-methyl-1-butene, 2
-Methyl-2-butene, 3-methyl-1-pentene, 3
-Methyl-2pentene and the like.

エチレン、プロピレン、l−ブテン、2−ブテンが好ま
しく使用される。
Ethylene, propylene, l-butene, 2-butene are preferably used.

アルキル化反応を実施するに当たっては、バッチ方式、
流動床、固定床を用いた流通方式いずれも採用できる。
In carrying out the alkylation reaction, batch method,
Both distribution systems using fluidized beds and fixed beds can be adopted.

反応温度は通常O乃至300℃1好ましくは20乃至2
00″Cであり、反応圧力は通常大気圧乃至200Kg
/c+1、好ましくは2乃至100Kg/cm”である
The reaction temperature is usually 0 to 300°C, preferably 20 to 20°C.
00″C, and the reaction pressure is usually atmospheric pressure to 200Kg.
/c+1, preferably 2 to 100 Kg/cm".

また芳香族炭化水素に対するオレフィンのモル比は通常
0.1乃至IO1好ましくは0.2乃至5である。
The molar ratio of olefin to aromatic hydrocarbon is usually 0.1 to IO1, preferably 0.2 to 5.

バッチ方式における触媒の使用量は通常、使用する芳香
族炭化水素の0.1乃至20wtχ、好ましくは0.2
乃至5wtχであり、反応は通常0.5乃至50時間、
好ましくはl乃至25時間である。また流通反応におけ
る芳香族炭化水素と脂肪族オレフィンの合計の供給速度
はLH3Vで通常0.1乃至600hr−’、好ましく
は0.5乃至400hr ’が採用される。
The amount of catalyst used in the batch method is usually 0.1 to 20 wtx of the aromatic hydrocarbon used, preferably 0.2
The reaction time is usually 0.5 to 50 hours.
Preferably it is 1 to 25 hours. The total feed rate of aromatic hydrocarbons and aliphatic olefins in the flow reaction is usually 0.1 to 600 hr-', preferably 0.5 to 400 hr' at LH3V.

〈発明の効果〉 かくして、アルキル置換芳香族炭化水素が生成するが、
本発明によれば少ない触媒量で、しかも緩和な条件下で
も、極めて効率良く目的とするアルキル置換芳香族炭化
水素を製造し得る。
<Effect of the invention> In this way, alkyl-substituted aromatic hydrocarbons are produced,
According to the present invention, target alkyl-substituted aromatic hydrocarbons can be produced extremely efficiently with a small amount of catalyst and even under mild conditions.

加えて、触媒の取扱いのみならず反応後の後処理も極め
て容易であるので、本発明方法はこの点でも有利である
In addition, the method of the present invention is advantageous in this respect as not only the handling of the catalyst but also the post-treatment after the reaction is extremely easy.

〈実施例〉 以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれら実施例のみに限定されるものではない。
<Example> The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited only to these examples.

触媒調製例 (固体塩基A) 42〜200メンシユに揃えた活性アルミナ(住友化学
工業()菊製NKHD−24)26.5gを窒素雰囲気
下500“Cで2時間撹拌し、次いで350℃に冷却し
た後、水酸化カリウム2.5gを加えて、同温度で3時
間撹拌した。
Catalyst Preparation Example (Solid Base A) 26.5 g of activated alumina (NKHD-24 manufactured by Sumitomo Chemical Co., Ltd., Kiku) arranged in a size of 42 to 200 was stirred at 500°C for 2 hours under a nitrogen atmosphere, and then cooled to 350°C. After that, 2.5 g of potassium hydroxide was added, and the mixture was stirred at the same temperature for 3 hours.

次いで290℃に冷却した後、金属カリウム2.0gを
加えて、同温度で0.5時間撹拌した。これを室温まで
放冷して24gの固体塩基Aを得た。
After cooling to 290° C., 2.0 g of potassium metal was added and stirred at the same temperature for 0.5 hour. This was allowed to cool to room temperature to obtain 24 g of solid base A.

(固体塩基B) 固体塩基Aにおいて、水酸化カリウムを加える時の温度
およびその後の撹拌温度を350℃から250℃に代え
る以外は固体塩基Aの調製例に準拠して実施し、固体塩
基Bを得た。
(Solid base B) Solid base A was prepared according to the preparation example of solid base A, except that the temperature when adding potassium hydroxide and the subsequent stirring temperature were changed from 350°C to 250°C. Obtained.

(固体塩基C) 固体塩基Aにおいて、水酸化カリウムを加える時の温度
およびその後の撹拌温度を350℃から480 ’Cに
代える以外は固体塩基Aの調製例に準拠して実施し、固
体塩基Cを得た。
(Solid base C) Solid base A was prepared according to the preparation example of solid base A, except that the temperature when adding potassium hydroxide and the subsequent stirring temperature were changed from 350°C to 480'C. I got it.

(固体塩基D) 固体塩基Aにおいて、活性アルミナを580℃で1時間
撹拌した後、同温度で水酸化カリウムを加え、同温度で
撹拌する以外は固体塩基Aの調製例に準拠して実施して
24.1gの固体塩基りを得た。
(Solid base D) In solid base A, the activated alumina was stirred at 580°C for 1 hour, then potassium hydroxide was added at the same temperature, and the procedure was carried out according to the preparation example of solid base A, except that the mixture was stirred at the same temperature. 24.1 g of solid base was obtained.

(固体塩基E) 固体塩基Aにおいて、水酸化カリウムに代えて水酸化ナ
トリウム2.5gを用いる以外は固体塩基への調製例に
準拠して実施し、固体塩基E24.1gを得た。
(Solid base E) Solid base A was carried out according to the preparation example for solid base except that 2.5 g of sodium hydroxide was used instead of potassium hydroxide, and 24.1 g of solid base E was obtained.

(固体塩基F) 固体塩基Aにおいて、水酸化カリウムに代えて水酸化ナ
トリウム2.5gを用い、金属カリウムに代えて金属ナ
トリウム2.0gを用いる以外は固体塩基Aの調整例に
準拠して実施し、固体塩基Fを得た。
(Solid base F) Performed in accordance with the preparation example of solid base A, except that in solid base A, 2.5 g of sodium hydroxide was used in place of potassium hydroxide, and 2.0 g of sodium metal was used in place of potassium metal. A solid base F was obtained.

(固体塩基G) 平均中心粒径80μmの活性アルミナ(住人化学工業■
製B K−570) 50gを窒素雰囲気下500℃で
1時間撹拌し、次いで350℃に冷却した後、水酸化カ
リウム5.65gを加えて、同温度で3時間撹拌した。
(Solid base G) Activated alumina with an average center particle size of 80 μm (Jumin Chemical Industry ■
B K-570) 50g was stirred at 500°C for 1 hour under a nitrogen atmosphere, then cooled to 350°C, 5.65g of potassium hydroxide was added, and the mixture was stirred at the same temperature for 3 hours.

次いで290℃に冷却した後、金属カリウム4.06g
を加えて、同温度で0.2時間撹拌した。これを室温ま
で放冷して55.2gの固体塩基Gを得た。
Then, after cooling to 290°C, 4.06 g of metallic potassium
was added and stirred at the same temperature for 0.2 hours. This was allowed to cool to room temperature to obtain 55.2 g of solid base G.

(固体塩基H) 固体塩基Gにおいて、金属カリウム4.02gを用い、
金属カリウムを加える時の温度およびその後の撹拌温度
を290℃から350℃に代える以外は固体塩基Gの調
製例に準拠して実施し、固体塩基Hを得た。
(Solid base H) In solid base G, using 4.02 g of metallic potassium,
Solid base H was obtained by following the preparation example of solid base G except that the temperature when adding metallic potassium and the subsequent stirring temperature were changed from 290°C to 350°C.

(固体塩基I) 固体塩基Gにおいて、金属カリウム4.15 gを用い
、金属カリウムを加える時の温度およびその後の撹拌温
度を290℃から220℃に代える以外は固体塩基Gの
調製例にl拠して実施し、固体塩基Iを得た。
(Solid base I) Based on the preparation example of solid base G, except that in solid base G, 4.15 g of metallic potassium was used, and the temperature when adding metallic potassium and the subsequent stirring temperature were changed from 290°C to 220°C. Solid base I was obtained.

(固体塩基J) 固体塩基Gにおいて、48〜200メツシユに揃えた活
性アルミナ(住人化学工業■製 NKH324)50g
、水酸化カリウム4.73 g 、金属カリウム2.2
9gを用いる以外は固体塩基Gの調製例に準拠して実施
し、固体塩基Jを得た。
(Solid base J) In solid base G, 50 g of activated alumina (NKH324, manufactured by Sumima Kagaku Kogyo ■) arranged in a mesh size of 48 to 200.
, potassium hydroxide 4.73 g, metallic potassium 2.2
Solid base J was obtained in accordance with the preparation example of solid base G except that 9 g was used.

(固体塩基K) 固体塩基Aで用いたと同じ活性アルミナ26.5gと水
酸化カリウム2.5gとを粉砕混合し、これをアルミナ
坩堝にいれてマツフル炉で1200℃下、3時間加熱し
た6次いで200”Cまで冷却した後、窒素雰囲気下デ
シケータ中で室温まで冷却したところ、微細な粉体が得
られた。
(Solid base K) 26.5 g of the same activated alumina used in solid base A and 2.5 g of potassium hydroxide were pulverized and mixed, and this was placed in an alumina crucible and heated at 1200°C for 3 hours in a Matsufuru furnace. After cooling to 200''C, fine powder was obtained by cooling to room temperature in a desiccator under nitrogen atmosphere.

このものを窒素雰囲気下290℃に加熱した後、撹拌し
ながらこれに金属カリウム2.0gを加えて同温度で0
.5時間撹拌した。これを室温まで冷却して固体塩基K
を得た。
After heating this material to 290°C under a nitrogen atmosphere, 2.0g of metallic potassium was added to it while stirring, and the mixture was heated to 290°C at the same temperature.
.. Stirred for 5 hours. This was cooled to room temperature and solid base K was added.
I got it.

(固体塩基L) 固体塩基Kにおいて、金属カリウムに代えて金属ナトリ
ウム2.0gを用いる以外は固体塩基にの調製例に準拠
して実施し、固体塩基りを得た。
(Solid Base L) A solid base was obtained by following the preparation example for a solid base except that 2.0 g of metallic sodium was used in place of metallic potassium in solid base K.

(固体塩基M) 固体塩基Kにおいて、マツフル炉で加熱する温度を12
00℃から900℃に代える以外は、固体塩基にの調製
例に準拠して実施し固体塩基Mを得た。
(Solid base M) For solid base K, the temperature at which it is heated in a Matsufuru furnace is set to 12
A solid base M was obtained in accordance with the preparation example for a solid base except that the temperature was changed from 00°C to 900°C.

実施例1 電磁撹拌器付600dオー・トクレープに窒素雰囲気下
、固体塩基A 0.39g、′タメン240gを入れ、
撹拌下に105℃に昇温後、同温度でエチレンガスを1
0kg/cd−Gで供給しながら1.5時間反応を行っ
た。
Example 1 0.39 g of solid base A and 240 g of 'tamene were placed in a 600 d autoclave equipped with a magnetic stirrer under a nitrogen atmosphere.
After raising the temperature to 105℃ with stirring, 1 ethylene gas was added at the same temperature.
The reaction was carried out for 1.5 hours while supplying at 0 kg/cd-G.

反応後オートクレーブを冷却し、触媒を濾別した後、反
応液をガスクロマトグラフィーで分析した0反応結果を
表1に示した。
After the reaction, the autoclave was cooled, the catalyst was filtered off, and the reaction solution was analyzed by gas chromatography. The reaction results are shown in Table 1.

実施例2.3 実施例1において、表1に示す反応条件で反応を行った
以外は、実施例1に準拠して実施した。
Example 2.3 The reaction was carried out in accordance with Example 1, except that the reaction was carried out under the reaction conditions shown in Table 1.

結果を表1に示した。The results are shown in Table 1.

表1 TAB=Lert−アミルベンゼン 生成した側鎖アルキル化合物(mol)実施例4〜9、
比較例1〜2 固体塩基Aの他に固体塩基B−F、に、Lをそれぞれ用
い、クメン160gを使用し、反応温度160℃で行っ
た以外は、実施例1に準拠して実施した。反応結果を表
2に示した。
Table 1 TAB=Lert-amylbenzene produced side chain alkyl compounds (mol) Examples 4 to 9,
Comparative Examples 1-2 The procedure of Example 1 was repeated, except that in addition to solid base A, solid bases B-F and L were used, 160 g of cumene was used, and the reaction temperature was 160°C. The reaction results are shown in Table 2.

尚、実施例1〜9において反応終了後の触媒はなお活性
であり、さらに反応を行わせたところ反応が進行した。
In Examples 1 to 9, the catalyst was still active after the reaction was completed, and when the reaction was further carried out, the reaction proceeded.

表2 実施例11 電磁撹拌器付300m1オートクレーブに窒素雰囲気下
、固体塩基A0.86g、クメン80gを入れ、液化プ
ロピレン120mff1を圧入した後、160’Cで3
6時間撹拌を続けた。
Table 2 Example 11 0.86 g of solid base A and 80 g of cumene were placed in a 300 ml autoclave equipped with a magnetic stirrer under a nitrogen atmosphere, and 120 mff1 of liquefied propylene was pressurized into the autoclave.
Stirring was continued for 6 hours.

反応終了後、オートクレーブを冷却した後、反応液を実
施例1と同様にしてガスクロマトグラフィーで分析した
。反応結果を表3に示した。
After the reaction was completed, the autoclave was cooled, and the reaction solution was analyzed by gas chromatography in the same manner as in Example 1. The reaction results are shown in Table 3.

実施例1O 電磁撹拌器付230dオートクレーブに窒素雰囲気下、
固体塩基GO,85g、クメン88gを入れ、撹拌下、
162℃に昇温した後、エチレンガスを30kg/ct
−Gで供給し、6.5時間反応を行った。反応後、実施
例Iと同様にして分析したところクメン転化率88%、
TAB選択率100%であった。
Example 1O In a 230d autoclave with a magnetic stirrer under a nitrogen atmosphere,
Add 85 g of solid base GO and 88 g of cumene, and while stirring,
After raising the temperature to 162℃, 30kg/ct of ethylene gas was added.
-G was supplied, and the reaction was carried out for 6.5 hours. After the reaction, analysis was performed in the same manner as in Example I, and the cumene conversion rate was 88%.
The TAB selectivity was 100%.

実施例12〜15 実施例11において、固体塩基Aに代えて固体塩基G−
Jを用い、表3に示す条件で実施する以外は実施例11
に準拠して行った。結果を表3に示した。
Examples 12 to 15 In Example 11, instead of solid base A, solid base G-
Example 11 except that it was carried out using J and under the conditions shown in Table 3.
This was done in accordance with the. The results are shown in Table 3.

尚、実施例11〜15において、反応終了後の触媒はな
お活性であり、さらに反応を行わせたところ反応が進行
した。
In Examples 11 to 15, the catalyst was still active after the reaction was completed, and when the reaction was further carried out, the reaction proceeded.

比較例3 窒素雰囲気下で電磁撹拌器付200dオートクレーブに
、あらかじめ400℃1窒素雰囲気下で2時間焼成した
無水炭酸カリウム8.86g、ナトリウム0.30 g
 、クメン81.2 gを加えた後、190℃に昇温し
、同温度で2時間撹拌を続けた。
Comparative Example 3 8.86 g of anhydrous potassium carbonate and 0.30 g of sodium were calcined in advance at 400° C. for 2 hours under a nitrogen atmosphere in a 200 d autoclave equipped with a magnetic stirrer under a nitrogen atmosphere.
After adding 81.2 g of cumene, the temperature was raised to 190°C, and stirring was continued at the same temperature for 2 hours.

次いでオートクレーブを冷却し、液化プロピレン70#
ffiを圧入した後、 160’Cで24時間撹拌した
Then cool the autoclave and add liquefied propylene 70#
After injecting ffi, the mixture was stirred at 160'C for 24 hours.

反応後、実施例1と同様にしてガスクロマトグラフィー
で分析したところクメン転化率8.0%、TMPB選択
率81.5%であった。
After the reaction, analysis by gas chromatography in the same manner as in Example 1 revealed that the cumene conversion rate was 8.0% and the TMPB selectivity was 81.5%.

実施例16 電磁撹拌器付300s1オートクレーブに窒素雰囲気下
、固体塩基A 4.07g、トルエン79.5 gを入
れ、液化プロピレン70Idを圧入した後、163℃で
6時間撹拌を続けた。
Example 16 4.07 g of solid base A and 79.5 g of toluene were placed in a 300s1 autoclave equipped with a magnetic stirrer under a nitrogen atmosphere, and after 70Id of liquefied propylene was pressurized, stirring was continued at 163° C. for 6 hours.

反応後、実施例1と同様にして分析した。結果を表4に
示した。
After the reaction, it was analyzed in the same manner as in Example 1. The results are shown in Table 4.

表4 IBB=イソブチルベンゼン 生成した側鎖アルキル化合物(+5ol)実施例17〜
20.比較例4 実施例16において、固体塩基Aに代えて固体塩基B−
D、J、Mをそれぞれ用いる以外は、実施例16に準拠
して行った。結果を表4に示した。
Table 4 IBB=Isobutylbenzene generated side chain alkyl compound (+5ol) Example 17~
20. Comparative Example 4 In Example 16, solid base B- was replaced with solid base A.
The procedure was carried out in accordance with Example 16 except that D, J, and M were used respectively. The results are shown in Table 4.

尚、実施例16〜20において、反応終了後の触媒はな
お活性であり、さらに反応を行わせたところ反応が進行
した。
In Examples 16 to 20, the catalyst was still active after the reaction was completed, and when the reaction was further carried out, the reaction proceeded.

比較例5 窒素雰囲気下で電磁撹拌器付200dオートクレーブに
、あらかしめ400℃1窒素雰囲気下で2時間焼成した
無水炭酸カリウム8.45g、ナトリウム0.30g、
トルエン26.6gを加えた後、190℃で2時間撹拌
を続けた。
Comparative Example 5 8.45 g of anhydrous potassium carbonate, 0.30 g of sodium, and 8.45 g of anhydrous potassium carbonate and 0.30 g of sodium were heated at 400° C. and calcined for 2 hours under a nitrogen atmosphere in a 200 d autoclave equipped with a magnetic stirrer under a nitrogen atmosphere.
After adding 26.6 g of toluene, stirring was continued at 190° C. for 2 hours.

次いでオートクレーブを冷却してトルエン53,2gを
追加し、液化プロピレン70dを圧入した後、160℃
で6時間撹拌した。反応後、実施例1と同様にしてガス
クロマトグラフィーで分析したところ、トルエン転化率
3.5%、IBB選択率88.2%であった。
Next, the autoclave was cooled, 53.2 g of toluene was added, 70 d of liquefied propylene was press-fitted, and the temperature was increased to 160°C.
The mixture was stirred for 6 hours. After the reaction, analysis by gas chromatography in the same manner as in Example 1 revealed that the toluene conversion rate was 3.5% and the IBB selectivity was 88.2%.

実施例21 電磁撹拌器付200dオートクレーブに窒素雰囲気下、
固体塩基J0.7g、トルエン81gを入れて160℃
に昇温した後、エチレンガスを10kg/cj −Gで
供給し、同温度で6時間撹拌を続けた。
Example 21 In a 200d autoclave with a magnetic stirrer under a nitrogen atmosphere,
Add 0.7 g of solid base J and 81 g of toluene and heat to 160°C.
After raising the temperature to , ethylene gas was supplied at 10 kg/cj -G, and stirring was continued at the same temperature for 6 hours.

反応後、実施例1と同様にしてガスクロマトグラフィー
で分析したところ、トルエン転化率28.2%、n−プ
ロピルベンゼン選択率78.6%、1−エチルプロピル
ベンゼン選択率20.9%であった。
After the reaction, analysis by gas chromatography in the same manner as in Example 1 revealed that the toluene conversion rate was 28.2%, the n-propylbenzene selectivity was 78.6%, and the 1-ethylpropylbenzene selectivity was 20.9%. Ta.

Claims (1)

【特許請求の範囲】[Claims] 側鎖のα位に水素原子を有する芳香族炭化水素をオレフ
ィンでアルキル化して、アルキル置換芳香族炭化水素を
製造するに当たり、触媒としてアルミナ、アルカリ金属
水酸化物およびアルカリ金属を不活性ガス雰囲気中、2
00乃至600℃の温度下で加熱処理してなる固体塩基
を用いることを特徴とするアルキル置換芳香族炭化水素
の製造方法。
When producing an alkyl-substituted aromatic hydrocarbon by alkylating an aromatic hydrocarbon having a hydrogen atom at the α-position of the side chain with an olefin, alumina, an alkali metal hydroxide, and an alkali metal are used as a catalyst in an inert gas atmosphere. ,2
1. A method for producing an alkyl-substituted aromatic hydrocarbon, the method comprising using a solid base heat-treated at a temperature of 00 to 600°C.
JP63282993A 1988-02-03 1988-11-08 Method for producing alkyl-substituted aromatic hydrocarbon Expired - Fee Related JP2625985B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63282993A JP2625985B2 (en) 1988-02-03 1988-11-08 Method for producing alkyl-substituted aromatic hydrocarbon
CA000589666A CA1308745C (en) 1988-02-03 1989-01-31 Process for preparing alkyl-substituted aromatic hydrocarbons
EP89101719A EP0328940B1 (en) 1988-02-03 1989-02-01 Process for preparing alkyl-substituted aromatic hydrocarbons
DE8989101719T DE68901786T2 (en) 1988-02-03 1989-02-01 METHOD FOR PRODUCING ALKYL-SUBSTITUTED AROMATIC HYDROCARBONS.
KR1019890001294A KR0151107B1 (en) 1988-02-03 1989-02-03 Process for preparing alkyl-substituted aromatic hydrocarbons
US07/815,889 US5227559A (en) 1988-02-03 1992-01-07 Process for preparing alkyl-subtituted aromatic hydrocarbons
US08/021,852 US5347062A (en) 1988-02-03 1993-02-24 Process for preparing alkyl-substituted aromatic hydrocarbons

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP63-24527 1988-02-03
JP2452788 1988-02-03
JP20079488 1988-08-10
JP63-200794 1988-08-10
JP63282993A JP2625985B2 (en) 1988-02-03 1988-11-08 Method for producing alkyl-substituted aromatic hydrocarbon

Publications (2)

Publication Number Publication Date
JPH02138229A true JPH02138229A (en) 1990-05-28
JP2625985B2 JP2625985B2 (en) 1997-07-02

Family

ID=27284690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282993A Expired - Fee Related JP2625985B2 (en) 1988-02-03 1988-11-08 Method for producing alkyl-substituted aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JP2625985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625102A (en) * 1993-12-27 1997-04-29 Mitsubishi Oil Co., Ltd. Method of alkylating the side chain of alkyl-substituted aromatic hydrocarbons
US6561337B2 (en) 1999-03-09 2003-05-13 Nsk Ltd. Clutch release bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625102A (en) * 1993-12-27 1997-04-29 Mitsubishi Oil Co., Ltd. Method of alkylating the side chain of alkyl-substituted aromatic hydrocarbons
US6561337B2 (en) 1999-03-09 2003-05-13 Nsk Ltd. Clutch release bearing

Also Published As

Publication number Publication date
JP2625985B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JPH03227944A (en) Production of alkyl-substituted aromatic hydrocarbon
EP0356790B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
JPH02138229A (en) Production of alkyl-substituted aromatic hydrocarbon
EP0612706B1 (en) Process for producing monoalkenylbenzenes
EP0328940B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
EP0569742B1 (en) Process for producing monoalkenyl aromatic hydrocarbon compound
EP0357031B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
JP6968336B2 (en) Method for Producing Alkyl Substituted Aromatic Hydrocarbons
JP2748646B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
US5227559A (en) Process for preparing alkyl-subtituted aromatic hydrocarbons
JP2596108B2 (en) Preparation of alkyl-substituted aromatic hydrocarbons
JP2830129B2 (en) Preparation of alkyl-substituted aromatic hydrocarbons
US5347062A (en) Process for preparing alkyl-substituted aromatic hydrocarbons
KR19980080303A (en) Process for producing monoalkenyl aromatic hydrocarbon compound
JPH02138230A (en) Production of alkyl-substituted aromatic hydrocarbon
JP2615987B2 (en) Method for producing alkyl-substituted aromatic hydrocarbon
JP2792132B2 (en) Process for producing alkyl-substituted aromatic hydrocarbons
US5132483A (en) Process to reduce fines produced during the catalytic dimerization of olefins
JP7133128B2 (en) Base composition, method for producing base composition, and method for producing amino group-containing alkyl-substituted aromatic compound
JPH02138232A (en) Production of alkyl-substituted aromatic hydrocarbon
JPH10338654A (en) Production of alkenyl-substituted aromatic hydrocarbon
JPH11140000A (en) Production of alkenyl-substituted aromatic hydrocarbon
JPH10287593A (en) Production of alkenyl-substituted aromatic hydrocarbon

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees