JPH02137281A - Electrostriction effect element - Google Patents

Electrostriction effect element

Info

Publication number
JPH02137281A
JPH02137281A JP63291321A JP29132188A JPH02137281A JP H02137281 A JPH02137281 A JP H02137281A JP 63291321 A JP63291321 A JP 63291321A JP 29132188 A JP29132188 A JP 29132188A JP H02137281 A JPH02137281 A JP H02137281A
Authority
JP
Japan
Prior art keywords
layer
electrostriction
exposed
inner electrodes
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63291321A
Other languages
Japanese (ja)
Inventor
Kenichi Omatsu
尾松 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63291321A priority Critical patent/JPH02137281A/en
Publication of JPH02137281A publication Critical patent/JPH02137281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To improve breakdown strength, prevent the migration of inner electrode material on an element surface, and improve reliability by forming insulator on the whole layer or every other layer on inner electrodes exposed on side surfaces on which an outer electrode is not formed. CONSTITUTION:By screen printing, paste in which silver palladium powder is mixed is spread on an electrostriction sheet 1, thereby forming an inner electrode 2. Electrostriction sheets 1 on which the inner electrodes 2 are printed, and electrostriction sheets 1 on which the inner electrodes 2 are printed and further inner electrodes 2 are printed are laminated in order, and unified in a body with an electrostriction sheet 1 which has not been heated with pressure. This unified body is sintered. On inner electrodes 2 of a pair of facing side surfaces of the sintered body, glass insulator 3 is alternately formed every other layer, and conductive paste whose main component is silver powder is stuck to form an outer electrode 4. On the inner electrodes 3 exposed on a pair of the other side surfaces, glass insulator 3 is formed every other layer. A lead wire 5 is bonded to the outer electrode 4 with solder 6, and an electrostriction effect element is obtained. By this set-up, migration of inner electrode material is restrained, and breakdown strength can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は積層構造を有する電歪効果素子に関し、特にそ
の内部電極の絶縁構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrostrictive effect element having a laminated structure, and particularly to an insulating structure of internal electrodes thereof.

[従来の技術] 電歪効果を用いた変位発生素子としては、横効果を利用
したバイモルフ圧電素子、縦効果を利用した積層型素子
がある。このうち積層型素子は小型で駆動力が大きいこ
と、エネルギー変換効率が高いこと等のメリットから多
くの応用研究がなされている。
[Prior Art] Displacement generating elements using an electrostrictive effect include a bimorph piezoelectric element using a transverse effect and a laminated type element using a longitudinal effect. Among these, many applied studies have been conducted on stacked elements due to their advantages such as small size, large driving force, and high energy conversion efficiency.

この積層型素子で問題となるのは内部電極のとり出し方
法である。電歪層と電極層が交互に積層された電歪効果
素子では、内部電極層は一層おきに共通の外部電極層に
接続せねばならず、その1つの方法としては第4図に示
すような積層セラミックコンデンサと同様の構造がある
。しかしながら、この様な構造では、電界が印加される
部分と印加されない部分が生じるため、素子全体の変位
量を減するばかりでなく、応力集中によりクランクが発
生するという致命的欠点がある。
The problem with this multilayer device is how to take out the internal electrodes. In an electrostrictive effect element in which electrostrictive layers and electrode layers are alternately laminated, every other internal electrode layer must be connected to a common external electrode layer, and one method for this is as shown in Figure 4. It has a similar structure to a multilayer ceramic capacitor. However, in such a structure, there are parts to which an electric field is applied and parts to which it is not applied, which not only reduces the amount of displacement of the entire element, but also has the fatal drawback of causing cranking due to stress concentration.

この様な問題点を解決するため、内部電極を全面に形成
する方法がある。従来、この種の電歪効果素子は第5図
、第6図に示すような構造であった。すなわち、電歪材
料からなるシート(以後電歪シートと略す)1の片面に
内部電極導体層(以後内部電極と略す)2を形成し、こ
れらを複数枚積層して、積層体を形成する。その側面に
露出した内部電極2に一層おきに絶縁物3を形成し、さ
らにその上から外部電極4を形成する。一方、前記側面
に対向する側面では、先に絶縁物3を形成しなかった内
部電極2の露出部に選択的に絶縁物3を形成し、その上
から外部電極4を形成し、外部電極4に半田6によりリ
ード線5を接続した構造であった。よって、外部型8i
4を形成しない側面は内部電極2がすべて露出した状態
であり、実駆動する場合、素子はこの状態のままかエポ
キシ樹脂等を外装して使用していた。
In order to solve these problems, there is a method of forming internal electrodes on the entire surface. Conventionally, this type of electrostrictive element has a structure as shown in FIGS. 5 and 6. That is, an internal electrode conductor layer (hereinafter referred to as internal electrode) 2 is formed on one side of a sheet 1 made of an electrostrictive material (hereinafter referred to as electrostrictive sheet), and a plurality of these layers are stacked to form a laminate. Insulators 3 are formed every other layer on internal electrodes 2 exposed on the side surfaces, and external electrodes 4 are further formed thereon. On the other hand, on the side surface opposite to the side surface, the insulator 3 is selectively formed on the exposed portion of the internal electrode 2 on which the insulator 3 was not formed, and the external electrode 4 is formed thereon. It had a structure in which lead wires 5 were connected to each other by solder 6. Therefore, external type 8i
The internal electrodes 2 are all exposed on the side surfaces where no. 4 is formed, and when actually driven, the element is used in this state or by being covered with epoxy resin or the like.

[発明が解決しようとする課題] 上述した従来の電歪効果素子(第5図)は次のような欠
点がある。
[Problems to be Solved by the Invention] The conventional electrostrictive element (FIG. 5) described above has the following drawbacks.

(1)全面電極構造をとり、キズや汚れの発生し易い素
子表面に内部電極が露出しているために絶縁抵抗の劣下
やショート不良を招きやすい。
(1) Since it has a full-surface electrode structure and internal electrodes are exposed on the element surface, which is prone to scratches and dirt, it is easy to cause poor insulation resistance and short circuits.

(2)また、数10〜100μmの間隔で露出した内部
電極は、耐電圧が空気1!L電圧によって規定されるた
め素子の耐電圧を低くする。
(2) Also, the internal electrodes exposed at intervals of several tens to 100 μm have a withstand voltage of 1 for air! Since it is defined by the L voltage, the withstand voltage of the element is lowered.

(3)さらに、この内部電極に電子部品に多く用いられ
ている銀あるいは銀合金を用いた場合、電極が素子表面
に露出した構造をとっているため空気中の水分と電圧印
加の相乗効果による銀のマイグレーションが起り易い。
(3) Furthermore, when silver or silver alloy, which is often used in electronic components, is used for the internal electrodes, the electrodes are exposed on the element surface, so the synergistic effect of moisture in the air and voltage application Silver migration is likely to occur.

このため絶縁抵抗の劣下やショート不良が発生し易く信
頼上充分とは言えない面があった。
For this reason, the insulation resistance deteriorates and short-circuit failures tend to occur, so that reliability cannot be said to be sufficient.

(4)また、素子表面の露出を防ぐために樹脂により外
装を施した場合でも水分の侵入を完全に除去できず長時
間ののちに同様の不良が発生する。ガラス等の無機物を
側面全体に形成した場合は素子駆動時の伸縮により界面
でのはく離やクラックが発生し、水分の侵入を防止でき
ない。
(4) Furthermore, even if the device is covered with resin to prevent the surface of the device from being exposed, moisture intrusion cannot be completely removed, and similar defects will occur after a long period of time. If an inorganic material such as glass is formed over the entire side surface, peeling or cracking will occur at the interface due to expansion and contraction when the element is driven, making it impossible to prevent moisture from entering.

[課題を解決するための手段] 本発明の電歪効果素子は、シート状の圧電セラミック部
材と内部電極とが交互に重ね合わされた積層焼結体と、
前記積層焼結体の対向する側面にそれぞれ露出する内部
電極の一方の端面を各側面において一層おきに絶縁する
絶縁層と、内部電極の露出する他方の端面を電気的に接
続して2つのくし歯形電極を構成せしめる1対の外部電
極とを含む電歪効果素子において、 外部電極が形成されていない側面に露出している内部電
極の端部が全層あるいは一層おきに絶縁物で被覆されて
いる。
[Means for Solving the Problems] The electrostrictive effect element of the present invention includes a laminated sintered body in which sheet-shaped piezoelectric ceramic members and internal electrodes are alternately stacked,
Two combs are formed by electrically connecting an insulating layer that insulates one end surface of the internal electrodes exposed on opposing sides of the laminated sintered body every other layer on each side surface, and the other exposed end surface of the internal electrodes. In an electrostrictive effect element including a pair of external electrodes constituting a tooth-shaped electrode, the end portions of the internal electrodes exposed on the side surfaces where the external electrodes are not formed are covered with an insulating material in all layers or every other layer. There is.

[作用] 外部電極が形成されていない側面に露出した内部電極上
に全層あるいは1層おきに絶縁物を形成することにより
、絶縁物と素子の界面や絶縁物自体での欠陥の発生が無
く、素子表面での内部電極材のマイグレーションを防止
することができ、電歪効果素子の信頼性が向上する。
[Function] By forming an insulator in all layers or every other layer on the internal electrodes exposed on the side surfaces where no external electrodes are formed, defects do not occur at the interface between the insulator and the element or in the insulator itself. , it is possible to prevent migration of the internal electrode material on the element surface, and the reliability of the electrostrictive element is improved.

[実施例コ 次に、本発明の実施例について図面を参照して説明する
[Embodiments] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の電歪効果素子の第1の実施例の斜視図
である。
FIG. 1 is a perspective view of a first embodiment of the electrostrictive effect element of the present invention.

この電歪効果素子は、第6図に示す従来の電歪効果素子
の外部電極4が形成されていない側面に露出している内
部電極2の端面が一層おきにガラス絶縁物3で絶縁され
ている。
In this electrostrictive effect element, the end surfaces of the internal electrodes 2 exposed on the side surfaces where the external electrodes 4 of the conventional electrostrictive effect element shown in FIG. 6 are not formed are insulated with glass insulators 3 every other layer. There is.

次に、この電歪効果素子の製造方法について説明する。Next, a method for manufacturing this electrostrictive element will be explained.

例えばチタン酸ジルコン酸鉛Pb(Ti。For example, lead zirconate titanate Pb (Ti).

Zr)03を主成分とする圧電体材料の粉末に微量の有
機バインダを添加し、これを有機溶媒中に分散させて泥
漿を作り、テープキャスト法により膜厚約130μmに
形成した電歪シート1を作製する。次に、電歪シート1
上に銀・パラジウム粉末を7:3に混合したペーストを
約10μmの厚さになるようスクリーン印刷で被着し、
内部電極2を形成する。次に、内部電極2が印刷された
電歪シート1を80枚、内部′電極2が印刷されていな
い電歪シート1を30枚、さらに内部電極2が印刷され
た電歪シート1を80枚順次積層し、100℃、 25
0 kg/cm2の条件で熱加圧して一体化し、約11
00℃の温度で2時間焼結する。この焼結体の対向する
一対の側面の内部電極2上に交互に一層おきにガラス絶
縁物3を形成し、さらに銀粉末を主成分とする導電ペー
ストを被着し外部電極4を形成する。一方、もう一対の
側面に露出した内部電極2上に一層おきにガラス絶縁物
3を形成する。最後に、外部電極4上にリード線5を半
田6により接合し、第1図に示す電歪効果素子が得られ
る。
Electrostrictive sheet 1 made by adding a small amount of organic binder to piezoelectric material powder containing Zr) 03 as the main component, dispersing this in an organic solvent to make a slurry, and forming the slurry to a thickness of about 130 μm by tape casting. Create. Next, electrostrictive sheet 1
A paste containing a 7:3 mixture of silver and palladium powder was applied on top by screen printing to a thickness of approximately 10 μm.
Internal electrodes 2 are formed. Next, 80 electrostrictive sheets 1 with internal electrodes 2 printed on them, 30 electrostrictive sheets 1 with no internal electrodes 2 printed on them, and 80 electrostrictive sheets 1 with internal electrodes 2 printed on them. Laminated in sequence, heated to 100℃, 25
Heat and pressurize and integrate under conditions of 0 kg/cm2, approximately 11
Sinter at a temperature of 00°C for 2 hours. Glass insulators 3 are alternately formed every other layer on the internal electrodes 2 on a pair of opposing sides of the sintered body, and a conductive paste containing silver powder as a main component is further applied to form external electrodes 4. On the other hand, glass insulators 3 are formed every other layer on the internal electrodes 2 exposed on the other pair of side surfaces. Finally, lead wires 5 are bonded onto external electrodes 4 with solder 6 to obtain the electrostrictive element shown in FIG. 1.

第2図は本発明の電歪効果素子の第2の実施例の斜視図
である。本実施例が第1の実施例と異なる点は外部電極
4が形成されていない側面に露出している内部電極2の
端面が全層絶縁物3で被覆されている点である。
FIG. 2 is a perspective view of a second embodiment of the electrostrictive effect element of the present invention. This embodiment differs from the first embodiment in that the end face of the internal electrode 2 exposed on the side surface where the external electrode 4 is not formed is covered with a full-layer insulator 3.

本実施例では絶縁物3を形成する内部電極2を選択する
必要がないため、絶縁物3を形成する工法が容易であり
、かつ露出する内部電極2がなくなるため信頼性が向上
するという利点がある。
In this embodiment, there is no need to select the internal electrodes 2 that form the insulator 3, so the method for forming the insulator 3 is easy, and there are no exposed internal electrodes 2, which has the advantage of improving reliability. be.

第3図は第1、第2の実施例の素子の信頼性評価結果を
従来例(第6図)の素子と比較して示す図である。第1
図、第2図の素子、第6図の素子をそれぞれ20個ずつ
40℃ 95%RHの湿性雰囲気中で150vの直流電
圧を印加して寿命試験を行った。第3図かられかるよう
に従来例の素子が数十時間から放電不良が発生しはじめ
るのに対し、本実施例の素子は1000時間を経過した
後も不良は発生しなかった。また、耐電圧テストでは従
来の1.5倍の耐電圧を有することがわかった。
FIG. 3 is a diagram showing the reliability evaluation results of the elements of the first and second embodiments in comparison with the element of the conventional example (FIG. 6). 1st
A life test was conducted on 20 of the elements shown in FIG. 2, 2, and 6 in a humid atmosphere of 40° C. and 95% RH by applying a DC voltage of 150 V. As can be seen from FIG. 3, discharge defects began to occur in the conventional device after several tens of hours, whereas no defects occurred in the device of the present example even after 1000 hours. In addition, in a withstand voltage test, it was found that the withstand voltage was 1.5 times that of the conventional one.

[発明の効果] 以上説明したように本発明は、外部電極が形成されてい
ない側面に露出している内部電極の端部に全層あるいは
一層おきに絶縁物を形成することにより、内部電極材の
マイグレーションを抑えることができ、さらには耐電圧
を大きくできるので、信頼性の高い電歪効果素子を作れ
るという効果がある。
[Effects of the Invention] As explained above, the present invention improves the internal electrode material by forming an insulator on the entire layer or every other layer at the end of the internal electrode exposed on the side surface where the external electrode is not formed. This has the effect of making it possible to suppress migration and increase the withstand voltage, making it possible to produce highly reliable electrostrictive elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の電歪効果素子の第1
、第2の実施例を示す斜視図、第3図は本実施例の素子
と従来の素子を40℃−95%RHの湿性雰囲気中で1
50vの直流電圧を印加した時の時間と不良発生率の関
係を示すグラフ、第4図、第5図は電歪効果素子の従来
例の縦断面図、第6図は第5図の電歪効果素子の斜視図
である。 1・・・電歪シート、   2・・・内部電極、3・・
・絶縁物、     4・・・外部電極、5・・・リー
ド線、    6・・・半田。 為1図 4 タト@5電割に 第4図 儒5図 0J 時 団 (H) 馬6図
FIG. 1 and FIG. 2 respectively show the first diagram of the electrostrictive effect element of the present invention.
, a perspective view showing the second embodiment, and FIG.
A graph showing the relationship between time and failure rate when a DC voltage of 50 V is applied, Figures 4 and 5 are longitudinal cross-sectional views of conventional examples of electrostrictive effect elements, and Figure 6 is the electrostrictive structure of Figure 5. It is a perspective view of an effect element. 1... Electrostrictive sheet, 2... Internal electrode, 3...
- Insulator, 4... External electrode, 5... Lead wire, 6... Solder. For 1 Figure 4 Tato @ 5 Denwari Figure 4 Confucian 5 Figure 0J Jidan (H) Ma 6 Figure

Claims (1)

【特許請求の範囲】[Claims] 1.シート状の圧電セラミック部材と内部電極とが交互
に重ね合わされた積層焼結体と、前記積層焼結体の対向
する側面にそれぞれ露出する内部電極の一方の端面を各
側面において一層おきに絶縁する絶縁層と、内部電極の
露出する他方の端面を電気的に接続して2つのくし歯形
電極を構成せしめる1対の外部電極とを含む電歪効果素
子において、 外部電極が形成されていない側面に露出している内部電
極の端部が全層あるいは一層おきに絶縁物で被覆されて
いることを特徴とする電歪効果素子。
1. A laminated sintered body in which sheet-like piezoelectric ceramic members and internal electrodes are alternately stacked, and one end surface of the internal electrodes exposed on opposing sides of the laminated sintered body is insulated every other layer on each side surface. In an electrostrictive element that includes an insulating layer and a pair of external electrodes that electrically connect the other exposed end surface of an internal electrode to form two comb-shaped electrodes, the side surface on which the external electrode is not formed is An electrostrictive effect element characterized in that exposed end portions of internal electrodes are covered with an insulating material in all layers or every other layer.
JP63291321A 1988-11-17 1988-11-17 Electrostriction effect element Pending JPH02137281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291321A JPH02137281A (en) 1988-11-17 1988-11-17 Electrostriction effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291321A JPH02137281A (en) 1988-11-17 1988-11-17 Electrostriction effect element

Publications (1)

Publication Number Publication Date
JPH02137281A true JPH02137281A (en) 1990-05-25

Family

ID=17767395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291321A Pending JPH02137281A (en) 1988-11-17 1988-11-17 Electrostriction effect element

Country Status (1)

Country Link
JP (1) JPH02137281A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127688A (en) * 1984-07-02 1986-02-07 Nec Corp Electrostrictive effect element and production thereof
JPS6316685A (en) * 1986-07-08 1988-01-23 Nec Corp Electrostrictive effect element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127688A (en) * 1984-07-02 1986-02-07 Nec Corp Electrostrictive effect element and production thereof
JPS6316685A (en) * 1986-07-08 1988-01-23 Nec Corp Electrostrictive effect element

Similar Documents

Publication Publication Date Title
US4780639A (en) Electrostriction effect element
JPH04299588A (en) Electrostriction effect element
US5523645A (en) Electrostrictive effect element and methods of producing the same
JPH0666483B2 (en) Electrostrictive effect element
JPS63153870A (en) Electrostrictive effect element
JPH053349A (en) Laminated piezo-electric actuator and its manufacture
JPH055387B2 (en)
JPH03283581A (en) Laminated piezoelectric actuator element
JPH02137281A (en) Electrostriction effect element
JP2892672B2 (en) Stacked displacement element
JP2000252537A (en) Laminated piezoelectric ceramic
JPH0256822B2 (en)
JPH0476969A (en) Electrostrictive effect element
JPH0666484B2 (en) Electrostrictive effect element
JPS6039878A (en) Laminating type piezoelectric body
JPH02164082A (en) Electrostriction effect element
JPS63122288A (en) Electrostriction effect element
JPH03283682A (en) Electrostrictive effect device
JPH02266578A (en) Electrostrictive effect element
JP3017784B2 (en) Stacked displacement element
JPH07106654A (en) Multilayer displacement element
JPH04239783A (en) Electrostrictive effect device
JPH049390B2 (en)
JPH04359576A (en) Laminated piezoelectric/electrostrictive effect element
JPH05110157A (en) Lamination piezoelectric actuator