JPH02137690A - High-alloy pipe and circumferential welding method thereof - Google Patents

High-alloy pipe and circumferential welding method thereof

Info

Publication number
JPH02137690A
JPH02137690A JP28852988A JP28852988A JPH02137690A JP H02137690 A JPH02137690 A JP H02137690A JP 28852988 A JP28852988 A JP 28852988A JP 28852988 A JP28852988 A JP 28852988A JP H02137690 A JPH02137690 A JP H02137690A
Authority
JP
Japan
Prior art keywords
alloy
welding
scale
affected zone
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28852988A
Other languages
Japanese (ja)
Inventor
Shigeki Azuma
茂樹 東
Hideaki Yuki
英昭 幸
Takeo Kudo
赳夫 工藤
Junichiro Murayama
村山 順一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28852988A priority Critical patent/JPH02137690A/en
Publication of JPH02137690A publication Critical patent/JPH02137690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of the weld heat affected zone of the high-alloy pipe by providing a specific amt. of a coating layer formed by applying and drying of a chromating liquid onto the inner peripheral surface of the heat affected zone at the time of circumferential welding. CONSTITUTION:The chromating liquid is applied on the inner peripheral surface of the heat affected zone at the time of the circumferential welding of the high-alloy pipe. The coating layer is formed by drying the coating after the application and the amt. thereof is specified to >=10mg/m<2>. The high-alloy pipes formed with the coating layer are joined to each other and thereafter, the ends of these pipes are circumferentially welded. The corrosion resistance of the weld heat affected zone of the high-alloy pipe is improved in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高合金管および高合金管の円周溶接法に関す
る。さらに詳しくは本発明は、高CrのFe基基台合金
管たはNi基基台合金管よびこれらを用いる配管施行に
おいて、耐食性に優れた溶接部を提供し得る、高合金管
およびその溶接法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high alloy tube and a method for circumferential welding of high alloy tubes. More specifically, the present invention provides a high Cr Fe-based alloy pipe or a Ni-based alloy pipe, and a high alloy pipe and a welding method thereof that can provide welded parts with excellent corrosion resistance in piping installation using these. Regarding.

(従来の技術) 例えばラインパイプ用あるいは化学工業配管用の高合金
管は施行現場において円周溶接が施される。その際溶接
熱影響部の表面には、加熱によって酸化物すなわち溶接
スケールが生成される。この溶接スケールの生成部は、
−船釣に耐食性が劣化することが知られている。
(Prior Art) For example, high alloy pipes for line pipes or chemical industry piping are circumferentially welded at the construction site. At this time, oxides, that is, weld scale, are generated on the surface of the weld heat affected zone by heating. This welding scale generation part is
- It is known that corrosion resistance deteriorates during boat fishing.

一方ラインパイプ用あるいは化学工業配管用の高合金管
は多くの場合ハロゲン化物イオンを含む腐食性液体の輸
送を目的として使用される。
On the other hand, high alloy pipes for line pipes or chemical industry piping are often used for the purpose of transporting corrosive liquids containing halide ions.

したがって前述した溶接スケールの生成部における耐食
性の劣化はこの部位に孔食・隙間腐食をもたらし、設備
上あるいは操業上大きな問題となっていた。
Therefore, the aforementioned deterioration of corrosion resistance in the weld scale generation area causes pitting corrosion and crevice corrosion in this area, posing a major problem in terms of equipment and operation.

このような問題を解決するための手段として従来より様
々な方法が提案されている。たとえばに)溶接時の酸化
を防止するために溶接すべき管内を不活性ガスによりシ
ールドする方法(ii )溶接に先立って管の端部を溶
射、メツキ、刷毛塗り等により金属で被覆する方法(特
願昭62−71200号、同63−28315号等)等
がある。
Various methods have been proposed in the past as means for solving such problems. (ii) A method of coating the end of the tube with metal by thermal spraying, plating, brushing, etc. prior to welding (2) A method of shielding the inside of the pipe to be welded with inert gas to prevent oxidation during welding. Japanese Patent Application No. 62-71200, No. 63-28315, etc.).

(発明が解決しようとする課題) しかしながらこれらの公知方法では高合金管の溶接熱影
響部におけるスケールの発生を防止することができない
(Problems to be Solved by the Invention) However, these known methods cannot prevent the formation of scale in the weld heat affected zone of high alloy tubes.

すなわち(i)に示した方法では、不活性ガスにより管
内から酸素を完全に無くすことは現地施行である限り現
実には不可能であるため、スケールの発生を防止するこ
とはできない。
That is, with the method shown in (i), it is practically impossible to completely eliminate oxygen from inside the pipe using an inert gas as long as it is carried out on-site, and therefore it is not possible to prevent the generation of scale.

また( ii )に示した方法では、 ■溶射またはメブキを現地施行で行うには特殊な装置を
必要とすること、 ■金属粉末を塗布する方法においては目的部位の全面に
均一に塗布することが難しいことおよび塗布された金属
粉末は高合金管表面に単に物理的に付着しているだけで
あり、充分な酸化防止能を得るには多量の塗布が必要に
なることといった問題があるため、耐食性の劣化を防止
するという観点からは望ましい方法ではない。
In addition, the method shown in (ii) requires special equipment to perform thermal spraying or spraying on-site; and, with the method of applying metal powder, it is difficult to uniformly coat the entire surface of the target area. Corrosion resistance is difficult to achieve, and the applied metal powder is simply physically attached to the surface of the high-alloy tube, requiring a large amount of coating to obtain sufficient oxidation-preventing ability. This is not a desirable method from the point of view of preventing deterioration.

なお溶接スケールをその発生後に研磨あるいは酸洗する
ことにより溶接スケールを除去し耐食性の劣化を防止す
る方法も考えられるが、現地の施行現場で円周溶接され
た管内周面の研磨、酸洗を行うことは事実上不可能であ
る。
Although it is possible to remove weld scale and prevent deterioration of corrosion resistance by polishing or pickling the weld scale after it has occurred, it is also possible to remove the weld scale and prevent deterioration of corrosion resistance by polishing or pickling the inner circumferential surface of the pipe that has been circumferentially welded at the local construction site. It is virtually impossible to do so.

以上いずれの方法によっても、高合金管の溶接熱影響部
におけるスケールの発生を防止することはできなかった
のである。
None of the above methods could prevent the formation of scale in the weld heat affected zone of high alloy tubes.

ここに本発明の目的は、高合金管の溶接に際して高い耐
食性を有する円周溶接部を得ることが可能な高合金管お
よびその円周溶接法を提供するごとにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high alloy tube and a circumferential welding method thereof, which make it possible to obtain a circumferential welded portion having high corrosion resistance when welding the high alloy tube.

(課題を解決するための手段) 本発明者らは上記課題を解決するためまず溶接スケール
の発生原因を調査した。すなわち溶接スケールの発生原
因についてはこれまで様々な見解があり、その代表的な
ものとして ■スケールが発生している直下の基材において耐食性の
確保に有効なりロム(以下rcrJという)が減少し、
いわゆるCr欠乏層が生成し、スケールの亀裂部から侵
入したハロゲン化物イオンが耐食性の劣るCr欠乏層を
アタックする■スケールと基材との間に隙間が形成され
るために隙間腐食が進行する ■スケール自体は一種の防食被膜として作用するが、ス
ケール中のCr濃度がスケール除去面またはスケール非
発生面における不動態被膜中のCr濃度よりも低いため
にスケール生成部での耐食性が劣化する 等が知られている。
(Means for Solving the Problems) In order to solve the above problems, the present inventors first investigated the cause of the occurrence of weld scale. In other words, there have been various opinions regarding the causes of welding scale, and the representative ones are: 1) It is effective in ensuring corrosion resistance in the base material directly under the scale, and ROM (hereinafter referred to as rcrJ) is reduced;
A so-called Cr-depleted layer is generated, and halide ions enter through the cracks in the scale and attack the Cr-depleted layer, which has poor corrosion resistance ■Crevice corrosion progresses because gaps are formed between the scale and the base material■ The scale itself acts as a kind of anti-corrosion film, but since the Cr concentration in the scale is lower than the Cr concentration in the passive film on the scale-removed surface or the non-scale-generated surface, the corrosion resistance in the scale-generated area deteriorates. Are known.

そこで本発明者らは溶接スケールの発生の主たる原因を
特定するため、以下に示す実験を行った。
Therefore, the present inventors conducted the following experiment in order to identify the main cause of the occurrence of weld scale.

すなわち、溶接スケールを実験室的に再現するため代表
的な高合金材料であるSUS 316Lの板材を大気中
で500〜1100℃の温度に1秒間加熱し、加熱後の
板材より腐食試験片を切り出し、CQ−濃度が1103
ppであり温度が30℃である大気の条件下で、24時
間定電位ステップ法により孔食電位を測定した。また同
じ試験片の腐食試験前後の表面SEM観察および二次イ
オン質量分析計(IHMA)による表面元素分析を行っ
た。
That is, in order to reproduce the welding scale in the laboratory, a plate of SUS 316L, a typical high-alloy material, was heated in the air to a temperature of 500 to 1100°C for 1 second, and a corrosion test piece was cut from the heated plate. , CQ-concentration is 1103
The pitting potential was measured by a constant potential step method for 24 hours under atmospheric conditions of pp and temperature of 30°C. In addition, surface SEM observation of the same test piece before and after the corrosion test and surface elemental analysis using a secondary ion mass spectrometer (IHMA) were performed.

実験結果を、加熱温度と孔食電位との関係を表わす第1
図および加熱温度とスケール中の最高Cr濃度との関係
を表わす第2図にそれぞれ示す。第1図より孔食電位は
600〜800℃の温度に加熱した場合に低下が大きい
、すなわち耐食性の劣化が著しいことがわかる。また第
2図より、IHMA分析によれば耐食性の劣化が著しい
600〜800 ’Cの温度に加熱した場合には、スケ
ール中のCrff1.度が研磨によりスケールを除去し
た材料の表面のCrff4度に比較して大幅に低下して
いることがわかる。なおスケールの亀裂およびスケール
の直下のCr欠乏層においてはそのどちらも検出されな
かった。
The experimental results are summarized in the first column that expresses the relationship between heating temperature and pitting potential
Figure 2 shows the relationship between the heating temperature and the maximum Cr concentration in the scale. From FIG. 1, it can be seen that the pitting corrosion potential decreases significantly when heated to a temperature of 600 to 800°C, that is, the corrosion resistance deteriorates significantly. Also, from FIG. 2, according to IHMA analysis, when heated to a temperature of 600 to 800'C, where corrosion resistance is significantly deteriorated, Crff1. It can be seen that the Crff degree is significantly lower than the Crff of 4 degrees on the surface of the material from which scale has been removed by polishing. Incidentally, neither the cracks in the scale nor the Cr-depleted layer immediately below the scale were detected.

すなわち以上の実験結果から、耐食性の劣化の原因は、
主としてスケール中のc4度の低下である(前述の■で
ある)ことを本発明者らは知見した。
In other words, from the above experimental results, the cause of the deterioration of corrosion resistance is
The present inventors have found that this is mainly a decrease in C4 degrees on the scale (the above-mentioned ■).

したがって、このスケール中のCr濃度の低下を防止し
または補償するために、溶接前の溶接部表面にCrを富
化させること、換言すれば溶接に際して加熱される管の
端部にクロメート処理を溶接前に施しておき、その後溶
接することにより、高い耐食性を有する円周溶接部を得
ることが可能となることを知り、本発明を完成した。
Therefore, in order to prevent or compensate for this decrease in Cr concentration in the scale, it is necessary to enrich the weld surface with Cr before welding, in other words, weld a chromate treatment on the end of the tube that is heated during welding. The present invention was completed based on the knowledge that it is possible to obtain a circumferential weld with high corrosion resistance by welding the weld beforehand and then welding.

ここに本発明の要旨とするところは、高合金管であって
、少なくとも円周溶接時の熱影響部の管内周面に、クロ
メート処理液を塗布・乾燥してなる被覆層を10■/M
以上有することを特徴とする高合金管である。
The gist of the present invention is to provide a high-alloy tube with a coating layer of 10 μm/M by applying and drying a chromate treatment liquid on at least the inner circumferential surface of the tube in the heat-affected zone during circumferential welding.
This is a high alloy tube characterized by having the above.

また別の面からは、上記の高合金管同士を接合して、そ
の後これらの管の端部を円周溶接することを特徴とする
、高合金管の円周溶接法である。
Another aspect of the present invention is a circumferential welding method for high alloy tubes, which is characterized in that the above-mentioned high alloy tubes are joined together and then the ends of these tubes are welded circumferentially.

ここに高合金とは、Ni、 Cr、 Mo等の合金元素
を通常の材料より多く含有する材料をいい、具体的には
Crを12重量%以上含有するFe基基台合金たはCr
を12重量%以上含有するNi基基台合金例示される。
Here, high alloy refers to a material that contains alloying elements such as Ni, Cr, and Mo in a larger amount than normal materials, and specifically, it is a Fe-based alloy containing 12% by weight or more of Cr or a Cr.
An example of a Ni-based alloy containing 12% by weight or more of

また円周溶接時の熱影響部とは、円周溶接により溶接ス
ケールが発生する範囲をいい、管寸法によっても変わる
が、−船釣には溶接される高合金管の端部から例えば1
oCIII以内の範囲である。
The heat-affected zone during circumferential welding refers to the area where weld scale occurs due to circumferential welding, and although it varies depending on the pipe size, for boat fishing, for example, from the end of the high alloy pipe to be welded,
The range is within oCIII.

さらにクロメート処理液は、クロム酸以外にCr2O3
・5iO7等の酸化物または硝酸・硫酸等の酸を含んで
いるものでもよく、市販のクロム系表面処理剤でよい。
Furthermore, in addition to chromate treatment liquid, Cr2O3
・It may be one containing an oxide such as 5iO7 or an acid such as nitric acid or sulfuric acid, and a commercially available chromium-based surface treatment agent may be used.

(作用) 以下本発明をその作用効果とともに詳述する。(effect) The present invention will be described in detail below along with its effects.

まず溶接に先立って適宜調整したクロメート処理液を不
揮発分に換算して10mg/rr!以上、溶接する管の
熱影響部の管内周面に塗布する。
First, the chromate treatment solution adjusted appropriately prior to welding is converted to non-volatile content and is 10mg/rr! The above is applied to the inner peripheral surface of the heat-affected zone of the pipe to be welded.

クロメート処理液の塗布方法は特定の方法に限定されな
い。
The method of applying the chromate treatment liquid is not limited to a specific method.

又、クロメート処理液はCr酸以外にもCr2O3、S
ing等の酸化物や硝酸、硫酸等の酸を含んでいても良
く、市販のCr系表面処理剤を用いればよい。
In addition to Cr acid, the chromate treatment solution also contains Cr2O3, S
The surface treatment agent may contain an oxide such as ing, or an acid such as nitric acid or sulfuric acid, and a commercially available Cr-based surface treatment agent may be used.

例えば原液中に不揮発成分としてCr2O3を6.25
重量%、Cr03を6.25重量%、5t(hを12.
5重量%含むCr系表面処理剤を用いればよい。さらに
Crは処理液中において、3価ないしは6価のCrイオ
ンとして存在するために ■Crが粉末として分散しているのではなく、イオン化
しているためにより少ない付着量でも均一な塗布を行う
ことができる ■有機溶剤と異なり、溶接部の性能を劣化させる炭素を
含まない ■高合金表面との化学反応によりCr冨化被膜を形成す
るので被膜の欠陥部が生成せずかつ密着性がよい というメリットがある。
For example, 6.25% of Cr2O3 is added as a non-volatile component in the stock solution.
wt%, Cr03: 6.25 wt%, 5t (h: 12.
A Cr-based surface treatment agent containing 5% by weight may be used. Furthermore, since Cr exists as trivalent or hexavalent Cr ions in the processing solution, ■ Cr is not dispersed as a powder, but is ionized, so uniform coating can be achieved even with a smaller amount. ■Unlike organic solvents, it does not contain carbon that degrades the performance of welded parts. ■It forms a Cr-rich film through chemical reaction with the high alloy surface, so no defects are formed in the film and it has good adhesion. There are benefits.

クロメート処理液の塗布量が不揮発分換算で10mg/
n(未満ではCr冨化量が不充分となり、溶接時の加熱
部に生成するスケール中のCrlfi度が低く、耐食性
の劣化を防ぐことができない。したがって10mg/r
W以上塗布することが有効である。クロメート処理液の
塗布量は不揮発分換算で10a+g/n(以上であれば
、加熱部の耐食性の劣化を防ぐことができるものであり
上限を設ける必要はない。しかし、1000mg/♂を
超えて塗布しても耐食性の向上は期待することができず
、却ってコスト高を招くため塗布量は1000mg/ 
n(以下であることが望ましい。
The amount of chromate treatment liquid applied is 10mg/non-volatile content.
If it is less than 10 mg/r, the Cr enrichment amount will be insufficient, the Crlfi degree in the scale generated in the heated part during welding will be low, and deterioration of corrosion resistance cannot be prevented. Therefore, 10 mg/r
It is effective to apply more than W. The amount of chromate treatment liquid to be applied is 10a+g/n in terms of non-volatile content. However, no improvement in corrosion resistance can be expected, and on the contrary, it will lead to higher costs, so the coating amount is 1000mg/
n (preferably less than or equal to n).

またクロメート処理液の塗布は管内周面全面に行っても
よいことは言うまでもないが、溶接後に酸化スケールが
発生する範囲すなわち少なくとも円周溶接時の熱影響部
に塗布すれば充分である。
It goes without saying that the chromate treatment liquid may be applied to the entire inner circumferential surface of the pipe, but it is sufficient to apply it to the area where oxide scale is generated after welding, that is, at least to the heat-affected zone during circumferential welding.

酸化スケールが発生する範囲は管径・肉厚・溶接条件等
により異なるが、管径・肉厚・溶接条件等がどのような
範囲に変化した場合にも溶接スケールが生成する範囲は
一般的に管の端部からlQcm以内であるため、かかる
範囲にクロメート処理液を塗布しておくことが望ましい
The range in which oxidized scale occurs varies depending on the pipe diameter, wall thickness, welding conditions, etc., but the range in which welding scale occurs is generally the same regardless of the range in which the pipe diameter, wall thickness, welding conditions, etc. change. Since it is within lQcm from the end of the tube, it is desirable to apply the chromate treatment liquid to this area.

このようにして得られたクロメート処理された高合金管
を乾燥して、少なくとも円周溶接時の熱影響部の管内周
面にクロメート処理液の不揮発分からなる被覆層を10
mg/m以上有する高合金管同士を接合し、その後にこ
の管の端部を円周溶接するのである。
The chromate-treated high alloy tube obtained in this way is dried, and a coating layer consisting of a non-volatile chromate treatment liquid is applied to at least 100% of the inner circumferential surface of the tube in the heat-affected zone during circumferential welding.
The high-alloy tubes having a carbon content of mg/m or more are joined together, and then the ends of the tubes are welded circumferentially.

この円周溶接には通常GT八へ(ガスタングステン溶接
法)が用いられるが、特にかかる方法に限定されるもの
ではなく、他の溶接法例えば機械的、電気的に収束され
たプラズマ柱を有するプラズマアークを用いるプラズマ
溶接法、材料同士を接触させ加圧しながら接触面に相対
運動を起こさせ発生する摩擦熱を利用して溶接する摩擦
溶接法さらには被接合材間の元素の熱的拡散によって接
合する拡散接合法であってもよい。
This circumferential welding is usually performed using GT8 (gas tungsten welding method), but it is not limited to this method, and other welding methods may be used, such as using a mechanically or electrically focused plasma column. Plasma welding using a plasma arc, friction welding in which materials are brought into contact with each other under pressure, causing relative motion on the contact surfaces, and welding using the generated frictional heat.Friction welding also uses the thermal diffusion of elements between the materials to be joined. A diffusion bonding method may also be used.

また溶接条件は従来の高合金管の円周溶接法における溶
接条件と同じであり、必要に応じて適宜設定すればよい
Further, the welding conditions are the same as those in the conventional circumferential welding method for high-alloy pipes, and may be appropriately set as necessary.

このように、本発明により、高合金管の円周溶接におい
て、溶接熱影響部の耐食性を向上させることが可能とな
った。
As described above, the present invention makes it possible to improve the corrosion resistance of the weld heat affected zone in circumferential welding of high alloy tubes.

さらに本発明を実施例を用いて詳述するが、これは本発
明の例示であってこれにより本発明が不当に制限される
ものではない。
Further, the present invention will be explained in detail using Examples, but these are merely illustrative of the present invention and the present invention is not unduly limited thereby.

実施例1 第1表に示す組成を有する合金Aからなる高合金管を2
本、それぞれの端部において、次に示す■および■の方
法で円周溶接した。円周溶接条件は第2表に示す。
Example 1 Two high alloy tubes made of alloy A having the composition shown in Table 1 were
The book was circumferentially welded at each end using methods (1) and (2) shown below. The circumferential welding conditions are shown in Table 2.

で1時間放置して水分を乾燥させ、その後にこれらの管
を接合して円周溶接を行った。なお、塗布量は乾燥後の
重量測定結果より求めた。
The tubes were left standing for one hour to dry the moisture, and then these tubes were joined and circumferential welding was performed. The coating amount was determined from the weight measurement results after drying.

第3表 ■従来法で溶接した。すなわちクロメート処理は行わず
に直ちに2本の高合金管を接合して円周溶接を行った。
Table 3 - Welded using the conventional method. That is, two high alloy tubes were immediately joined and circumferentially welded without performing chromate treatment.

これら■の方法または■の方法で円周溶接した高合金管
の溶融境界を端として溶接熱影響部を越えて3ml1l
(厚さ)X10vn(幅) X 50mm(長さ)の形
状の試験片を管内周面から切り出し試料11illlな
いし試料隘7とし、30℃、3.5%NaC12水溶液
、大気解放下で50mV/24hの定電位ステップ法に
より孔食発生電位を測定した。なお基材の孔食電位は0
.35 (Vvs 5CE)であった。結果を第4表に
示す。
3 ml 1 liter beyond the weld heat affected zone from the fusion boundary of the high alloy pipe circumferentially welded by method ① or method ②.
(Thickness) x 10mm (Width) x 50mm (Length) A test piece was cut out from the inner peripheral surface of the tube and used as sample 11ll or sample size 7, and was heated at 30°C, 3.5% NaC12 aqueous solution, and exposed to the atmosphere at 50mV/24h. The potential for pitting corrosion was measured using the constant potential step method. The pitting potential of the base material is 0.
.. 35 (V vs 5CE). The results are shown in Table 4.

第1表 第2表 ■本発明にかかる方法で溶接した。すなわち溶接前に管
の端部からLoanの範囲の管内周面に、第3表に示す
組成を有する市販のクロム系表面処理剤を脱イオン水で
2倍から500倍までの6水準に希釈したクロメート処
理液を塗布し、常温】 2 (注)*は本発明の範囲外 第4表から明らかなように、本発明にかかる試料(試料
隘1ないし試料N15)は孔食電位が高く、溶接後にお
いても基材と同程度の耐食性を有することがわかる。
Table 1 Table 2 ■Welding was carried out by the method according to the present invention. That is, before welding, a commercially available chromium-based surface treatment agent having the composition shown in Table 3 was diluted with deionized water to six levels from 2 times to 500 times on the inner circumferential surface of the pipe in the Loan range from the end of the pipe. 2 (Note) * is outside the scope of the present invention As is clear from Table 4, the samples according to the present invention (sample No. 1 to sample N15) have a high pitting corrosion potential and cannot be welded. It can be seen that even after the test, it has the same corrosion resistance as the base material.

これに対して試料隘6および試料阻7は比較例の試料で
あるが、管の端部のクロメート処理が行われていないた
め(試料隘6)、または不充分であるため(試料Na7
) 、孔食電位は基材より低下してしまっていることが
わかる。
On the other hand, sample no. 6 and sample no. 7 are comparative samples, but the chromate treatment at the end of the tube was not performed (sample no. 6) or was insufficient (sample no. 7).
), it can be seen that the pitting corrosion potential is lower than that of the base material.

実施例2 第1表に示す組成を有する合金人ないし合金Fからなる
高合金管を各合金についてそれぞれ2本ずつ用いて、管
端部に10倍に希釈したクロメート処理液を塗布し、常
温で1時間放置して乾燥後、これらの高合金管を接合し
て実施例1と同様にして円周溶接を行い、管内面の熱影
響部から実施例1と同様に同一寸法の試料を切り出し、
試料NfiIOないし試料隘15を得た。また管の端部
にクロメート処理を行わず円周溶接を行い、やはり管の
熱影響部から実施例1と同様に同一寸法の試料階16な
いし試料隘27を得た。ただし試料11h22ないし試
料隘27は円周溶接後に基材を研磨してスケール除去を
行った。その後これらの試料について前述した方法と全
く同様にして孔食電位を測定した。結果を第5表に示す
Example 2 Two high-alloy tubes made of Alloy F or Alloy F having the composition shown in Table 1 were used for each alloy, and a 10-fold diluted chromate treatment solution was applied to the ends of the tubes, and the tubes were heated at room temperature. After leaving to dry for 1 hour, these high alloy tubes were joined and circumferential welding was performed in the same manner as in Example 1. Samples of the same size were cut out from the heat affected zone on the inner surface of the tubes in the same manner as in Example 1.
Samples NfiIO to Sample No. 15 were obtained. Further, circumferential welding was performed without chromate treatment on the end of the tube, and sample floors 16 and 27 of the same dimensions as in Example 1 were obtained from the heat affected zone of the tube. However, for samples 11h22 to 27, the scale was removed by polishing the base material after circumferential welding. Thereafter, the pitting potential of these samples was measured in exactly the same manner as described above. The results are shown in Table 5.

第5表 (注)*は本発明の範囲外 第5表から明らかなように、本発明にかかる方法は、 (i)高CrのFe基基台合金合金Aないし合金Cおよ
び合金F) (11)高CrのNi基合金(合金りおよび合金E)の
全ての合金に対して溶接熱影響部の耐食性を向上する効
果があることが明らかである。
Table 5 (note) * is outside the scope of the present invention As is clear from Table 5, the method according to the present invention covers (i) high Cr Fe-based alloys Alloy A to Alloy C and Alloy F) ( 11) It is clear that all high Cr Ni-based alloys (alloy and alloy E) have the effect of improving the corrosion resistance of the weld heat affected zone.

これに対して試料隅16ないし試料N[121は、溶接
熱影響部の管内周面にクロメート処理を行なわずに溶接
した高合金管から切り出した試料であるが、基材に対し
て耐食性が著しく低下してしまっていることがわかる。
On the other hand, Sample Corner 16 to Sample N [121] are samples cut from high-alloy tubes welded without chromate treatment on the inner circumferential surface of the tube in the welded heat affected zone, but they exhibit remarkable corrosion resistance compared to the base material. It can be seen that it has decreased.

さらに試料隘22ないし試料阻27は、溶接熱影響部の
管内周面にクロメート処理を行なわずに溶接した高合金
管の溶接熱影響部を研磨してスケール除去を行ってから
切り出した試料であるが、孔食電位が高く耐食性が優れ
ることがわかる。しかしこの方法は前述したように実際
の施行現場では行い得ない方法である。
Further, sample holes 22 to 27 are samples cut out after polishing and removing scale from the welded heat affected zone of a high alloy tube that was welded without chromate treatment on the inner peripheral surface of the tube in the welded heat affected zone. However, it can be seen that the pitting potential is high and the corrosion resistance is excellent. However, as mentioned above, this method cannot be used in actual implementation sites.

(発明の効果) 以上詳述してきた本発明にががる方法は、その構成を高
合金管の溶接前に管の端部にクロメート処理を施すこと
としたために、高合金管の円周溶接部の耐食性を溶接後
の様々な処理(研磨等)を必要とせずに確保できること
となった。
(Effects of the Invention) The method according to the present invention, which has been described in detail above, has a structure in which chromate treatment is applied to the end of the high-alloy tube before welding the high-alloy tube. The corrosion resistance of the parts can be ensured without the need for various treatments (polishing, etc.) after welding.

現地において円周溶接される高合金管の溶接熱影響部の
耐食性を向上することができる本発明の意義は極めて著
しい。
The significance of the present invention, which can improve the corrosion resistance of the weld heat affected zone of high alloy pipes circumferentially welded on site, is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、加熱温度と孔食電位との関係を表わすグラフ
;および 第2図は、加熱温度とスケール中の最高Crf1度との
関係を表わすグラフである。
FIG. 1 is a graph showing the relationship between heating temperature and pitting corrosion potential; and FIG. 2 is a graph showing the relationship between heating temperature and maximum Crf1 degree on the scale.

Claims (2)

【特許請求の範囲】[Claims] (1)高合金管であって、少なくとも円周溶接時の熱影
響部の管内周面に、クロメート処理液を塗布・乾燥して
なる被覆層を10mg/m^2以上有することを特徴と
する高合金管。
(1) A high-alloy tube, characterized by having a coating layer of 10 mg/m^2 or more formed by coating and drying a chromate treatment liquid on at least the inner peripheral surface of the tube in the heat-affected zone during circumferential welding. High alloy tube.
(2)請求項(1)記載の高合金管同士を接合して、そ
の後これらの管の端部を円周溶接することを特徴とする
、高合金管の円周溶接法。
(2) A method for circumferential welding of high alloy tubes, characterized in that the high alloy tubes according to claim (1) are joined together and then the ends of these tubes are welded circumferentially.
JP28852988A 1988-11-15 1988-11-15 High-alloy pipe and circumferential welding method thereof Pending JPH02137690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28852988A JPH02137690A (en) 1988-11-15 1988-11-15 High-alloy pipe and circumferential welding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28852988A JPH02137690A (en) 1988-11-15 1988-11-15 High-alloy pipe and circumferential welding method thereof

Publications (1)

Publication Number Publication Date
JPH02137690A true JPH02137690A (en) 1990-05-25

Family

ID=17731420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28852988A Pending JPH02137690A (en) 1988-11-15 1988-11-15 High-alloy pipe and circumferential welding method thereof

Country Status (1)

Country Link
JP (1) JPH02137690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015749A1 (en) * 1993-01-18 1994-07-21 Tadahiro Ohmi Welding method and welded structure for forming passivated chromium oxide film on weld

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015749A1 (en) * 1993-01-18 1994-07-21 Tadahiro Ohmi Welding method and welded structure for forming passivated chromium oxide film on weld

Similar Documents

Publication Publication Date Title
JPS61184395A (en) Corrosion preventive process for aluminum heat exchanger
CN101954566B (en) Process for fixedly connecting titanium cooling tube in cooler and radiating fins and titanium tube plate
Ma et al. Effect of intermetallic compounds on the mechanical property and corrosion behaviour of aluminium alloy/steel hybrid fusion-brazed welded structure
JPS61186164A (en) Production of aluminum heat exchanger
Bluni et al. Effects of thermal spray coating composition and microstructure on coating response and substrate protection at high temperatures
Loto Comparative assessment of the synergistic combination of ricinus communis and rosmarinus officinalis on high-carbon and P4 low-carbon mold steel corrosions in dilute acid media
US7135075B2 (en) Corrosion resistant coating with self-healing characteristics
JPH02137690A (en) High-alloy pipe and circumferential welding method thereof
Paul et al. Mitigating localized corrosion using thermally sprayed aluminum (TSA) coatings on welded 25% Cr superduplex stainless steel
JP2008038223A (en) Joined body
JPH09268374A (en) Production of coated steel tube
JPH04103778A (en) High alloy tube and welding method therefor
CN109487173A (en) A kind of corrosion resistant oil transportation spiral submerged welded pipe and preparation method thereof
Maksymova et al. Comparison of the Corrosion Resistances of Welded and Brazed Joints Made of Galvanized 08Yu Steel
JP2010144223A (en) Surface treated metallic material having excellent anticorrosive performance to dissimilar metal contact corrosion and dissimilar material joint body provided with surface treated metallic material
JP2000102890A (en) Welding method, welding joint and welding structure
Votava et al. Degradation processes of Al-Zn welded joints
JP4016073B2 (en) Method for forming aluminum oxide passive film, welding method, fluid contact member and fluid supply / exhaust system
JPH09268375A (en) Production of coated steel tube
Zhu et al. Corrosion behavior of 1Cr18Ni9Ti–1Cr11Ni2W2MoV galvanic couples in a simulated marine environment
JP3341242B2 (en) Corrosion resistant copper tube and its manufacturing method
CN111360493B (en) Manufacturing method of low-pressure cylinder exhaust guide ring
Heidersbach et al. Corrosion of Stainless Steels: Effects of Finishing
Ping et al. A protective coating of P-Mo-V heteropoly acid on steel
JPS6230888A (en) Heat transmission pipe