JPH02137113A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH02137113A
JPH02137113A JP29085088A JP29085088A JPH02137113A JP H02137113 A JPH02137113 A JP H02137113A JP 29085088 A JP29085088 A JP 29085088A JP 29085088 A JP29085088 A JP 29085088A JP H02137113 A JPH02137113 A JP H02137113A
Authority
JP
Japan
Prior art keywords
film
carbonaceous
recording medium
magnetic recording
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29085088A
Other languages
Japanese (ja)
Other versions
JP2701384B2 (en
Inventor
Yuichi Seta
瀬田 雄一
Keiichiro Sano
佐野 桂一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP29085088A priority Critical patent/JP2701384B2/en
Publication of JPH02137113A publication Critical patent/JPH02137113A/en
Application granted granted Critical
Publication of JP2701384B2 publication Critical patent/JP2701384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the increase of coefft. of friction by incorporating an element of group 0 of periodic table at >=1 atomic% into a carbonaceous protective layer. CONSTITUTION:The element (rare gas) of the group 0 of periodic table is incorporated at >=1 atomic% into the carbonaceous protective layer of the magnetic recording medium constituted by forming a thin-film magnetic layer and the carbonaceous protective layer on a nonmagnetic substrate. The wear rate of the carbon film is high in the sliding process with a head in contact start-stop (CSS) tests if the content of the rare gas is below 1 atomic%. Worn powder is then observed and the disk is flawed after several thousand times of CSS. The magnetic layer is, therefore, damaged and the head crash is resulted. The increase of the coefft. of friction is prevented in this way and the carbonaceous protective layer is usable over a long period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体、特に通常使用条件下において
耐久性に優れた薄膜型磁気記録媒体に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, and particularly to a thin film magnetic recording medium that has excellent durability under normal use conditions.

〔従来の技術〕[Conventional technology]

薄膜型磁気記録媒体は、通常、金属もしくはそれらの合
金を塗布、メツキ、真空蒸着又はスパッタ法等によって
非磁性基板上に被着して製造される。実際の使用時にお
いては、磁気ヘッドと磁気記録媒体との物理的接触、つ
まり摺動によって摩耗損傷を受ける。この結果、数々の
欠陥、例えば摩擦係数の上昇によるトルクの増大や音を
発するいわゆる鳴きが起きたりする。
Thin-film magnetic recording media are usually manufactured by depositing metals or their alloys on nonmagnetic substrates by coating, plating, vacuum evaporation, sputtering, or the like. During actual use, the magnetic head is subject to wear and tear due to physical contact, ie, sliding, between the magnetic head and the magnetic recording medium. As a result, a number of defects occur, such as an increase in torque due to an increase in the coefficient of friction and so-called squealing.

また、磁気特性上も劣化を起こしたりする。Moreover, the magnetic properties may also deteriorate.

上記の欠陥を解決する方法として、磁性層の上に保護層
を設げることが提案され、実施されている。一般的に摩
耗というのは、加えられる外力と摺動し合う材料力学的
材質に大きく依存するものである。従来の保護膜として
は、大別すると(1)炭素質膜、(2)炭素質膜の改質
、例えばプラズマ重合等を始めとするフッ素化、(3)
炭素質膜以外の膜、例えば酸化膜、窒化膜、はう化膜等
が挙げられる。
As a method for solving the above-mentioned defects, it has been proposed and implemented to provide a protective layer on the magnetic layer. In general, wear largely depends on the applied external force and the mechanical properties of the materials that slide against each other. Conventional protective films can be roughly divided into (1) carbonaceous films, (2) modification of carbonaceous films, such as fluorination including plasma polymerization, and (3) carbonaceous films.
Examples include films other than carbonaceous films, such as oxide films, nitride films, and fertilized films.

(1)の炭素質膜といっても、ダイヤモンドライク薄膜
からアモルファス薄膜に至るまで、ビッカース硬度でも
数百から数千に至るまで、幅広い構造及び物性を有して
いる。そしてこれらの膜の構造及び物性は、明らかに製
造方法に依存している。例えば、ダイヤそンドライクカ
ーボン膜の場合は、イオンビーム蒸着法、アーク放電性
、プラズマCVD法によることがほとんどである。しか
しながら、成膜時の磁性層の損傷を考えると、高エネル
ギー(数百eV以上)を与えたり、成膜時の磁性層の温
度が上昇しすぎるのは、磁気特性を悪くするので好まし
くない。
The carbonaceous film (1) has a wide range of structures and physical properties, ranging from diamond-like thin films to amorphous thin films, and Vickers hardness ranging from several hundred to several thousand. The structure and physical properties of these films are clearly dependent on the manufacturing method. For example, in the case of diamond-like carbon films, ion beam evaporation, arc discharge, and plasma CVD are most often used. However, in view of damage to the magnetic layer during film formation, it is not preferable to apply high energy (several hundred eV or more) or to raise the temperature of the magnetic layer too much during film formation, as this will deteriorate the magnetic properties.

また、経済的にも磁性層とまったく異なる方法で保護膜
を形成するのは得策でない。一方、アモルファスカーボ
ン膜の場合は、炭化水素ガスを用いたプラズマCVD法
やグラファイトをターゲットとして、アルゴンガスプラ
ズマによるスパッタ法により製造される。製造条件によ
っては若干のグラファイト微結晶相が見られたり、s 
p3構造の存在が見られるが、これらは基本的にアモル
ファスであり、プラズマCVD法では、厳密にいうと水
素化アモルファスカーボン膜ということになる。このよ
うに炭素質膜は、製造方法及び製造条件により構造と物
性を変化させることが可能であり、保護膜として用いら
れる理由の一つとなっている。
Furthermore, from an economic standpoint, it is not a good idea to form the protective film using a method completely different from that for forming the magnetic layer. On the other hand, an amorphous carbon film is manufactured by a plasma CVD method using hydrocarbon gas or a sputtering method using argon gas plasma using graphite as a target. Depending on the manufacturing conditions, some graphite microcrystalline phase may be observed, or s
Although the presence of a p3 structure is seen, these are basically amorphous, and strictly speaking, they are hydrogenated amorphous carbon films in the plasma CVD method. As described above, the structure and physical properties of a carbonaceous film can be changed depending on the manufacturing method and manufacturing conditions, which is one of the reasons why it is used as a protective film.

(2)の炭素質膜の改質は、プラズマ重合法を用いたり
、テフロンのターゲットを用いたスノくツタ−法あるい
はCF4などのプロセスガスな反応分解させて表面処理
すること等で行われている。
The modification of the carbonaceous film (2) is carried out by using a plasma polymerization method, a snog-vine method using a Teflon target, or surface treatment by reaction decomposition with a process gas such as CF4. There is.

この目的は、通常の炭素質膜では得られない物性を得よ
うとするものであり、例えば撥水性を向上させるもので
ある。
The purpose of this is to obtain physical properties that cannot be obtained with ordinary carbonaceous membranes, such as improving water repellency.

(3)の炭素質以外の膜としては、数多く報告されてお
り、製造方法も、塗布後焼結する方法、プラズマCVD
法、スパッタ法あるいは反応性スパッタ法等広範にわた
っている。この目的は、炭素質膜よりもさらに磁性層と
の密着性を改良することや、容易に炭素質膜よりも高硬
度膜を作成したり、耐酸化性向上を図ることにより摩耗
を改善することにある。
There are many reports regarding (3) non-carbonaceous films, and the manufacturing methods include sintering after coating, plasma CVD, etc.
There are a wide range of methods including sputtering method, sputtering method, and reactive sputtering method. The purpose of this is to improve the adhesion with the magnetic layer even more than a carbonaceous film, to easily create a film with higher hardness than a carbonaceous film, and to improve wear by improving oxidation resistance. It is in.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

磁気記録媒体の使用時は、ディスクは停止状態から急速
に加速され、これに伴ない、浮上ヘッドに浮力が与えら
れてヘッドは浮く。使用後は、磁気記録媒体を回転させ
るモーターの電源が切断され、ヘッドと磁気記録媒体と
が物理的に接触をおこす。このような動作を頻繁に起こ
させて耐久性を調べる試験をコンタクトスタートストッ
プ(以下C8Sと略す0)と呼ぶ。このC8Sテストに
おいて従来の磁気記録媒体では、C8Sの回数を重ねる
につれて摩擦係数が増加し、数千回にも満たないうちに
、ドライブのモーターが停止したり、あるいは、ヘッド
が保護膜に衝突して保護膜を破壊するヘッドクラッシュ
という現象が生じたりする。
When a magnetic recording medium is used, the disk is rapidly accelerated from a stopped state, and as a result, buoyancy is applied to the flying head, causing the head to float. After use, the power to the motor that rotates the magnetic recording medium is turned off, and the head and the magnetic recording medium come into physical contact. A test to check durability by frequently causing such an operation is called contact start/stop (hereinafter abbreviated as C8S). In this C8S test, with conventional magnetic recording media, the friction coefficient increases as the number of C8S cycles increases, and the drive motor stops or the head collides with the protective film within a few thousand cycles. This can cause a phenomenon called head crash that destroys the protective film.

本発明は上記の問題点を解決するためになされたもので
あり、摩擦係数の大幅な増加を防ぎ、長年月の使用に耐
える磁気記録媒体を得ることを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and aims to prevent a significant increase in the coefficient of friction and to obtain a magnetic recording medium that can be used for many years.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、非磁性基板上に薄膜磁性層及び炭素質
保護層を形成してなる磁気記録媒体において、炭素質保
護層中に周期律表第0族の元素がl原子チ以上含有され
ていることを特徴とする磁気記録媒体に存する。
The gist of the present invention is to provide a magnetic recording medium comprising a thin magnetic layer and a carbonaceous protective layer formed on a non-magnetic substrate, in which the carbonaceous protective layer contains 1 atom or more of an element of Group 0 of the periodic table. A magnetic recording medium characterized by:

以下、本発明の詳細な説明する0 本発明においては、磁気記録媒体の保霞層である炭素質
膜の中に周期律表第Q族の元素(以下希ガスと称す)を
含有させることを特徴とする。
The present invention will be described in detail below. In the present invention, an element of group Q of the periodic table (hereinafter referred to as rare gas) is incorporated into a carbonaceous film which is a protective layer of a magnetic recording medium. Features.

希カスとしてはヘリウム、ネオン、アルゴン、クリプト
ン、キセノン、ラドンが挙げられる。
Examples of rare gases include helium, neon, argon, krypton, xenon, and radon.

しかし、ヘリウムは軽元素であり、シかも原子半径が小
さいためスパッタ効率が低く、また、ラドンは放射性元
素でアシ半減期も短いので取扱いが困難である。残る元
素のうち工業的には、安価なアルゴンが最も好ましい。
However, helium is a light element and has a small atomic radius, resulting in low sputtering efficiency, and radon is a radioactive element with a short half-life, making it difficult to handle. Of the remaining elements, argon is the most preferred from an industrial standpoint since it is inexpensive.

希ガスの含有量は炭素質膜中7原子係以上にする必要が
ある。l原子係未満では、C8Sテストにおけるヘッド
との摺動過程において炭素膜の摩耗速度が大きく、数千
回のC8S回数で、摩耗粉が見られたシ、ディスクにキ
ズが入ったシする。このため磁性層にダメージを与えた
り、ヘッドクラッシュの原因となったシする。また、さ
らに長期耐久性を向上させるためには、希ガスの含有量
をへS原子係以上、好ましくはコ原子チ以上とすること
が好適であシ、希ガスの含有量が多いほど、耐久性は向
上する傾向にある。
The content of rare gas needs to be 7 atoms or more in the carbonaceous film. At less than 1 atomic ratio, the carbon film wears out at a high rate during the sliding process with the head in the C8S test, and after several thousand C8S tests, wear particles were observed and the disk was scratched. This may damage the magnetic layer or cause a head crash. In addition, in order to further improve long-term durability, it is preferable to set the content of the rare gas to be at least the s-atomic ratio, preferably at least the co-atom ratio. gender tends to improve.

炭素質膜中に希ガスを含有させる方法としては、いくつ
か考えられるが、大別すると(A)炭素質膜を成膜しな
がら希ガスを含有させる方法、(B)炭素質膜成膜後に
希ガスを打ち込んで含有させる方法に分けられる。(A
)の方法としては、プラズマCVD法、スパッタ法、蒸
着法あるいはイオンビーム蒸着法等が考えられる。具体
的には、プラズマCVD法の場合には、炭化水素ガス中
に希ガスを希釈し、プラズマ中で同時にイオン化させ、
磁性層側を電気的に負にして、希ガスの正イオンを呼び
込む方法あるいは、別シ 途イオンガフより希ガスイオンを電気的に加速して、磁
性層上に成膜しつつある炭素質膜にぶつける方法等が挙
げられる。スパッタ法の場合には、意図的に炭素質膜の
電位をイオンよυ相対的に低下させることにより、スパ
ッタリングに用いられる希ガスイオンを炭素質膜中に積
極的に取り込ませる方法が挙げられる。蒸着法およびイ
オンビーム蒸着法の場合も同様に希ガスのプラズマを生
成させて一部イオンを炭素質膜中に引き込む方法、希ガ
スをイオン源よシ供給して炭素質膜中に注入する方法等
が挙げられる。
There are several possible methods for incorporating a rare gas into a carbonaceous film, but they can be roughly divided into (A) a method of incorporating a rare gas while forming a carbonaceous film, and (B) a method of containing a rare gas after forming a carbonaceous film. It can be divided into two methods: injecting rare gas into it. (A
) may be a plasma CVD method, a sputtering method, an evaporation method, an ion beam evaporation method, or the like. Specifically, in the case of the plasma CVD method, a rare gas is diluted in a hydrocarbon gas and simultaneously ionized in the plasma.
A method is to make the magnetic layer side electrically negative and attract positive ions of a rare gas, or a separate method is to electrically accelerate rare gas ions from an ion gaff to the carbonaceous film being formed on the magnetic layer. Examples include a method of hitting the target. In the case of sputtering, there is a method in which rare gas ions used in sputtering are actively incorporated into the carbonaceous film by intentionally lowering the potential of the carbonaceous film relative to the ions. In the case of the vapor deposition method and the ion beam evaporation method, similarly, a method of generating rare gas plasma and drawing some of the ions into the carbonaceous film, and a method of supplying the rare gas from an ion source and injecting it into the carbonaceous film. etc.

一方、(B)の方法としては、いわゆるイオンインプラ
ンテーションの方法及び類似の方法が挙げられる。
On the other hand, the method (B) includes so-called ion implantation methods and similar methods.

ここで、炭素質膜中のアルゴン濃度はラザフォード後方
散乱(R,BS)法によって求めることができる。具体
的には、炭素質膜をシリコン単結晶のような密度既知の
基板上に成膜し、RBSスペクトル上に現われる各原子
に由来するピークのエツジ高さを比べることによシ各元
素の原子密度を算出する。(1)式は元素AのRBSス
ペクトルのピークのエツジ高さを与える。
Here, the argon concentration in the carbonaceous film can be determined by Rutherford backscattering (R, BS) method. Specifically, by forming a carbonaceous film on a substrate of known density, such as a silicon single crystal, and comparing the edge heights of peaks derived from each atom that appear on the RBS spectrum, the atoms of each element can be determined. Calculate the density. Equation (1) gives the edge height of the peak of the RBS spectrum of element A.

HA=6hΩQN t/ cosθA  −(1)ここ
で、HAはピークの高さ、0人は散乱断面積、Ωは検出
器の立体角、Qはイオン照射量、Nは原子密度、tは膜
厚、θムは後方散乱角である。また元素AとBの原子密
度の比は(II)式%式% ([) 元素Bは密度既知の試料とし、本発明者らはシリコン単
結晶を用いた。
HA=6hΩQN t/ cosθA − (1) where HA is the height of the peak, 0 is the scattering cross section, Ω is the solid angle of the detector, Q is the ion dose, N is the atomic density, and t is the film thickness. , θm is the backscattering angle. Further, the ratio of the atomic densities of elements A and B is expressed by the formula (II) % Formula % ([) Element B is a sample whose density is known, and the present inventors used a silicon single crystal.

また別の方法としては、螢光X線分析によって、未知試
料とアルゴンの標準試料(イオン注入装置により定量の
アルゴンイオンを打ち込んだもの)とのX線強度比較か
ら、膜中のアルゴンの絶対量を求め、この値と膜の密度
よりアルゴン濃度を求めることもできる。両者の結果は
良く一致する。
Another method is to use fluorescent X-ray analysis to compare the X-ray intensity of an unknown sample and a standard argon sample (injected with a fixed amount of argon ions using an ion implantation device) to determine the absolute amount of argon in the film. The argon concentration can also be determined from this value and the density of the film. Both results agree well.

また、本発明においては、炭素質膜の硬度がiooθK
y f /−以上であることが好ましい0硬度がt o
 OoKqf /mA  に満たないとヘッドによるキ
ズが入り易かったり、摩耗速度が大きくなったりし易く
、耐摩耗性が低下する傾向がある。
Further, in the present invention, the hardness of the carbonaceous film is iooθK
The zero hardness is preferably greater than or equal to y f /-.
If it is less than OoKqf /mA, the head tends to be easily scratched, the wear rate increases, and the wear resistance tends to decrease.

さらに、炭素質膜は保護層として機能するために耐摩耗
性とともに、磁性層を酸化から保護するために耐食性も
要求される。低密度の炭素質膜は、耐食性が悪く、水蒸
気等の磁性層を酸化させるガスを遮断するためには、炭
素膜が高密度で緻密であることが望ましい。本発明にお
いては、炭素質膜の密度はへqzt/air以上である
ことが好ましい。密度がへqrv/aA未満の場合は磁
性層の劣化が起こる可能性がある。
Furthermore, the carbonaceous film is required not only to have wear resistance in order to function as a protective layer, but also to have corrosion resistance in order to protect the magnetic layer from oxidation. A low-density carbon film has poor corrosion resistance, and in order to block gases such as water vapor that oxidize the magnetic layer, it is desirable that the carbon film be dense and dense. In the present invention, the density of the carbonaceous film is preferably equal to or higher than qzt/air. If the density is less than qrv/aA, deterioration of the magnetic layer may occur.

本発明において、非磁性基板としては例えばアルミニウ
ム合金、マグネシウム合金等の非磁性金属、ポリスルフ
ォン等の合成樹脂あるいはセラミックス、ガラス等が磁
気記録媒体の基板として通常用いられているものが使用
できる。
In the present invention, as the non-magnetic substrate, for example, non-magnetic metals such as aluminum alloys and magnesium alloys, synthetic resins such as polysulfone, ceramics, glass, etc., which are commonly used as substrates for magnetic recording media, can be used.

これらの非磁性基板上に薄膜磁性層を形成するが、これ
に先だって、リン化ニッケル等の非磁性金属薄膜を形成
してもよい。
Although a thin magnetic layer is formed on these nonmagnetic substrates, a thin film of a nonmagnetic metal such as nickel phosphide may be formed prior to this.

薄膜磁性層は、強磁性金属、例えばコバルト合金、鉄合
金等を無電解メツキ法、スパッタ法等公知の方法によっ
て基体上に被着することにより形成される。
The thin film magnetic layer is formed by depositing a ferromagnetic metal such as a cobalt alloy or an iron alloy onto a substrate by a known method such as electroless plating or sputtering.

〔実施例〕〔Example〕

以下、実施例によって本発明をさらに詳細に説明するが
、本発明はその要旨を超えない限り実施例により限定さ
れるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by the Examples unless the gist thereof is exceeded.

性薄膜を形成した直径3.3インチの磁気ディスク上に
、アルゴン雰囲気中、成膜圧力&mTorr、ターゲッ
トにかかるパワー密度3 、7 W / crAでグラ
ファイトターゲットを用い、基板側にかげる負電位を0
から一1sovの範囲で変化させて、直mマグネトロン
スパッタ法によりアルゴン含有量の異なる厚さダθnm
の炭素質保護層を形成した。
A graphite target was used on a magnetic disk with a diameter of 3.3 inches on which a magnetic thin film was formed, in an argon atmosphere, at a film-forming pressure of &mTorr, and at a power density of 3.7 W/crA applied to the target, and the negative potential applied to the substrate side was set to 0.
Thicknesses with different argon contents were formed by direct magnetron sputtering by varying the range from -1sov to θnm.
A carbonaceous protective layer was formed.

得られた磁気ディスクを用いてcssf−’<pを行っ
た。C8Sサイクルは、ディスク回転を360 Orp
mまで加速し、3 A 00 rpmで10秒間保持し
、ブレーキによる減速の後、10秒間停止させることを
lサイクルとしたOヘッドとディスクの間の摩擦係数が
lを越えるか、あるいはヘッドまたはディスクにキズが
入ったり、汚れが見られるまでのC8Sサイクルの回数
を調べた。Al2O,・TiCのスライダーを持つ薄膜
ヘッドを用い、押し付は荷重/jgで試験を行った。ま
た、保護膜上に潤滑剤は塗布しなかった0 結果を第1表に示す。例えば炭素質保護層中のアルゴン
含有量が0.2原子チの場合、C8Sサイクル5ooo
回で摩擦係数がlを越え、1oooo回でヘッドクラツ
シェした。
Using the obtained magnetic disk, cssf-'<p was performed. The C8S cycle rotates the disc by 360 Orp.
The friction coefficient between the head and disk exceeds l, or the friction coefficient between the head and disk exceeds l, or the head or disk We investigated the number of C8S cycles until scratches or dirt appeared on the surface. A thin film head with a slider of Al2O, .TiC was used, and the pressing test was conducted at a load/jg. In addition, no lubricant was applied on the protective film.The results are shown in Table 1. For example, if the argon content in the carbonaceous protective layer is 0.2 atoms, the C8S cycle is 5ooo
The friction coefficient exceeded 1 after 100 times, and the head crashed after 100 times.

実施例S〜り 実施例1と同じコバルト合金薄膜を形成した磁気ディス
ク上に、高周波マグネトロンスパッタ法により、基板側
にかげる負電位を増減して、アルゴン濃度の異なる炭素
質保護膜を有する磁気ディスクを作製し、C8Sテスト
を行った。
Example S - A magnetic disk having a carbonaceous protective film with a different argon concentration by increasing or decreasing the negative potential applied to the substrate side by high-frequency magnetron sputtering on a magnetic disk on which the same cobalt alloy thin film as in Example 1 was formed. was prepared and a C8S test was conducted.

負電位の範囲を−20から一10OV、成膜圧力&mT
orr、  ターゲットにかかるパワー密度2、3 W
 / crtlとし、他の条件は実施例1と同様にして
行った。結果を第2表に示す。
Negative potential range from -20 to -10OV, film forming pressure &mT
orr, power density applied to the target 2, 3 W
/crtl, and the other conditions were the same as in Example 1. The results are shown in Table 2.

実施例g〜10および比較例ダ 実施例1と同じコバルト合金薄膜を形成した磁気ディス
ク上に、直流マグネトロンスノ(ツタ法により、基板側
に高周波電力をかけ、アルゴン濃度の異なる炭素質保護
膜を有する磁気ディスクを作製し、C8Sテストを行っ
た。高周波電力の範囲を3からSOW、膜厚、成膜圧力
、ターゲットにかかるパワー密度等信の条件は実施例1
と同様にして行った。結果を第3表に示す0 実施例// イオン注入法により、実施例/と同様の方法で形成した
保護膜に、イオン注入法によりアルゴンイオンを入射エ
ネルギーII OkeV、注入量1xior’個/−で
打ち込んだ。膜中のアルゴン含有量はλ原子チ程度とな
った。得られた磁気ディスクを用いてC8Sテストを行
った。この膜は20.000回までのC8Sサイクルに
耐えた0 実施例/、2および比較例3〜6 アルゴンの代わりに、キセノン雰囲気中とし、負電位の
範囲を−20から−govとしたこと以外は実施例1と
同様の方法により作製した炭素質保護膜を有する磁気デ
ィスクにおいて、C8Sテストを行った。結果を第4表
に示す。
Examples g to 10 and Comparative Example D A carbonaceous protective film with a different argon concentration was formed on a magnetic disk on which the same cobalt alloy thin film as in Example 1 was formed by applying high frequency power to the substrate side using a DC magnetron method. A magnetic disk having the following characteristics was prepared and a C8S test was conducted.The conditions of high frequency power ranged from 3 to SOW, film thickness, film forming pressure, power density applied to the target, etc. were as in Example 1.
I did it in the same way. The results are shown in Table 3.0 Example// Argon ions were implanted by ion implantation into a protective film formed in the same manner as in Example/ with an incident energy of II OkeV and an implantation amount of 1xior' ions/-. I typed it in. The argon content in the film was about λ atoms. A C8S test was conducted using the obtained magnetic disk. This membrane withstood up to 20,000 C8S cycles.Example/2 and Comparative Examples 3-6 Except that the atmosphere was xenon instead of argon and the negative potential range was from -20 to -gov. conducted a C8S test on a magnetic disk having a carbonaceous protective film manufactured by the same method as in Example 1. The results are shown in Table 4.

第  / 表 第 第 第 り 表 表 表 参考例 直径3.0インチのシリコンウェハー(100)上に、
アルゴン雰囲気中、成膜圧力&mTorrターゲットに
かかるパワー密度3.7W / crtlでグラファイ
トターゲットを用い、基板側にかげる負電位を−20か
ら−100Vの範囲で変化させて、直流マグネトロンス
パッタ法により、アルゴン含有量の異なる炭素質膜を形
成した。
Table 1 Reference Example On a silicon wafer (100) with a diameter of 3.0 inches,
In an argon atmosphere, using a graphite target at a film formation pressure and a power density of 3.7 W/crtl applied to the mTorr target, the negative potential applied to the substrate side was varied in the range of -20 to -100 V, and the argon was sputtered by direct current magnetron sputtering. Carbon films with different contents were formed.

得られた炭素質膜のヌープ硬度、内部応力および密度の
測定結果を第3表に示す。
Table 3 shows the measurement results of the Knoop hardness, internal stress, and density of the obtained carbonaceous film.

ヌープ硬度は、荷重を2fとしたこと以外はJIS Z
 22r/の微小硬さ試験方法に基づいて測定した。
Knoop hardness is JIS Z except that the load is 2f.
It was measured based on the microhardness test method of 22r/.

内部応力は、炭素質膜を形成する前と後のシリコンウェ
ハー中央部のそりをIonic System社製ウェ
ハーストレスゲージで測定し、その変位量から下記式に
より求めた。
The internal stress was determined by measuring the warpage at the center of the silicon wafer before and after forming the carbonaceous film using a wafer stress gauge manufactured by Ionic Systems, and from the amount of displacement using the following formula.

(式中、Σは内部応力(dyn / ca ) 、dは
シリコンウェハー中央部の変位量、rはシリコンウェハ
ー半径N E8はシリコンのヤング率、υはシリコンの
ポアソン比、Ts はシリコンウェハーーの厚さ、Tf
は炭素質膜の厚さをそれぞれ示すO)炭素質膜中のアル
ゴン含有量が/原子チ未満では硬度が不充分であり、ま
たアルゴン含有量がl原子チ以上になると、炭素質膜の
内部応力が増大し、密度も高くなることが分かる。この
理由は不明であるが以下のように考えられる。
(In the formula, Σ is the internal stress (dyn/ca), d is the displacement at the center of the silicon wafer, r is the silicon wafer radius NE, E8 is the Young's modulus of silicon, υ is Poisson's ratio of silicon, and Ts is the silicon wafer's Thickness, Tf
O) indicates the thickness of the carbonaceous film.If the argon content in the carbonaceous film is less than /atom, the hardness is insufficient, and if the argon content is more than latom, the inside of the carbonaceous film will be damaged. It can be seen that the stress increases and the density also increases. The reason for this is unknown, but it is thought to be as follows.

成膜中の炭素質膜に高いエネルギーを持ったアルゴン原
子が衝突し、これが生成中の膜を緻密化させる。膜中に
アルゴンが侵入することと、緻密化により炭素原子間距
離が縮まることにより、膜中の圧縮応力も高まることに
なる。バルクの材料では圧縮応力の増加とともに硬質化
されることが認められており、本試料も圧縮応力の増加
と共に硬質化したものと思われる。一般に硬質化は、耐
摩耗性の向上に有効と認められており、炭素膜を硬質化
したことが、本発明が有効であることの理由の一つと思
われる。
Argon atoms with high energy collide with the carbonaceous film being formed, which densifies the film that is being formed. Compressive stress in the film also increases due to the intrusion of argon into the film and the reduction in the distance between carbon atoms due to densification. It is recognized that bulk materials become harder as compressive stress increases, and this sample also seems to have become harder as compressive stress increases. It is generally recognized that hardening is effective in improving wear resistance, and hardening the carbon film is considered to be one of the reasons why the present invention is effective.

〔発明の効果〕〔Effect of the invention〕

本発明が解決しようとする問題点は、他の方法でも解決
が可能である。例えば、磁気記録媒体の表面を粗くする
方法であるoしかし、記録の高密度化を考えると、浮上
ヘッドと磁気記録媒体の浮上距離を下げる方向が望まし
く、磁気記録媒体の表面を粗くする方法はこの方向と逆
行するためで望ましくない。他にも保護膜の上に適切な
潤滑剤を塗る方法がある。しかし、潤滑剤によっては、
逆に摩擦係数の上昇を加速することがあり、かりに良好
な潤滑剤を選んだとしても、潤滑剤の寿命は保護膜にも
依存しており、良質の保護膜が望まれることに変わりは
ない0 本発明によると、摩擦係数の大幅な増加を防ぐことがで
きる。摩擦係数の増加が少ないということは、ヘッドと
磁気記録媒体の摺動による物理的変化及び化学的変化が
少ないということであり、単に摩耗耐久性のみならず、
環境に対する耐久性も良好であることを意味し、本発明
により信頼性の高い磁気記録媒体を得ることができる。
The problems to be solved by the present invention can also be solved by other methods. For example, there is a method of roughening the surface of a magnetic recording medium.However, considering higher recording density, it is desirable to lower the flying distance between the flying head and the magnetic recording medium, and the method of roughening the surface of the magnetic recording medium is This is not desirable as it goes against this direction. Another method is to apply a suitable lubricant over the protective film. However, depending on the lubricant,
On the contrary, it may accelerate the increase in the coefficient of friction.Even if a good lubricant is selected, the life of the lubricant also depends on the protective film, and a high-quality protective film is still desired. 0 According to the present invention, it is possible to prevent a significant increase in the coefficient of friction. A small increase in the coefficient of friction means that there are fewer physical and chemical changes due to sliding between the head and magnetic recording medium, which improves not only wear durability but also
This means that the durability against the environment is also good, and the present invention can provide a highly reliable magnetic recording medium.

手続補正書(自発) 平成1年9月2知 1 事件の表示 昭和63年特許W!i第290850号2 発明の名称 磁気記録媒体 3 補正をする者 出願人 (596)  三菱化成株式会社4  代  
理  人  〒100 東京都千代田区丸の内二丁目5番2号 5 補正の対象 明細書の「発明の詳細な説明」の欄 6 補正の内容
Procedural amendment (voluntary) September 2, 1999 1 Case indication 1986 patent W! i No. 290850 2 Name of the invention Magnetic recording medium 3 Amendment applicant Applicant (596) Mitsubishi Kasei Corporation 4th generation
Director 2-5-2-5 Marunouchi, Chiyoda-ku, Tokyo 100 Column 6 of “Detailed Description of the Invention” of the specification to be amended Contents of the amendment

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性基板上に薄膜磁性層及び炭素質保護層を形
成してなる磁気記録媒体において、炭素質保護層中に周
期律表第0族の元素が1原子%以上含有されていること
を特徴とする磁気記録媒体。
(1) In a magnetic recording medium formed by forming a thin film magnetic layer and a carbonaceous protective layer on a nonmagnetic substrate, the carbonaceous protective layer contains 1 atomic % or more of an element of Group 0 of the periodic table. A magnetic recording medium characterized by:
JP29085088A 1988-11-17 1988-11-17 Magnetic recording media Expired - Fee Related JP2701384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29085088A JP2701384B2 (en) 1988-11-17 1988-11-17 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29085088A JP2701384B2 (en) 1988-11-17 1988-11-17 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH02137113A true JPH02137113A (en) 1990-05-25
JP2701384B2 JP2701384B2 (en) 1998-01-21

Family

ID=17761294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29085088A Expired - Fee Related JP2701384B2 (en) 1988-11-17 1988-11-17 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2701384B2 (en)

Also Published As

Publication number Publication date
JP2701384B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
US5275850A (en) Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
JP3157006B2 (en) Carbon film forming method, magnetic memory structure, and magnetic disk manufacturing method
EP0680036B1 (en) A process of treating slider bodies
US5837357A (en) Magnetic recording medium having a carbon protective layer and method for manufacturing the same
US5232570A (en) Nitrogen-containing materials for wear protection and friction reduction
US4840844A (en) Magnetic recording medium
US5118577A (en) Plasma treatment for ceramic materials
Lu et al. Microstructure and nanomechanical properties of nitrogenated amorphous carbon thin films synthesized by reactive radio frequency sputtering
US5132173A (en) Magnetic recording medium having a silicon oxide protective layer with an electrical specific resistance of from 3.3×1013 to 5.0×15 ohm.cm
US4271232A (en) Amorphous magnetic film
Chan et al. Synthesis, composition, surface roughness and mechanical properties of thin nitrogenated carbon films
EP1226030B1 (en) Forming members for shaping a reactive metal and methods for their fabrication
JPH02137113A (en) Magnetic recording medium
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JP2931606B2 (en) High frequency sputtering method and method for manufacturing magnetic recording medium
Grannen et al. Ion beam deposition of carbon overcoats for magnetic thin film media
JPH03259419A (en) Maufacture of magnetic disk substrate comprising titanium
Dearnaley Developments in ion-assisted coatings
JP2623785B2 (en) Magnetic disk
JPS61117727A (en) Magnetic storage body and its manufacture
JP2847567B2 (en) Magnetic recording media
JPS62146434A (en) Magnetic disk
JP3020245B2 (en) Magnetron sputtering method and method for manufacturing magnetic recording medium
JPS62279552A (en) Magnetic tape slide member
JPS61115229A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees