JPH02137803A - Production of diffraction element - Google Patents

Production of diffraction element

Info

Publication number
JPH02137803A
JPH02137803A JP29301488A JP29301488A JPH02137803A JP H02137803 A JPH02137803 A JP H02137803A JP 29301488 A JP29301488 A JP 29301488A JP 29301488 A JP29301488 A JP 29301488A JP H02137803 A JPH02137803 A JP H02137803A
Authority
JP
Japan
Prior art keywords
diffraction element
resist film
diffraction
transparent substrate
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29301488A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kubo
勝裕 久保
Toshiya Nagahama
敏也 長浜
Yoshio Yoshida
吉田 圭男
Yukio Kurata
幸夫 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP29301488A priority Critical patent/JPH02137803A/en
Publication of JPH02137803A publication Critical patent/JPH02137803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To improve the forward and backward utilization efficiency given by the product of the zero order transmission and first order diffraction efficiency of the diffraction element by incorporating a prescribed ratio of gaseous O2 into an etching gas and executing reactive ion etching in the coated state of a resist film, thereby forming diffraction element pattern grooves. CONSTITUTION:The surface of a transparent substrate 13 is coated with the resist film 14 and this resist film 14 is subjected to exposing and photodeveloping treatments to form the resist film 14 having diffraction element patterns 14a. The reactive ion etching is executed in the coated state of this resist film 14 to form the diffraction element pattern grooves 13a on the transparent substrate 13. The prescribed volume of the gaseous O2 is incorporated into the etching gas to be used. The respective diffraction element patterns 11a, therefore, rise diagonally with the surface of the transparent substrate 13 and constitute the inverted trapezoidal shapes longer in the upper bottom than in the lower bottom. The second and higher order diffractions in the function of the diffraction element 11 are suppressed in this way and the forward and backward utilization efficiency given by the product of the zero order transmission and first order diffraction efficiency is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学的に記録された情報の再生を行う光ピツ
クアップに用いられる回折素子の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a diffraction element used in optical pickup for reproducing optically recorded information.

〔従来の技術〕[Conventional technology]

コンパクトディスク装置等の光学情報再生装置に配備さ
れる光ピツクアップの小型軽量のために回折素子を使用
することは非常に有効であり、従来よりこの回折素子に
関して種々の提案がなされている。
It is very effective to use a diffraction element to make the optical pickup installed in an optical information reproducing device such as a compact disk device small and lightweight, and various proposals regarding this diffraction element have been made in the past.

例えば、第2図に示す光学情報再生装置においては、半
導体レーザ1から出射された発散光が回折素子2を透過
し、結像レンズ3によって記録媒体4上に集光される。
For example, in the optical information reproducing apparatus shown in FIG. 2, diverging light emitted from a semiconductor laser 1 passes through a diffraction element 2 and is focused onto a recording medium 4 by an imaging lens 3.

記録媒体4からの反射光は結像レンズ3によって回折素
子2に導かれ、回折素子2にて回折されることにより、
方形状の光検出器5上に1次回折光が集光されるように
なっている。なお、回折素子2は、半導体レーザ1から
照射されたレーザ光を効率良く透過させる必要があると
共に、記録媒体4からの反射光について高次回折光をな
るべく出力せずに1次回折光のみを効率良(出力する必
要がある。
The reflected light from the recording medium 4 is guided by the imaging lens 3 to the diffraction element 2, and is diffracted by the diffraction element 2.
The first-order diffracted light is focused on a rectangular photodetector 5. Note that the diffraction element 2 needs to efficiently transmit the laser light irradiated from the semiconductor laser 1, and also efficiently transmits only the first-order diffracted light from the recording medium 4 without outputting higher-order diffracted light as much as possible. (Need to output.

このような光学式情報再生装置においては、記録媒体4
上で光束を直径1μm程度の微小範囲に集光することが
要求されるので、いわゆる焦点検出を行うことが不可欠
となる。そのため、回折素子2は例えば等分された2つ
の半円形の領域2a・2bからなり、一方、光検出器5
は互いに直交する2方向の分割線A及びBを境界として
4つの光検出部5a〜5dに分割されている。
In such an optical information reproducing device, the recording medium 4
Since it is required to condense the light beam into a minute range of about 1 μm in diameter, it is essential to perform so-called focus detection. Therefore, the diffraction element 2 consists of, for example, two equally divided semicircular regions 2a and 2b, while the photodetector 5
is divided into four photodetecting sections 5a to 5d with dividing lines A and B in two directions orthogonal to each other as boundaries.

半導体レーザ1からの出射光が記録媒体4上で的確に焦
点を結んでいるときは、第3図(b)にも示すように、
回折素子2の領域2aからの回折光の集光スポラt−6
aが光検出器5の光検出部5a・5b間における分割線
A上の一点に形成され一方、回折素子2の領域2bから
の回折光の集光スポット6bが光検出部5C・5d間に
おける分割線A上の一点に形成される。従って、光検出
部5a・5bの出力が等しくなり、且つ、光検出部5c
・5bの出力が等しくなる。
When the emitted light from the semiconductor laser 1 is accurately focused on the recording medium 4, as shown in FIG. 3(b),
Condensing spora t-6 for diffracted light from region 2a of diffraction element 2
A is formed at one point on the dividing line A between the photodetectors 5a and 5b of the photodetector 5, while a focused spot 6b of the diffracted light from the region 2b of the diffraction element 2 is formed at a point between the photodetectors 5C and 5d. It is formed at one point on the dividing line A. Therefore, the outputs of the photodetectors 5a and 5b are equal, and the outputs of the photodetectors 5c
・The outputs of 5b become equal.

これに対し、記録媒体4が結像レンズ3に近接した場合
、回折素子2からの回折光の集光点が光検出器5の後方
に形成されるので、同図(a)に示すように、領域2a
からの集光スポット6aは光検出部5a上に半円状のパ
ターンを形成する一方、領域2bからの集光スポラ)6
bは光検出部5d上に半円状のパターンを形成する。
On the other hand, when the recording medium 4 approaches the imaging lens 3, the focal point of the diffracted light from the diffraction element 2 is formed behind the photodetector 5. , area 2a
The focused spot 6a from the area 2b forms a semicircular pattern on the photodetector 5a, while the focused spot 6a from the area 2b
b forms a semicircular pattern on the photodetector 5d.

また、記録媒体4が結像レンズ3から遠ざかった場合は
、回折素子2からの回折光の集光点は光検出器5の前方
に位置することになるので、同図(c)に示すように、
集光スポット6aは光検出部5b上に半円状のパターン
を形成するとともに、集光スポット6bは光検出部5c
上に半円状のパターンを形成する。
Furthermore, when the recording medium 4 moves away from the imaging lens 3, the focal point of the diffracted light from the diffraction element 2 will be located in front of the photodetector 5, so as shown in FIG. To,
The focused spot 6a forms a semicircular pattern on the photodetector 5b, and the focused spot 6b forms a semicircular pattern on the photodetector 5c.
Form a semicircular pattern on top.

従って、光検出部5a〜5dの出力信号をそれぞれ5a
−3dとすると、焦点誤差信号FESは、FES= (
Sa+5d)−(Sb+Sc)により得られ、この焦点
誤差信号FESに基づいて、図示しない駆動手段により
結像レンズ3が光軸に沿って移動させられて、記録媒体
4上に適切に焦点が結ばれるようになっている。
Therefore, the output signals of the photodetectors 5a to 5d are
-3d, the focus error signal FES is FES=(
Based on this focus error signal FES, the imaging lens 3 is moved along the optical axis by a driving means (not shown) to appropriately focus on the recording medium 4. It looks like this.

以上のような働きをする回折素子2は、従来、以下のよ
うな方法により製造されていた。
The diffraction element 2 that functions as described above has conventionally been manufactured by the following method.

電子計算機上で回折素子パターンを演算し、このパター
ンに基づいて電子ビーム描画法により電子ビームを走査
して10倍の拡大パターンのレティクルを作製する。こ
のレティクルを用いてフォトリピータ−により光学的に
1/lOに縮小し、第4図(a)に示すように、光透過
部と非光透過部とによる所定パターンを有するフォトマ
スク7を作製する。
A diffraction element pattern is calculated on an electronic computer, and based on this pattern, an electron beam is scanned using an electron beam lithography method to produce a reticle with a 10 times enlarged pattern. This reticle is optically reduced to 1/1O by a photorepeater to produce a photomask 7 having a predetermined pattern of light-transmitting parts and non-light-transmitting parts, as shown in FIG. 4(a). .

一方、同図(b)に示すように、回折素子となるガラス
基板8を用意し、このガラス基板8の表面を、洗剤、水
、或いは有機溶剤を用いて洗浄しておく。
On the other hand, as shown in FIG. 3(b), a glass substrate 8 serving as a diffraction element is prepared, and the surface of the glass substrate 8 is cleaned using detergent, water, or an organic solvent.

次いで、同図(C)に示すように、前記のガラス基板8
の表面にスピンコーターを用いてレジスト膜9を被覆す
る。
Next, as shown in the same figure (C), the above-mentioned glass substrate 8
A resist film 9 is coated on the surface using a spin coater.

そして、同図(d)に示すように、レジスト膜9上に前
記のフォトマスク7を密着させ、紫外線を照射して露光
することにより、レジスト膜9にフォトマスク7の回折
素子パターンの潜像を形成する。
Then, as shown in FIG. 4(d), the photomask 7 is brought into close contact with the resist film 9 and exposed to ultraviolet rays, thereby forming a latent image of the diffraction element pattern of the photomask 7 on the resist film 9. form.

次に、同図(e)に示すように、レジスト膜9を現像し
てレジスト膜9に回折素子パターン穴9a・・・を形成
する。
Next, as shown in FIG. 4(e), the resist film 9 is developed to form diffraction element pattern holes 9a in the resist film 9.

その後、同図(f)に示すように、上記回折素子パター
ン穴9a・・・の形成されたレジスト膜9の被覆状態に
おいて、CF、 、CHF3等のエツチングガス中でリ
アクティブイオンエツチングを行い、ガラス基板8上に
直接に回折素子パターン溝8aを形成する。
Thereafter, as shown in FIG. 3(f), while the resist film 9 is covered with the diffraction element pattern holes 9a, reactive ion etching is performed in an etching gas such as CF, CHF3, etc. A diffraction element pattern groove 8a is formed directly on the glass substrate 8.

そして、同図(g)に示すように、上記リアクティブイ
オンエツチング後に不要となったレジスト膜9をアセト
ン等の溶剤でまたは0□ガスで灰化して除去する。これ
により、回折素子パターン溝10a・・・を有する回折
素子10が得られる。
Then, as shown in FIG. 3(g), the resist film 9 that is no longer needed after the reactive ion etching is removed by incineration using a solvent such as acetone or O□ gas. As a result, a diffraction element 10 having diffraction element pattern grooves 10a is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の方法によると、前記のりアクティ
ブイオンエツチングにおいて、レジスト膜9はエツチン
グガスによりその上方からのみ浸食され、レジスト膜9
の回折素子パターンの6幅C′は当初の幅Cをそのまま
維持し、これによって前記の6溝10a (8a)はガ
ラス基板8の表面に対して垂直に切り立ち、回折素子1
0における溝10a・・・の断面形状は矩形形状となる
。かかる溝10a・・・の断面形状が矩形形状となると
、回折素子としての機能において、2次以上の高次回折
光が多くなり、回折素子10における0次透過率と1次
回折効率との積で与えられる往復利用効率が低くなると
いう欠点を有していた。
However, according to the above conventional method, in the glue active ion etching, the resist film 9 is eroded only from above by the etching gas, and the resist film 9 is
The six widths C' of the diffraction element pattern maintain the original width C, so that the six grooves 10a (8a) are perpendicular to the surface of the glass substrate 8, and the diffraction element 1
The cross-sectional shape of the grooves 10a at 0 is rectangular. When the cross-sectional shape of the grooves 10a is rectangular, in the function as a diffraction element, higher-order diffracted light of the second order or higher increases, and the product of the zero-order transmittance and the first-order diffraction efficiency in the diffraction element 10 This has the disadvantage that the round-trip utilization efficiency provided is low.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る回折素子の製造方法は、上記の課題を解決
するために、透明基板上にレジスト膜を被覆し、このレ
ジスト膜に露光および現像処理を施して回折素子パター
ンを有するレジスト膜を形成し、このレジスト膜の被覆
状態でリアクティブイオンエツチングを行って前記の透
明基板上に回折素子パターン溝を形成することにより回
折素子を製造する方法において、前記リアクティブイオ
ンエツチングを、これに使用されるエツチングガスに所
定量のOtガスを混入したガスにて行うことを特徴とし
ている。
In order to solve the above-mentioned problems, a method for manufacturing a diffraction element according to the present invention covers a transparent substrate with a resist film, and subjects the resist film to light exposure and development to form a resist film having a diffraction element pattern. In a method for manufacturing a diffraction element by performing reactive ion etching while covered with this resist film to form a diffraction element pattern groove on the transparent substrate, the reactive ion etching is used for this purpose. The etching gas is characterized in that the etching gas is mixed with a predetermined amount of Ot gas.

(作 用〕 上記の構成によれば、アクティブイオンエツチングにお
いて、所定量のO2ガスを含むエツチングガスにより前
記レジスト膜はその上方からのみならず側方からも浸食
され、レジスト膜の回折素子パターンにおける6幅は当
初の幅から次第に狭くなる。この結果、前記の各回折素
子パターン溝は透明基板の表面に対して斜めに立ち上が
り、かかる溝の形状は、その断面形状において上底が下
底よりも長い逆台形形状をなす。上記溝がこのような逆
台形形状をなすと、回折素子としての機能において、2
次以上の高次回折が抑制され、回折素子における0次透
過率と1次回折効率との積で与えられる往復利用効率が
向上する。
(Function) According to the above configuration, in active ion etching, the resist film is eroded not only from above but also from the sides by the etching gas containing a predetermined amount of O2 gas. 6 width gradually becomes narrower than the initial width.As a result, each of the above-mentioned diffraction element pattern grooves rises obliquely to the surface of the transparent substrate, and the shape of the groove is such that the upper base is smaller than the lower base in its cross-sectional shape. It has a long inverted trapezoidal shape.If the groove has such an inverted trapezoidal shape, in its function as a diffraction element, 2
Higher-order diffraction higher than the next order is suppressed, and the round-trip utilization efficiency given by the product of the 0th-order transmittance and the 1st-order diffraction efficiency in the diffraction element is improved.

〔実施例〕〔Example〕

本発明のτ実施例を第1図に基づいて説明すれば、以下
の通りである。
The τ embodiment of the present invention will be described below based on FIG.

本発明に係る回折素子の製造方法において、第1図(g
)に示すように、この方法により製造される回折素子1
1は、その断面形状において上底が下底よりも長い逆台
形形状の回折素子パターン溝11a・・・を有してなる
In the method for manufacturing a diffraction element according to the present invention, FIG.
), the diffraction element 1 manufactured by this method
1 has an inverted trapezoidal diffraction element pattern groove 11a, in which the upper base is longer than the lower base in its cross-sectional shape.

かかる回折素子11を製造するには、例えば、従来と同
様、電子計算機上で回折素子パターンを演算し、このパ
ターンに基づいて電子ビーム描画法により電子ビームを
走査して10倍の拡大パターンのレティクルを作製する
。このレティクルを用いてフォトリピータ−により光学
的に1/10に縮小し、同図(a)に示すように、光透
過部12a・・・と非光透過部!2b・・・とによる回
折素子パターンを有するフォトマスク12を作製する。
To manufacture such a diffraction element 11, for example, as in the past, a diffraction element pattern is calculated on an electronic computer, and based on this pattern, an electron beam is scanned using an electron beam writing method to create a reticle with a 10 times enlarged pattern. Create. Using this reticle, the photorepeater optically reduces the size to 1/10, and as shown in FIG. 2b... A photomask 12 having a diffraction element pattern is manufactured.

一方、同図(b)に示すように、回折素子となる透明基
板としてガラス基板13を用意し、このガラス基板13
0表面を、洗剤、水、或いは有機溶剤を用いて洗浄して
おく。
On the other hand, as shown in FIG. 2(b), a glass substrate 13 is prepared as a transparent substrate serving as a diffraction element, and this glass substrate 13 is
Clean the surface using detergent, water, or an organic solvent.

次いで、同図(C)に示すように、前記のガラス基板1
3の表面にスピンコーターを用いてレジスト膜14を被
覆する。
Next, as shown in the same figure (C), the above-mentioned glass substrate 1
A resist film 14 is coated on the surface of 3 using a spin coater.

そして、同図(d)に示すように、レジスト膜14上に
前記のフォトマスク12を密着させ、紫外線を照射して
露光することにより、レジスト膜14にフォ、トマスク
12の回折素子パターンの潜像を形成する。
Then, as shown in FIG. 2D, the photomask 12 is brought into close contact with the resist film 14 and exposed to ultraviolet rays, thereby exposing the resist film 14 to the latent diffraction element pattern of the photomask 12. form an image.

次に、同図(e)に示すように、レジストWA14を現
像してレジスト膜14に回折素子パターン穴14a・・
・を形成する。
Next, as shown in FIG. 3(e), the resist WA14 is developed to form diffraction element pattern holes 14a in the resist film 14.
・Form.

その後、同図<f)に示すように、上記回折素子ハター
ン穴14a・・・の形成されたレジスト膜14の被覆状
態において、CF、 、CHF、等のエツチングガス中
に当該エツチングガスに対して5〜10%の体積比で0
2ガスを混入したガスにてリアクティブイオンエツチン
グを行い、ガラス基板13上に直接に回折素子パターン
溝13a・・・を形成する。
Thereafter, as shown in FIG. 0 at a volume ratio of 5-10%
Reactive ion etching is performed using a gas containing two gases to form diffraction element pattern grooves 13a directly on the glass substrate 13.

そして、同図(g)に示すように、上記リアクティブイ
オンエツチング後に不要となったレジスト膜14をアセ
トン等の溶剤でまたはOtガスで灰化して除去する。こ
れにより、回折素子パターン溝11a−・・(13a・
・・)を有する回折素子11が得られる。
Then, as shown in FIG. 3(g), the resist film 14 that is no longer needed after the reactive ion etching is removed by incineration using a solvent such as acetone or Ot gas. As a result, the diffraction element pattern grooves 11a-...(13a-
) is obtained.

上記の構成によれば、同図(f)の工程でのりアクティ
ブイオンエツチングにおいて、所定量の0□ガスを含む
エツチングガスにより前記レジスト膜14はその上方か
らのみならず側方からも浸食され、レジスト膜14の回
折素子パターンにおける6輻D′は当初の幅りに比べる
と幾分狭くなる。即ち、レジスト膜14は上記エツチン
グにより膜厚が減少するだけでなく、その幅も次第に狭
くなっていく。この結果、前記の6溝11a(13a)
はガラス基板13の表面に対して斜めに立ち上がる形状
をなし、かかる溝11a・・・の形状は前述の通り、そ
の断面形状において上底が下底よりも長い逆台形形状を
なす。溝11a・・・の形状がこのような逆台形形状を
なすと、回折素子としての機能において、2次以上の高
次回折が抑制され、回折素子11における0次透過率と
1次回折効率との積で与えられる往復利用効率を向上す
ることができる。
According to the above configuration, in the glue active ion etching in the step of FIG. The 6th line D' in the diffraction element pattern of the resist film 14 becomes somewhat narrower than the original width. That is, the resist film 14 not only decreases in thickness but also gradually becomes narrower in width. As a result, the aforementioned six grooves 11a (13a)
has a shape that stands obliquely with respect to the surface of the glass substrate 13, and the shape of the groove 11a is, as described above, an inverted trapezoidal cross-sectional shape in which the upper base is longer than the lower base. When the grooves 11a have such an inverted trapezoidal shape, higher-order diffraction higher than the second order is suppressed in the function as a diffraction element, and the zero-order transmittance and first-order diffraction efficiency of the diffraction element 11 are improved. It is possible to improve the round-trip utilization efficiency given by the product of

〔発明の効果〕〔Effect of the invention〕

本発明に係る回折素子の製造方法は、以上のように、透
明基板上にレジスト膜を被覆し、このレジスト膜に露光
および現像処理を施して回折素子パターンを有するレジ
スト膜を形成し、このレジスト膜の被覆状態でリアクテ
ィブイオンエツチングを行って前記の透明基板上に回折
素子パターン溝を形成することにより回折素子を製造す
る方法において、前記リアクティブイオンエツチングを
、これに使用されるエツチングガスに所定量の0□ガス
を混入したガスにて行う構成である。
As described above, the method for manufacturing a diffraction element according to the present invention includes coating a resist film on a transparent substrate, exposing and developing the resist film to form a resist film having a diffraction element pattern, In a method of manufacturing a diffraction element by performing reactive ion etching with the film coated to form a diffraction element pattern groove on the transparent substrate, the reactive ion etching is performed in an etching gas used for the process. The configuration is such that the gas is mixed with a predetermined amount of 0□ gas.

これにより、前記の各回折素子パターン溝は透明基板の
表面に対して斜めに立ち上がり、かかる溝の形状は、そ
の断面形状において上底が下底よりも長い逆台形形状を
なす。上記溝がこのような逆台形形状をなすと、回折素
子としての機能において、2次以上の高次回折が抑制さ
れ、回折素子における0次透過率と1次回折効率との積
で与えられる往復利用効率が向上する。ゆえに、光ピツ
クアップの光検出器に入射される光量が増加し、雑音に
対して十分な余裕を持った搬送波出力を得ることができ
るという効果を奏する。
As a result, each of the diffraction element pattern grooves rises obliquely with respect to the surface of the transparent substrate, and the groove has an inverted trapezoidal cross-sectional shape in which the upper base is longer than the lower base. When the groove has such an inverted trapezoidal shape, in its function as a diffraction element, higher-order diffraction higher than the second order is suppressed, and the round-trip rate given by the product of the 0th-order transmittance and the 1st-order diffraction efficiency in the diffraction element is suppressed. Utilization efficiency improves. Therefore, the amount of light incident on the photodetector of the optical pickup increases, and it is possible to obtain a carrier wave output with sufficient margin against noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すものであって、同図(
a)はフォトマスクの断面図、同図(b)はガラス基板
の断面図、同図(C)はガラス基板上にレジスト膜を被
覆した状態の断面図、同図(d)はレジスト膜上にフォ
トマスクを密着させた状態の断面図、同図(e)はレジ
スト膜を現像した状態の断面図、同図(f)はガラス基
板をエツチングした状態の断面図、同図(g)は回折素
子の断面図、第2図は光ピツクアップの概略構成図、第
3図(a)は非合焦状態での光検出器上の集光スポット
を示す説明図、同図(b)は合焦状態での光検出器上の
集光スポットを示す説明図、同図(C)は非合焦状態で
の光検出器上の集光スポットを示す説明図、第4図は従
来例を示すものであって、同図(a)ないしくg)はそ
れぞれ回折素子の製造工程の各段階を示す断面図である
。 11は回折素子、llaは回折素子パターン溝12はフ
ォトマスク、13はガラス基板(透明基板)、14はレ
ジスト膜、14aは回折素子パターン穴である。 第 図 (a) 第 図(b) 口mココ]〜13 第 図(C) 第 図(d) 第 図 第 図(e) 第 図(9) 第 図(a) 第 図(b) ロロ==ニ二=ヒ8 第4 図(C) 第 図(d) 第 図(e) 第4 図(f) 第 図(9)
FIG. 1 shows an embodiment of the present invention.
(a) is a cross-sectional view of the photomask, (b) is a cross-sectional view of the glass substrate, (C) is a cross-sectional view of the glass substrate coated with a resist film, and (d) is a cross-sectional view of the resist film on the glass substrate. (e) is a cross-sectional view of the developed resist film, (f) is a cross-sectional view of the glass substrate after etching, and (g) is a cross-sectional view of the glass substrate after it has been etched. A cross-sectional view of the diffraction element, FIG. 2 is a schematic diagram of the optical pickup, FIG. An explanatory diagram showing a focused spot on a photodetector in a focused state, (C) is an explanatory diagram showing a focused spot on a photodetector in an unfocused state, and Fig. 4 shows a conventional example. Figures (a) to (g) are cross-sectional views showing each step of the manufacturing process of the diffraction element. 11 is a diffraction element, lla is a diffraction element pattern groove 12 is a photomask, 13 is a glass substrate (transparent substrate), 14 is a resist film, and 14a is a diffraction element pattern hole. Figure (a) Figure (b) Mouth m here]~13 Figure (C) Figure (d) Figure (e) Figure (9) Figure (a) Figure (b) Lolo = =Nii=Hi8 Figure 4 (C) Figure (d) Figure (e) Figure 4 (f) Figure (9)

Claims (1)

【特許請求の範囲】 1、透明基板上にレジスト膜を被覆し、このレジスト膜
に露光および現像処理を施して回折素子パターンを有す
るレジスト膜を形成し、このレジスト膜の被覆状態でリ
アクティブイオンエッチングを行って前記の透明基板上
に回折素子パターン溝を形成することにより回折素子を
製造する方法において、 前記リアクティブイオンエッチングを、これに使用され
るエッチングガスに所定量のO_2ガスを混入したガス
にて行うことを特徴とする回折素子の製造方法。
[Claims] 1. A resist film is coated on a transparent substrate, and this resist film is exposed and developed to form a resist film having a diffraction element pattern. In the method of manufacturing a diffraction element by etching to form a diffraction element pattern groove on the transparent substrate, the reactive ion etching is performed by mixing a predetermined amount of O_2 gas into the etching gas used for the reactive ion etching. A method for manufacturing a diffraction element, characterized in that the manufacturing method is performed using a gas.
JP29301488A 1988-11-18 1988-11-18 Production of diffraction element Pending JPH02137803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29301488A JPH02137803A (en) 1988-11-18 1988-11-18 Production of diffraction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29301488A JPH02137803A (en) 1988-11-18 1988-11-18 Production of diffraction element

Publications (1)

Publication Number Publication Date
JPH02137803A true JPH02137803A (en) 1990-05-28

Family

ID=17789361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29301488A Pending JPH02137803A (en) 1988-11-18 1988-11-18 Production of diffraction element

Country Status (1)

Country Link
JP (1) JPH02137803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257801A (en) * 1991-02-13 1992-09-14 Sharp Corp Manufacture of polarized light diffraction element
JPH06242308A (en) * 1993-01-29 1994-09-02 Shimadzu Corp Production of au transmission type grating
JP2003066234A (en) * 2001-08-30 2003-03-05 Sharp Corp Stamper, its production method and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257801A (en) * 1991-02-13 1992-09-14 Sharp Corp Manufacture of polarized light diffraction element
JPH06242308A (en) * 1993-01-29 1994-09-02 Shimadzu Corp Production of au transmission type grating
JP2003066234A (en) * 2001-08-30 2003-03-05 Sharp Corp Stamper, its production method and optical element

Similar Documents

Publication Publication Date Title
US5648951A (en) Movable optical head integrally incorporated with objective lens and hologram element
JP3507632B2 (en) Diffraction grating lens
US7595480B2 (en) Optical encoder with encoder member having one or more digital diffractive optic regions
JP3374875B2 (en) Semiconductor photoengraving apparatus and fine pattern formed using the same
JP3298184B2 (en) Optical head and manufacturing method thereof
JPH07159609A (en) Diffraction grating and interference exposure device
KR930003869B1 (en) Optical pick-up device
JP2007026589A (en) Manufacturing method of hologram element and optical pickup device
JP4180355B2 (en) Hologram element manufacturing method using photomask and hologram element
JPH02137803A (en) Production of diffraction element
TWI436357B (en) Focus optical system and optical disc master exposure apparatus
KR940000834B1 (en) Manufacturing method of optical diffraction grating element
JPS59137908A (en) Composite grating lens
JP2889062B2 (en) X-ray mask and manufacturing method thereof
JP3966400B2 (en) Optical diffraction element, manufacturing method thereof, and optical pickup device using the same
JP2507817B2 (en) Diffraction element manufacturing method
JP3077928B2 (en) Integrated optical device, method of manufacturing the same, and method of manufacturing mold
JPH04257801A (en) Manufacture of polarized light diffraction element
JPH03157603A (en) Production of diffraction element
JPS63191328A (en) Optical head device
JP2002365437A (en) Hologram element, hologram optical held and method for manufacturing the same
JPH01250905A (en) Polarization optical element and device using said element
KR0144185B1 (en) Hologram module and method of manufacturing it
JPH0424601A (en) Production of diffraction grating
KR900008379B1 (en) Optical head apparatus