JP3298184B2 - Optical head and manufacturing method thereof - Google Patents

Optical head and manufacturing method thereof

Info

Publication number
JP3298184B2
JP3298184B2 JP28575192A JP28575192A JP3298184B2 JP 3298184 B2 JP3298184 B2 JP 3298184B2 JP 28575192 A JP28575192 A JP 28575192A JP 28575192 A JP28575192 A JP 28575192A JP 3298184 B2 JP3298184 B2 JP 3298184B2
Authority
JP
Japan
Prior art keywords
light
optical
propagation path
optical head
wavelength selection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28575192A
Other languages
Japanese (ja)
Other versions
JPH06139612A (en
Inventor
照弘 塩野
久仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28575192A priority Critical patent/JP3298184B2/en
Publication of JPH06139612A publication Critical patent/JPH06139612A/en
Application granted granted Critical
Publication of JP3298184B2 publication Critical patent/JP3298184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Head (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学的記録装置の光学
ヘッドに関するものであり、特に、各光学部品の位置合
わせが容易で薄型軽量化、低価格化可能でしかも半導体
レーザの波長変動がほとんど生じない安定動作可能な光
学ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head for an optical recording apparatus, and more particularly, to a method for easily aligning optical components, reducing the thickness and weight, reducing the cost, and reducing the wavelength fluctuation of a semiconductor laser. The present invention relates to an optical head that can be operated stably and hardly occurs.

【0002】[0002]

【従来の技術】コンパクトディスク(CD)や光ディス
ク、光カードメモリ等の光学的記録素子の信号を読み出
す重要構成部品として光学ヘッドがある。光学ヘッドは
光学的記録素子から信号を取り出すために、信号検出機
能だけでなくフォーカスサーボ、トラックサーボ等の制
御機構を備える必要がある。
2. Description of the Related Art An optical head is an important component for reading signals from an optical recording element such as a compact disk (CD), an optical disk, and an optical card memory. The optical head needs to have not only a signal detection function but also a control mechanism such as a focus servo and a track servo in order to extract a signal from the optical recording element.

【0003】従来の光学ヘッドとして、図7に示すもの
があった(特願平2−189053号)。半導体レーザ
1から、斜め方向に出射された光は、伝搬光8となり、
反射形コリメータレンズ3’に入射し、反射・コリメー
トされる。コリメートされた光は、ジグザグ状に伝搬
し、光伝搬路13上に設けた透過形対物レンズ4aで、
斜め方向に出力され光ディスク7への集光光9となる。
光ディスク7から反射された光10は、光伝搬路13上
に設けた第2の透過形対物レンズ4bに入射してコリメ
ートされて伝搬光8'となり、ジグザグ状に伝搬して、
光伝搬路13上に形成した信号検出素子(フォーカス/
トラック誤差信号検出手段)の反射形ツインレンズ5’
に入射する。伝搬光8’はこのレンズ5により2分割さ
れてジグザグ状に伝搬し、光伝搬路13上に設けた、4
分割の光検出器6に集光する。光検出器6から検出され
た信号により、再生信号、及び位置信号であるフォーカ
ス誤差信号とトラック誤差信号が読み出しされるもので
ある。
FIG. 7 shows a conventional optical head (Japanese Patent Application No. 2-189053). Light emitted from the semiconductor laser 1 in an oblique direction becomes a propagating light 8,
The light enters the reflective collimator lens 3 ′ and is reflected and collimated. The collimated light propagates in a zigzag shape, and is transmitted by a transmission type objective lens 4 a provided on the light propagation path 13.
The light is output in an oblique direction and becomes the condensed light 9 on the optical disk 7.
The light 10 reflected from the optical disk 7 is incident on the second transmission type objective lens 4b provided on the light propagation path 13 and is collimated to become propagation light 8 ', which propagates in a zigzag manner.
A signal detection element (focus /
Track error signal detecting means) reflection twin lens 5 '
Incident on. The propagating light 8 ′ is split into two by the lens 5 and propagates in a zigzag manner.
The light is focused on the divided photodetector 6. A reproduction signal and a focus error signal and a track error signal, which are position signals, are read out from the signal detected by the photodetector 6.

【0004】[0004]

【発明が解決しようとする課題】図7に示した従来の光
学ヘッドでは、半導体レーザ1の周辺温度が変化する
と、発振波長が変化し(約2nm/10℃)、特に、回
折光学素子で開口数NAの大きい透過形対物レンズ4a
において、収差が顕著に発生し、光ディスク7上に良好
に集光できなくなり、読みだし信号に誤差が生じてしま
いう課題があった。
In the conventional optical head shown in FIG. 7, when the temperature around the semiconductor laser 1 changes, the oscillation wavelength changes (about 2 nm / 10 ° C.). Transmission type objective lens 4a with a large number NA
In the aberration is significantly generated, it becomes impossible satisfactorily condensing on the optical disk 7, there is problem that an error in the read signal occurs.

【0005】本発明は、上記課題に鑑みてなされたもの
で、半導体レーザの周辺温度が変化しても、発振波長が
変化しないで、安定な動作が可能な小形軽量、低価格化
可能な光学ヘッドを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a small size, light weight, and an inexpensive optical system that can operate stably without changing the oscillation wavelength even when the ambient temperature of the semiconductor laser changes. A head is provided.

【0006】[0006]

【課題を解決するための手段】本発明の光学ヘッドは、
ジグザグ状に光が伝搬する光伝搬路を設けた基板と、上
記光伝搬路上に形成された回折形の光集光素子と、上記
光伝搬路上に形成された反射形でかつ回折形の位置信号
検出用光学素子と、上記光伝搬路上に形成された反射形
かつ回折形の波長選択素子と、半導体レーザと、光検
出器とから構成され、上記半導体レーザからの発振光
を、上記光伝搬路に導いて伝搬光とし、上記伝搬光の少
なくとも1部を上記波長選択素子に入射させ、上記波長
選択素子によって波長が選択された回折光を、上記半導
体レーザの表面出射端に入射させ、上記伝搬光の少なく
とも1部を上記光集光素子で集光して光ディスクに出力
し、上記光ディスクからの反射光を、上記光集光素子に
入力し、上記位置信号検出光学素子に導き、上記位置
信号検出光学素子からの出力光を上記光検出器に導く
よう構成する。
An optical head according to the present invention comprises:
A substrate provided with a light propagation path through which light propagates in a zigzag shape; a diffractive light condensing element formed on the light propagation path; and a reflective and diffractive position signal formed on the light propagation path. a detecting optical element, the wavelength selection element and the diffraction type a reflective formed on the optical propagation path, a semiconductor laser, is composed of a light detector, the oscillation light from above Symbol semiconductor laser, the optical Guided to a propagation path as propagation light, at least a part of the propagation light is made incident on the wavelength selection element, and the diffracted light whose wavelength is selected by the wavelength selection element is made incident on a front emission end of the semiconductor laser, at least a portion of the propagating light outputted to the optical disk and condensed by the optical focusing elements, the reflected light from the optical disk, and input to the light collector elements, led to the position signal detecting optical element, said position signal detecting optical element La of the output light is configured to direct to the photodetector.

【0007】[0007]

【作用】本発明は、他の光学素子を設けた同一基板(伝
搬路)上に波長選択素子を設け、半導体レーザの発振光
の一部を、波長選択素子で回折させて、選択波長の回折
光を、半導体レーザの表面出射端に入射させることによ
り、発振波長を温度によらずに選択波長に固定し、回折
形の光学素子に対しても安定動作を実現する。また、他
の光学素子を設けた同一基板(伝搬路)上に波長選択素
子を設けることにより、波長選択素子を含むすべての光
学素子の製造・位置合わせも公知のプレーナ技術で容易
に正確にでき(作製と同時に位置合わせが行えるので、
作製後の組立の必要がない)、また構造も小形安定にな
り、半導体レーザと光検出器を除くすべての光学素子
は、それを含む金型を作製し、同時に複製することによ
り、相対的位置関係を保ったままで、一度に製造でき
る。
According to the present invention, a wavelength selection element is provided on the same substrate (propagation path) on which other optical elements are provided, and a part of the oscillation light of the semiconductor laser is diffracted by the wavelength selection element to diffract a selected wavelength. By irradiating the light to the front emission end of the semiconductor laser, the oscillation wavelength is fixed at the selected wavelength irrespective of the temperature, and a stable operation can be realized even for a diffractive optical element. In addition, by providing the wavelength selection element on the same substrate (propagation path) on which other optical elements are provided, the production and alignment of all optical elements including the wavelength selection element can be easily and accurately performed using a known planar technology. (Because positioning can be performed simultaneously with production,
There is no need to assemble after fabrication), and the structure is small and stable, and all optical elements except the semiconductor laser and the photodetector are manufactured and duplicated at the same time by making a mold containing them, and their relative positions It can be manufactured at once while maintaining the relationship.

【0008】[0008]

【実施例】図1、図2は、本発明の第一の実施例の光学
ヘッドの基本構成と、光の伝搬、集光の様子を示す、そ
れぞれ側面図、平面図である。本発明の第一の実施例の
光学ヘッドについて、図1、図2を用いて詳細に説明す
る。
1 and 2 are a side view and a plan view, respectively, showing the basic structure of an optical head according to a first embodiment of the present invention and how light is propagated and collected. An optical head according to a first embodiment of the present invention will be described in detail with reference to FIGS.

【0009】同図において、基板1として、例えば厚さ
(z方向サイズ)3mm、幅(x方向サイズ)10m
m、長さ(y方向サイズ)20mmのガラスを用い、基
板2の表面と裏面に例えばAgやAl、Au等の金属層
または誘電体の多層膜である反射層11aと11bを形
成している。この基板1自体が、表面と裏面の反射を利
用しジグザグ状に光が伝搬する光伝搬路13となってい
る。基板1としては、使用波長に対して透明であれば良
い。特に石英等のガラス基板は、温度的にも安定であ
る。基板2は、図1に示すように、左下部を、y方向か
ら例えば20°の角度で斜め方向に切断し、半導体レー
ザ1と4分割の光検出器6を、その切断した端面に設置
している。このとき、半導体レーザ1と4分割の光検出
器6をモジュ−ル化して1つの光学部品にしておくと、
位置合わせが楽になる。
In FIG. 1, a substrate 1 has a thickness (size in the z direction) of 3 mm and a width (size in the x direction) of 10 m, for example.
Reflection layers 11a and 11b which are a metal layer of, for example, Ag, Al, Au or the like or a dielectric multilayer film are formed on the front and back surfaces of the substrate 2 using glass having a length of 20 mm in the y direction (size in the y direction). . The substrate 1 itself serves as a light propagation path 13 through which light propagates in a zigzag manner using reflection on the front surface and the back surface. The substrate 1 only needs to be transparent to the wavelength used. In particular, a glass substrate of quartz or the like is stable in temperature. As shown in FIG. 1, the substrate 2 is cut at the lower left portion in an oblique direction at an angle of, for example, 20 ° from the y direction, and the semiconductor laser 1 and the four-divided photodetector 6 are installed on the cut end surface. ing. At this time, if the semiconductor laser 1 and the four-divided photodetector 6 are modularized into one optical component,
Positioning becomes easier.

【0010】例えば波長0.78μmの半導体レーザ1の
表面出射端から、光軸の角度がz軸から例えば20゜斜
め方向に出射された光は、伝搬光8となり、光伝搬路1
3上に設けた例えば焦点距離1.7mm、口径1mmの
反射形でかつ回折形の波長選択素子である波長選択レン
ズ12に入射する。この波長選択レンズ12は、y方向
にいくに従って、徐々に周期が小さくなる断面が矩形形
状の放物線状グレーティングから構成され、波長選択素
子12への入射光は、例えば、20%の回折効率で反射
回折されて、波長が選択された回折光(例えば0.78
0μm)のみが、半導体レーザ1の表面出射端に集光さ
れて入射する。他の波長(例えば0.77〜0.79μ
m)の1次回折光は表面出射端上ではぼけてしまい、選
択波長から離れるほど入射する光量が減少する。入射光
量は、表面出射端の反射率に依存していたが、本実施例
では、全発振光量の、例えば、5%から20%を入射光
量としたが、これは、表面出射端のほぼ反射率(例えば
5%)以上にすれば、レーザ発振波長が、選択波長に引
きずり込まれ、波長変動を0.2nm程度に抑制する効
果があった。本実施例では、反射回折光として、1次の
ものを用いたが、2次などの他の次数の回折光を用いて
もよい。
For example, light emitted from the surface emitting end of the semiconductor laser 1 having a wavelength of 0.78 μm in a direction in which the optical axis is inclined at an angle of, for example, 20 ° from the z-axis becomes a propagating light 8 and a light propagating path 1.
For example, the light enters a wavelength selection lens 12 which is a reflection-type and diffraction-type wavelength selection element having a focal length of 1.7 mm and an aperture of 1 mm provided on the lens 3. The wavelength selection lens 12, toward the y-direction, gradually period becomes smaller cross section consists parabolic grating rectangular, wavelength selective element
The incident light to the element 12 is reflected and diffracted at a diffraction efficiency of, for example, 20%, and the diffracted light whose wavelength is selected (for example, 0.78)
Only 0 .mu.m) is incident is condensed on the surface emission end of the semiconductor laser 1. Other wavelengths (for example, 0.77 to 0.79 μ)
The first-order diffracted light of m) is blurred on the surface emitting end, and the incident light quantity decreases as the distance from the selected wavelength increases. Although the amount of incident light depends on the reflectance of the front emission end, in the present embodiment, the incident light amount is, for example, 5% to 20% of the total oscillation light amount. If the rate is set to 5% or more (for example, 5%), the laser oscillation wavelength is dragged to the selected wavelength, and there is an effect that the wavelength fluctuation is suppressed to about 0.2 nm. In the present embodiment, the first-order diffracted light is used as the reflected diffracted light, but other-order diffracted light such as the second-order light may be used.

【0011】波長選択レンズ12の透過光(0次回折
光)は、光伝搬路13中をジグザグに伝搬し、光伝搬路
13上に設けた例えば焦点距離8.5mm、口径2mm
のコリメータ素子である反射形コリメータレンズ3に入
射し、光軸の角度(伝搬角θ)はそのまま(例えば20
゜)で反射・コリメートされる。反射形コリメータレン
ズ3は、外周になるにつれて周期が小さくなる断面が鋸
歯形状の楕円グレーティングから構成されている。この
楕円形グレーティングの中心位置は、外周部にいくにし
たがって、y方向に徐々にシフトする構造をしている。
このような形状のコリメータレンズとすることにより、
斜め入射の影響で通常生じるコマ収差と非点収差をなく
し、良好にコリメートすることができた。
The transmitted light (zero-order diffracted light) of the wavelength selection lens 12 propagates in a zigzag manner in the light propagation path 13, and is provided on the light propagation path 13, for example, with a focal length of 8.5 mm and a diameter of 2 mm.
Incident on the reflective collimator lens 3, which is a collimator element, and the angle of the optical axis (propagation angle θ) remains unchanged (for example, 20).
Reflected and collimated in ゜). The reflective collimator lens 3 is formed of an elliptical grating having a sawtooth-shaped cross section whose period becomes smaller as it goes toward the outer periphery. The center position of the elliptical grating gradually shifts in the y direction toward the outer periphery.
By using a collimator lens with such a shape,
Coma and astigmatism, which normally occur due to the effects of oblique incidence, were eliminated, and good collimation was achieved.

【0012】例えば幅2mmのコリメートされた光は、
ジグザグ状に伝搬し、同じく光伝搬路13上に設けた
射形でかつ回折形の位置信号検出用光学素子(フォーカ
ス/トラック誤差信号検出素子)である反射形ツインレ
ンズ5を経由し、その透過光が、光集光素子である、例
えば口径2mm、焦点距離2mmの透過形対物レンズ4
により、垂直方向に出力され光ディスク7への集光光9
となる。光ディスク7から反射された光10は、同じく
透過形対物レンズ4に入射してコリメートされて伝搬光
8’となり、ジグザグ状に伝搬して反射層11bを有す
る、光伝搬路13上に形成した位置信号検出用光学素子
ある、例えばx方向サイズ2mm、y方向サイズ2m
m、焦点距離10mmの反射形ツインレンズ5に入射す
る。反射形ツインレンズ5は、放物線状のグレーティン
グから構成された同じ仕様を有する反射形レンズ5a、
5bを2つアレイ状に配列した構造を有し、伝搬光8’
はこのレンズ5により1次回折光が2分割されて、光軸
の伝搬角が例えば30°でジグザグ状に伝搬し、光検出
器6に集光する。
For example, a collimated light having a width of 2 mm is
Propagates in a zigzag manner, also anti provided on the optical propagation path 13
Projection and diffraction type optical element for position signal detection (Focus
The transmitted light passes through a reflective twin lens 5 which is a scanning / track error signal detecting element), and the transmitted light is a light condensing element, for example, a transmission type objective lens 4 having a diameter of 2 mm and a focal length of 2 mm.
Is output in the vertical direction, and condensed light 9 on the optical disk 7
Becomes The light 10 reflected from the optical disk 7 is also incident on the transmission type objective lens 4 and is collimated to become a propagating light 8 ′, which propagates in a zigzag manner and has a reflection layer 11 b and is formed on the light propagation path 13. Optical element for signal detection
In it, for example, x-direction size 2 mm, y-direction size 2m
m, and enters the reflective twin lens 5 having a focal length of 10 mm. The reflection type twin lens 5 is a reflection type lens 5a having the same specification and composed of a parabolic grating,
5b having a structure in which two 5b are arranged in an array.
The first-order diffracted light is split into two by the lens 5, propagates in a zigzag manner at an optical axis propagation angle of, for example, 30 °, and is collected on the photodetector 6.

【0013】反射形コリメータレンズ3は、例えば溝の
最大深さは0.28μmのインライン形の反射形回折光学
レンズで、透過形対物レンズ4は例えば溝の最大深さ
1.3μmのオフアキシス形の透過形回折光学レンズで、
波長選択レンズと反射形ツインレンズ5は溝の最大深さ
は例えば0.12μmのオフアキシス形で、これら4つの
光学素子はすべて光の回折現象を用いて集光させる回折
光学素子である。本発明では、インライン形の回折光学
レンズとは、入射光の光軸の角度と出射光の光軸の角度
が一致するレンズであり、オフアキシス形の回折光学レ
ンズとは入射光の光軸の角度と、出射光の光軸の角度が
異なるレンズのことをいう。回折光学素子を用いること
により膜厚がせいぜい数μmであり、さらに光伝搬路1
3上に、公知のプレーナ技術を用いて、正確な位置合わ
せと集積化が可能であり、また小形軽量化、安定化され
る。
The reflective collimator lens 3 is, for example, an in-line reflective diffractive optical lens with a maximum groove depth of 0.28 μm, and the transmission objective lens 4 is, for example, an off-axis type with a maximum groove depth of 1.3 μm. With a transmission type diffractive optical lens,
The wavelength selection lens and the reflection type twin lens 5 are of an off-axis type having a maximum groove depth of, for example, 0.12 μm, and all four optical elements are diffractive optical elements for condensing light using a light diffraction phenomenon. In the present invention, the in-line type diffractive optical lens is a lens in which the angle of the optical axis of the incident light coincides with the angle of the optical axis of the outgoing light, and the off-axis type diffractive optical lens is the angle of the optical axis of the incident light. And a lens in which the angle of the optical axis of the emitted light is different. By using the diffractive optical element, the film thickness is at most several μm and the light propagation path 1
On the other hand, accurate alignment and integration are possible by using a known planar technology, and small, light and stable.

【0014】これらの回折光学素子3、4、5、12
は、基板上に例えば、PMMA、CMS等の電子ビーム
レジストをコーティングをし、作製する素子の膜厚に応
じて照射量を制御する電子ビーム描画法を行ない、現像
処理をしてレジストの膜厚を変化させることにより形成
した。このように形成した光学素子(原盤)から、例え
ばニッケル電鋳法によりこの金形を作製し、例えばUV
硬化樹脂を用いて、光伝搬路13上に原盤と同一レンズ
3、4、5、12を複製した。この方法によれば、一度
に4つの回折光学レンズ3、4、5、12を位置精度よ
く光伝搬路13上に同一特性で容易に形成可能である。
反射形回折光学レンズ3、5、12は、複製の後、反射
層11bとして例えばAgやAl、Au等の金属層をそ
の上に堆積した。
These diffractive optical elements 3, 4, 5, 12
For example, an electron beam resist such as PMMA or CMS is coated on a substrate, an electron beam drawing method is performed to control an irradiation amount according to a film thickness of an element to be manufactured, and a developing process is performed to perform the resist processing. Was formed by changing From the optical element (master) formed in this way, this mold is produced by, for example, nickel electroforming,
The same lenses 3, 4, 5, and 12 as the master were duplicated on the light propagation path 13 by using a cured resin. According to this method, four diffractive optical lenses 3, 4, 5, and 12 can be easily formed on the light propagation path 13 with good positional accuracy at the same time.
In the reflection type diffractive optical lenses 3, 5, and 12, after replication, a metal layer of, for example, Ag, Al, or Au was deposited thereon as the reflection layer 11b.

【0015】また、その反射層11上に、Cu、Cr等
の金属層、UV硬化樹脂やラッカー塗料等の合成樹脂、
誘電体多層膜、SiO、SiO2、MgF2、SiC、グ
ラファイト、ダイヤモンド等を、例えば1000Åから
数μm堆積すると、反射層の表面を傷つきにくくし、同
時に反射層の酸化を防止し、耐環境性を向上させること
が可能であった。特に反射層としてAgを用いた場合で
は、酸化され易かったため、本発明の効果が大きかっ
た。
A metal layer such as Cu or Cr, a synthetic resin such as a UV curable resin or a lacquer paint,
When a dielectric multilayer film, SiO, SiO 2 , MgF 2 , SiC, graphite, diamond or the like is deposited, for example, from 1000 to several μm, the surface of the reflective layer is hardly damaged, and at the same time, the oxidation of the reflective layer is prevented, and environmental resistance is improved. Could be improved. In particular, when Ag was used as the reflective layer, the effect of the present invention was great because it was easily oxidized.

【0016】光ディスク7に記録された信号は、分割光
検出器6の出力の和(6a+6b+6c+6d)から再
生することができる。
The signal recorded on the optical disk 7 can be reproduced from the sum (6a + 6b + 6c + 6d) of the outputs of the split photodetectors 6.

【0017】位置信号検出用光学素子5を用いて、フォ
ーカス誤差信号とトラック誤差信号検出を行なうことが
できる。フォーカス誤差信号検出は、公知のフーコ法を
用いる。すなわち、光ディスク7がジャストフォーカス
の位置にあるとき、反射形ツインレンズ5によって2分
割された伝搬光は、それぞれ、分割された光検出器、6
aと6b、6cと6dの中心に集光する配置にしてお
く。フォーカス誤差信号は、光検出器6aの出力から6
bの出力の差(6a−6b)、または6dの出力から6
cの出力の差(6d−6c)とする。光ディスク7がジ
ャストフォーカスの位置にあるとき、フォーカス誤差信
号は0である。次に、光ディスク7が、ジャストフォー
カスの位置から−z軸方向に離れたときは、伝搬光8’
は平行光から収束球面波になるため、2分割された伝搬
光はお互いに近づくように移動するため、フォーカス誤
差信号は負になる。逆に、光ディスク7が、ジャストフ
ォーカスの位置からz軸方向に近づくように移動したと
きは、伝搬光8’は発散球面波になるため2分割された
伝搬光はお互いに離れるように移動するため、フォーカ
ス誤差信号は正になり、従って、フォーカス誤差信号に
より、フォーカス制御を行なうことができる。
The focus error signal and the track error signal can be detected by using the position signal detecting optical element 5. The focus error signal is detected using a known Foucault method. That is, when the optical disk 7 is in the just focus position, the propagation light divided by the reflection twin lens 5 into two light detectors,
The light is condensed at the centers of a and 6b and 6c and 6d. The focus error signal is obtained from the output of the photodetector 6a.
The difference between the outputs of b (6a-6b) or 6d from the output of 6d
The difference between the outputs of c is (6d-6c). When the optical disc 7 is at the just focus position, the focus error signal is 0. Next, when the optical disk 7 moves away from the just focus position in the -z-axis direction, the propagation light 8 '
Becomes a converging spherical wave from parallel light, and the two divided propagation lights move closer to each other, so that the focus error signal becomes negative. Conversely, when the optical disc 7 moves so as to approach the z-axis direction from the just-focused position, the propagating light 8 ′ becomes a divergent spherical wave, so that the propagating lights divided into two move away from each other. Therefore, the focus error signal becomes positive, so that focus control can be performed by the focus error signal.

【0018】トラック誤差信号は公知のプッシュプル法
で、2分割伝搬光の光パワの差、つまり光検出器の出力
の演算(6a+6b−6c−6d)により検出すること
ができる。この演算が0のときはジャストトラッキング
で、値をもつときはトラッキングがずれており、この信
号に基づいて、トラック制御を行なうことが可能であ
る。
The track error signal can be detected by a known push-pull method by calculating the difference between the optical powers of the two divided propagation lights, that is, the output (6a + 6b-6c-6d) of the photodetector. When this calculation is 0, it is just tracking, and when it has a value, tracking is out of alignment, and track control can be performed based on this signal.

【0019】フォーカス制御及びトラック制御は、検出
されるそれぞれの誤差信号に基づいて、各光学素子を備
えた基板1全体を、アクチュエータで最適位置に動かす
ことにより行なった。
The focus control and the track control were performed by moving the entire substrate 1 provided with each optical element to an optimum position by an actuator based on each detected error signal.

【0020】本発明の光学ヘッドでは、光伝搬路13は
幅、厚さとも波長の例えば500倍程度以上のオーダで
あり、これは、光学素子3、4、5、12の大きさに基
づいて決まり、ジグザグに光を光線として伝搬させると
いう幾何光学的な取扱いができる。
In the optical head of the present invention, the light propagation path 13 has a width and a thickness on the order of, for example, about 500 times or more the wavelength, and this is based on the size of the optical elements 3, 4, 5, and 12. In other words, geometrical optics can be used to propagate light as light rays in a zigzag manner.

【0021】図3、図4は、それぞれ本発明の第二の実
施例の光学ヘッドの基本構成と、光の伝搬、集光の様子
を示す側面図、平面図である。本発明の第二の実施例の
光学ヘッドについて、第一の実施例の光学ヘッドと、違
う点についてのみ説明する。異なる点は、波長選択素子
として、波長選択レンズ14を反射形コリメータレンズ
の周辺部にドーナツ形に形成したことである。この様に
することによって、中央部の発振光の光量を減らすこと
がなく、また、発振光周辺部は、ビーム成形のため、従
来では多くの場合、故意に用いていなかったが、本実施
例の光学ヘッドでは、この光を有効利用するという効果
がある。また、通常半導体レーザ1からの発振光は円形
ではなく細長い楕円であるため、その楕円の長軸方向に
合わせるように、波長選択レンズ3をドーナツ形の両端
に部分的に形成してもよい。
FIGS. 3 and 4 are a side view and a plan view, respectively, showing the basic structure of an optical head according to a second embodiment of the present invention, and how light is propagated and collected. The optical head according to the second embodiment of the present invention will be described only with respect to differences from the optical head according to the first embodiment. The difference is that the wavelength selection lens 14 is formed in a donut shape around the reflection type collimator lens as a wavelength selection element. By doing so, the light quantity of the oscillating light in the central part is not reduced, and the peripheral part of the oscillating light is not intentionally used in many cases conventionally because of beam shaping. The optical head has an effect of effectively utilizing this light. Since the oscillating light from the semiconductor laser 1 is usually not a circle but an elongated ellipse, the wavelength selection lens 3 may be partially formed at both ends of the donut shape so as to match the major axis direction of the ellipse.

【0022】図4、図5は、本発明の第三の実施例の光
学ヘッドの基本構成と、光の伝搬、集光の様子を示す、
それぞれ側面図、平面図である。本発明の第三の実施例
の光学ヘッドは、第1の実施例の光学ヘッドと違う点
は、波長選択素子は、均一周期の直線グレーティング1
5であり、コリメータレンズ3から出射された光を、こ
の波長選択素子に入射させ、波長選択素子により出射さ
れた0次回折光を、光集光素子に入射させ、同時に、波
長選択素子の一次回折光を、反射形コリメータレンズ3
を経由して、半導体レーザ1の表面出射端に入射したこ
とである。このような構成にすることによって、波長選
択素子は直線の均一周期グレーティングでよいため、作
製が容易になる。
FIGS. 4 and 5 show the basic structure of an optical head according to a third embodiment of the present invention and how light is propagated and collected.
They are a side view and a plan view, respectively. The optical head according to the third embodiment of the present invention is different from the optical head according to the first embodiment in that the wavelength selecting element is a linear grating 1 having a uniform period.
5, the light emitted from the collimator lens 3 is made incident on this wavelength selection element, and the 0th-order diffracted light emitted by the wavelength selection element is made incident on the light condensing element. Light is reflected by a reflective collimator lens 3
Through the surface of the semiconductor laser 1 through the surface emitting end. With such a configuration, the wavelength selection element may be a linear uniform-period grating, which facilitates fabrication.

【0023】以上、本発明の光学ヘッドについて、実施
例について述べたが、これらの実施例の光学ヘッド以外
に、それぞれの光学ヘッドの構成を組み合わせた光学ヘ
ッドも構成可能であり、同様の効果を有するのは言うま
でもない。なお、第一から第三までの実施例の説明に用
いた対物レンズとコリメータレンズは便宜上名付けたも
ので、一般にいうレンズと同じである。又、本説明で
は、光ディスク装置について述べたが、光学ヘッドを用
いた他の光学的記録装置についても同様の効果があるの
は言うまでもない。
The embodiments of the optical head of the present invention have been described above. In addition to the optical heads of these embodiments, optical heads obtained by combining the configurations of the respective optical heads can also be configured, and the same effects can be obtained. Needless to say, we have. The objective lens and the collimator lens used in the description of the first to third embodiments are named for convenience, and are the same as commonly used lenses. In this description, the optical disk device has been described, but it goes without saying that the same effect can be obtained with other optical recording devices using an optical head.

【0024】[0024]

【発明の効果】本発明によれば、各光学部品の位置合わ
せが容易で薄型軽量化、低価格化可能でしかも半導体レ
ーザの波長変動がほとんど生じない安定動作可能な光学
ヘッドが実現可能である。
According to the present invention, it is possible to realize an optical head which can easily align optical components, is thin and lightweight, can be manufactured at a low cost, and can operate stably with almost no wavelength fluctuation of a semiconductor laser. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の光学ヘッドの基本構成
と、光の伝搬、集光の様子を示す側面図
FIG. 1 is a side view showing a basic configuration of an optical head according to a first embodiment of the present invention, and how light is propagated and collected.

【図2】本発明の第1の実施例の光学ヘッドの基本構成
と、光の伝搬、集光の様子を示す平面図
FIG. 2 is a plan view showing a basic configuration of the optical head according to the first embodiment of the present invention, and how light is propagated and collected.

【図3】本発明の第2の実施例の光学ヘッドの基本構成
と、光の伝搬、集光の様子を示す側面図
FIG. 3 is a side view showing a basic configuration of an optical head according to a second embodiment of the present invention and how light is propagated and collected.

【図4】本発明の第2の実施例の光学ヘッドの基本構成
と、光の伝搬、集光の様子を示す平面図
FIG. 4 is a plan view showing a basic configuration of an optical head according to a second embodiment of the present invention, and how light is propagated and collected.

【図5】本発明の第3の実施例の光学ヘッドの基本構成
と、光の伝搬、集光の様子を示す側面図
FIG. 5 is a side view showing a basic configuration of an optical head according to a third embodiment of the present invention and how light is propagated and collected.

【図6】本発明の第3の実施例の光学ヘッドの基本構成
と、光の伝搬、集光の様子を示す平面図
FIG. 6 is a plan view showing a basic configuration of an optical head according to a third embodiment of the present invention and how light is propagated and collected.

【図7】従来の光学ヘッドの構成図FIG. 7 is a configuration diagram of a conventional optical head.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 基板 3 反射形コリメータレンズ(コリメータ素子) 4 透過形対物レンズ(光集光素子) 5 反射形ツインレンズ(位置信号検出用光学素子) 6 光検出器 7 光ディスク 8 伝搬光 9 出射光 10 反射光 11 反射層 12 波長選択レンズ(波長選択素子) 13 光伝搬路 14 波長選択レンズ(波長選択素子) 15 波長選択グレーティング(波長選択素子)DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Substrate 3 Reflection type collimator lens (collimator element) 4 Transmission type objective lens (light condensing element) 5 Reflection type twin lens ( optical element for position signal detection) 6 Photodetector 7 Optical disk 8 Propagation light 9 Emission light REFERENCE SIGNS LIST 10 reflected light 11 reflective layer 12 wavelength selection lens (wavelength selection element) 13 light propagation path 14 wavelength selection lens (wavelength selection element) 15 wavelength selection grating (wavelength selection element)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−282756(JP,A) 特開 平1−298537(JP,A) 特開 平3−233401(JP,A) 特開 昭63−117337(JP,A) 特開 昭63−96982(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 7/12 - 7/22 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-282756 (JP, A) JP-A-1-298537 (JP, A) JP-A-3-233401 (JP, A) JP-A-63-1988 117337 (JP, A) JP-A-63-96982 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 7/ 12-7/22

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジグザグ状に光が伝搬する光伝搬路を設け
た基板と、上記光伝搬路上に形成された回折形の光集光
素子と、上記光伝搬路上に形成された反射形でかつ回折
形の位置信号検出用光学素子と、上記光伝搬路上に形成
された反射形でかつ回折形の波長選択素子と、半導体レ
ーザと、光検出器とから構成され、上記半導体レーザか
らの発振光を、上記光伝搬路に導いて伝搬光とし、上記
伝搬光の少なくとも1部を上記波長選択素子に入射さ
せ、上記波長選択素子によって波長が選択された回折光
を、上記発振光を出射した上記半導体レーザの表面出射
端に入射させ、上記伝搬光の少なくとも1部を上記光集
光素子で集光して光ディスクに出力し、上記光ディスク
からの反射光を、上記光集光素子に入力し、上記位置信
号検出用光学素子に導き、上記位置信号検出用光学素子
からの出力光を上記光検出器に導くことを特徴とする光
学ヘッド。
A substrate provided with a light propagation path through which light propagates in a zigzag shape; a diffractive light condensing element formed on the light propagation path; and a reflection type light condensing element formed on the light propagation path; An optical element for detecting a position signal of a diffraction type, a wavelength selection element of a reflection type and a diffraction type formed on the light propagation path, a semiconductor laser, and a photodetector, and oscillating light from the semiconductor laser. Is guided to the light propagation path as propagation light, at least a part of the propagation light is incident on the wavelength selection element, and the diffracted light whose wavelength is selected by the wavelength selection element is emitted from the oscillation light. Making the light incident on the front emission end of the semiconductor laser, condensing at least a part of the propagating light with the light condensing element and outputting the condensed light to the optical disc, and inputting the reflected light from the optical disc to the light condensing element; For the position signal detecting optical element Come, the optical head is characterized in that leads to the photodetector output light from said position signal detecting optical element.
【請求項2】基板を光伝搬路とし、上記光伝搬路の表面
または裏面に反射層を設けることを特徴とする請求項1
に記載の光学ヘッド。
2. The light propagation path of a substrate, wherein a reflection layer is provided on a front surface or a back surface of the light propagation path.
An optical head according to item 1.
【請求項3】光伝搬路上にコリメータ素子を設け、半導
体レーザからの伝搬光を、上記コリメータ素子でコリメ
ートした後、光集光素子に導くことを特徴とする請求項
1に記載の光学ヘッド。
3. The optical head according to claim 1, wherein a collimator element is provided on the light propagation path, and the propagating light from the semiconductor laser is collimated by the collimator element and then guided to the light condensing element.
【請求項4】光検出器または半導体レーザのうちの少な
くとも1つは、光伝搬路上または上記光伝搬路中に設け
たことを特徴とする請求項1に記載の光学ヘッド。
4. The optical head according to claim 1, wherein at least one of the photodetector and the semiconductor laser is provided on or in the light propagation path.
【請求項5】波長選択素子と光集光素子と位置信号検出
用光学素子は、光伝搬路上の光ディスク側(表側)に設
け、半導体レーザと光検出器は上記光伝搬路の裏面側に
設けたことを特徴とする請求項1に記載の光学ヘッド。
5. A wavelength selecting element, a light condensing element, and a position signal detecting optical element are provided on an optical disk side (front side) on a light propagation path, and a semiconductor laser and a photodetector are provided on a back side of the light propagation path. The optical head according to claim 1, wherein:
【請求項6】波長選択素子は、コリメータ素子の回りに
形成してなることを特徴とする請求項3に記載の光学ヘ
ッド。
6. The optical head according to claim 3, wherein the wavelength selection element is formed around the collimator element.
【請求項7】波長選択素子により出射された0次回折光
を、光集光素子に入射させることを特徴とする請求項1
に記載の光学ヘッド。
7. The apparatus according to claim 1, wherein the zero-order diffracted light emitted from the wavelength selection element is made incident on the light condensing element.
An optical head according to item 1.
【請求項8】波長選択素子は、均一周期の直線グレーテ
ィングであって、コリメータ素子から出射された光を、
上記波長選択素子に入射させ、上記波長選択素子により
出射された0次回折光を、光集光素子に入射させること
を特徴とすること請求項3に記載の光学デバイス。
8. The wavelength selection element is a linear grating having a uniform period, and outputs light emitted from the collimator element.
4. The optical device according to claim 3, wherein the light is incident on the wavelength selection element, and the zero-order diffracted light emitted by the wavelength selection element is incident on a light focusing element.
【請求項9】請求項1に記載の光学ヘッドを製造する方
法であって、少なくとも光集光素子と位置信号検出用光
学素子と波長選択素子を同時に含む金型を作製し、上記
金形を用いて、上記光集光素子と上記位置信号検出用光
学素子と上記波長選択素子を同時に複製することを特徴
とする光学ヘッドの製造方法。
9. A method for manufacturing an optical head according to claim 1, wherein a mold including at least a light condensing element, a position signal detecting optical element and a wavelength selecting element at the same time is produced, and said mold is formed. A method for manufacturing an optical head, wherein the light condensing element, the position signal detecting optical element, and the wavelength selection element are simultaneously duplicated.
JP28575192A 1992-10-23 1992-10-23 Optical head and manufacturing method thereof Expired - Fee Related JP3298184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28575192A JP3298184B2 (en) 1992-10-23 1992-10-23 Optical head and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28575192A JP3298184B2 (en) 1992-10-23 1992-10-23 Optical head and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06139612A JPH06139612A (en) 1994-05-20
JP3298184B2 true JP3298184B2 (en) 2002-07-02

Family

ID=17695580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28575192A Expired - Fee Related JP3298184B2 (en) 1992-10-23 1992-10-23 Optical head and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3298184B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166866A (en) 1995-02-28 2000-12-26 Canon Kabushiki Kaisha Reflecting type optical system
DE69623362T2 (en) 1995-02-28 2003-08-07 Canon Kk Zoom lens with reflective surfaces
US6021004A (en) * 1995-02-28 2000-02-01 Canon Kabushiki Kaisha Reflecting type of zoom lens
US6522475B2 (en) 1996-02-15 2003-02-18 Canon Kabushiki Kaisha Zoom lens
JP3761957B2 (en) 1996-02-15 2006-03-29 キヤノン株式会社 Reflective optical system and imaging apparatus using the same
US5999311A (en) 1996-03-26 1999-12-07 Canon Kabushiki Kaisha Small-sized variable magnification optical system
JP3292051B2 (en) * 1996-07-19 2002-06-17 キヤノン株式会社 Variable power optical system and imaging apparatus using the same
JP3792799B2 (en) 1996-08-27 2006-07-05 キヤノン株式会社 Optical system having optical element and imaging apparatus using the same
JP3625339B2 (en) * 1996-08-27 2005-03-02 キヤノン株式会社 Zoom optical system and imaging apparatus using the same
JPH10221604A (en) * 1997-02-12 1998-08-21 Canon Inc Optical system and image pickup unit using the same
JPH1164734A (en) 1997-08-22 1999-03-05 Canon Inc Photographic optical system and image pickup device using the same
US6426841B1 (en) 1997-08-27 2002-07-30 Canon Kabushiki Kaisha Optical apparatus
US6120156A (en) * 1997-10-16 2000-09-19 Canon Kabushiki Kaisha Optical element and optical system having the same
JPH11249019A (en) 1998-02-26 1999-09-17 Canon Inc Optical element and optical system using the same
JPH11249018A (en) 1998-02-27 1999-09-17 Canon Inc Optical element and optical system using the same

Also Published As

Publication number Publication date
JPH06139612A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
JP2842132B2 (en) Optical device
US6728034B1 (en) Diffractive optical element that polarizes light and an optical pickup using the same
JP3507632B2 (en) Diffraction grating lens
JP3298184B2 (en) Optical head and manufacturing method thereof
US6545821B2 (en) Diffraction type lens and optical pickup apparatus using the same
JPH05232321A (en) Hologram and optical device using the same
KR20030019377A (en) Device for reading and/or writing optical recording media
US5051974A (en) Optical head device having a light splitter with a diffraction grating structure
JP2002109778A (en) Optical pickup device
JP2726029B2 (en) Method and apparatus for forming double focus
JP2527903B2 (en) Multi-channel data storage and multi-channel laser optics
JPH04219640A (en) Optical head and its manufacture
JP3077928B2 (en) Integrated optical device, method of manufacturing the same, and method of manufacturing mold
JP3017418B2 (en) Optical pickup device
JPH0721581A (en) Optical pickup
JP2528445B2 (en) Optical pickup device
JPH0721866B2 (en) Optical head device
JPS62293528A (en) Optical information reproducing device
JPH0654548B2 (en) Optical information reproducing device
JPS63225930A (en) Optical information reproducing device
KR100562338B1 (en) Optical pickup apparatus
KR0167930B1 (en) Subminiature dual focus optical pick-up device
JPS63104230A (en) Reproducing device for optical information by optical pickup
JPS62208440A (en) Light pickup
JP2002367218A (en) Optical pickup device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees