JPH02136051A - Commutator segment - Google Patents

Commutator segment

Info

Publication number
JPH02136051A
JPH02136051A JP28974788A JP28974788A JPH02136051A JP H02136051 A JPH02136051 A JP H02136051A JP 28974788 A JP28974788 A JP 28974788A JP 28974788 A JP28974788 A JP 28974788A JP H02136051 A JPH02136051 A JP H02136051A
Authority
JP
Japan
Prior art keywords
copper
fiber
fibers
commutator
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28974788A
Other languages
Japanese (ja)
Inventor
Kazuo Muramatsu
和夫 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP28974788A priority Critical patent/JPH02136051A/en
Publication of JPH02136051A publication Critical patent/JPH02136051A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a commutator segment with excellent material characteristics through means with high productivity by coating a fiber- reinforcing long fiber with matrix-forming copper and by pressurizing and sintering a composite material obtained through shortly cutting said workpiece. CONSTITUTION:A fiber is immersed in an electroless copper plating solution for 10-20 minutes so that a uniform copper layer of about 0.3-0.4mum thickness is formed on the surface of said fiber. Then, the obtained product in said state is immersed in a copper sulfate plating solution and electroplated for about 40 minutes by 15A electric current so that a uniform copper layer of about 60-63vol.% is electrodeposited as copper. Said prepreg is cut to the length of about 1-1.5mm to form a powder copper-coated stainless short fiber, which is put in a die 3, where the shape of a commutator is formed, and subjected to pressing under about 2t/cm pressure. The compact is taken in a graphite mold of the same shape as that of a press die and sintered in a reducing atmosphere for about 30 minutes or more at 800 deg.C temperature under 30-40kg/cm pressure to obtain a commutator segment 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電動機の整流子片に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a commutator piece for an electric motor.

〔従来の技術〕[Conventional technology]

一般に、電動機の整流子片は硬銅あるいは銀入り鋼のテ
ーパ付き伸銅材から機械加工によって新鍋あるいは銀入
り鋼のテーパ付き伸銅材である。
Generally, the commutator pieces of an electric motor are machined from a tapered rolled copper material made of hard copper or silver-filled steel, or made from a tapered rolled copper material made of silver-filled steel.

このテーパ付き伸銅材11を所定の形状に機械加工され
て整流子片12が製作される。
The commutator piece 12 is manufactured by machining this tapered copper material 11 into a predetermined shape.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、かような製作工程では斜線で示したごとく、面
積で約50チ以上1重量にして約65%もの廃材13が
できる。このことは、生産効率から見て極めて大きな損
失である。
However, in such a manufacturing process, as shown by diagonal lines, waste material 13 with an area of about 50 square meters or more and a weight of about 65% is produced. This is an extremely large loss in terms of production efficiency.

また、焼結材の機械的強度は一般的に展伸材に比べ劣る
ので、従来法(−船釣によく知られているのでその説明
を省略する)による焼結材では、形状は確保できても機
械的強度の点でその目的を達することはできない。
In addition, the mechanical strength of sintered materials is generally inferior to that of wrought materials, so it is not possible to secure the shape with sintered materials made using the conventional method (which is well known for boat fishing, so we will omit its explanation). However, the purpose cannot be achieved in terms of mechanical strength.

更に、焼結法は高融点材料のように、溶解困難な材料に
使われるほか、後加工の困難な硬質材料や形状の複雑な
製品を作る。このとき、金型を用いて成形されるので、
かなり正確な寸法の形状の製品を得ることが可能である
が、その反面、内部に存在する気孔を完全になくすこと
は難しい。従って、−船釣に焼結材の機械的強度は展伸
材に比べて低いと言われている。この機械的強度の向上
手法としては、再プレス手法も用いられている。
Furthermore, sintering is used for materials that are difficult to melt, such as high-melting point materials, as well as for producing hard materials and products with complex shapes that are difficult to post-process. At this time, since it is molded using a mold,
Although it is possible to obtain a product with fairly accurate dimensions and shape, on the other hand, it is difficult to completely eliminate internal pores. Therefore, it is said that the mechanical strength of sintered materials for boat fishing is lower than that of wrought materials. As a method for improving this mechanical strength, a re-pressing method is also used.

また、繊維強化複合金属の発想から、成形性の良い短繊
維を金属粉と混合して強度向上に対処することも十分考
えられる。しかし、強化用短繊維とマトリックスとなる
金属粉を均一ζこ混合することは、密度および大きさの
関係から、極めて技術的に困難な問題である。例えば、
強化用繊維として成形性のよい短繊維を用いた場合、マ
l−IJワックス中繊維が均一に分散しないと焼結体の
機械的強度を向上させることが不可能である。
Furthermore, based on the concept of fiber-reinforced composite metals, it is highly conceivable to improve the strength by mixing short fibers with good formability with metal powder. However, uniformly mixing the reinforcing short fibers and the metal powder serving as the matrix is an extremely technically difficult problem due to the relationship between density and size. for example,
When short fibers with good moldability are used as reinforcing fibers, it is impossible to improve the mechanical strength of the sintered body unless the fibers are uniformly dispersed in the Mar-IJ wax.

本発明は上述した点に鑑みて創案されたもので、その目
的とするところは、整流子片を繊維強化銅焼結体とする
ことで、機械的強度を保持しながら、生産性の良い整流
子片を提案するものである。
The present invention was devised in view of the above-mentioned points, and its purpose is to provide commutator pieces with fiber-reinforced copper sintered bodies, thereby achieving rectification with good productivity while maintaining mechanical strength. This is to suggest a subpiece.

〔問題点を解決するための手段〕[Means for solving problems]

つまり、その目的を達成するための手段は、電動機の整
流子片において、繊維強化用長繊維にマトリックスとな
る銅を被覆し、これを短かく切断した複合材を加圧焼結
して得るようにしたものである。また、前記繊維強化用
長繊維にマ) IJソックスなる銅を被覆し、これを短
かく切断した複合材を加圧焼結して得られた整流子片の
応力が、集中する部分にはさらに銅を被覆した長繊維強
化複合材を配設することもある。
In other words, the means to achieve this goal is to cover the long fibers for reinforcing fibers with copper as a matrix in the commutator pieces of electric motors, and then cut them into short pieces to obtain a composite material under pressure. This is what I did. In addition, the long fibers for fiber reinforcement are coated with copper called IJ socks, and the composite material is cut into short pieces and pressure sintered. A long fiber reinforced composite material coated with copper may also be provided.

すなわち、強化用繊維をマトリックス金属に対し均一に
分散させる手段として、強化用繊維にメツキ法によって
マトリックス金属を被覆することによって解決しようと
するものである。
That is, the problem is solved by coating the reinforcing fibers with the matrix metal using a plating method as a means for uniformly dispersing the reinforcing fibers in the matrix metal.

強化用繊維は無機質線維が多く用いられるので、先づ、
無電解鋼メツキによって繊維に十分な導電性を与え、そ
の後電気銅メツキによってマトリックスとしての必要量
を被覆する。
Inorganic fibers are often used as reinforcing fibers, so first,
The fibers are made sufficiently conductive by electroless steel plating and then coated with the required amount as a matrix by electrolytic copper plating.

マl−IJソックス銅で被覆された短繊維を金型に30
kg/mm2以上あり、整流子片伸銅材と比べて十分な
強さが確保されている。
Maru-IJ socks Copper-coated short fibers are placed in a mold with 30
kg/mm2 or more, ensuring sufficient strength compared to the commutator piece rolled copper material.

〔作 用〕[For production]

その作用としては、第4図に示す顕微鏡写真(倍率X 
100 )に見られるごとく、ステンレス短繊維が均一
に分散していることが認められる。また、整流子片伸銅
材と本発明による方法で製作したステンレス短繊維強化
鋼焼結体および従来法による銅焼結体について引張強さ
の比較を行なった。
Its action is shown in the micrograph shown in Figure 4 (magnification:
100), it was observed that the short stainless steel fibers were uniformly dispersed. In addition, the tensile strength was compared between the commutator piece rolled copper material, the short stainless fiber reinforced steel sintered body produced by the method of the present invention, and the copper sintered body produced by the conventional method.

その結果は表1に示す。The results are shown in Table 1.

表1から、硬銅の引張強さ28kg/ mm2以上に対
し、銅粉をプレス成形し、圧力30kg/ cm2.温
度800℃で焼いた焼結材の引張強さは17kg/mm
2であり、軟鋼の20kg/mm2にも達しないが、本
発明による径12IIm1長さ1〜1.5 mmのステ
ンレス繊維に銅を被覆した粉体をプレス成形し、銅粉と
同じ圧力30kg/cm2.温度800℃で焼いたステ
ンレス繊維強化鋼焼結材(銅60vo1%、ステンレス
40vo1%)は32〜35kg/mm2の引張強さを
示し、整流子片の素材として不足のない強度がステンレ
ス短繊維の均一分散、効果によって得られた。
From Table 1, when the tensile strength of hard copper is 28 kg/mm2 or more, copper powder is press-molded and the pressure is 30 kg/cm2. The tensile strength of the sintered material baked at a temperature of 800℃ is 17kg/mm
2, which does not reach the 20 kg/mm2 of mild steel, but the powder of the present invention, in which stainless steel fibers with a diameter of 12 II m and a length of 1 to 1.5 mm are coated with copper, is press-molded and the pressure is 30 kg/mm2, which is the same as that of copper powder. cm2. The stainless fiber reinforced steel sintered material (copper 60vol%, stainless steel 40vo1%) baked at a temperature of 800℃ shows a tensile strength of 32 to 35kg/mm2, and has sufficient strength as a material for commutator pieces compared to short stainless steel fibers. Obtained by uniform dispersion, effect.

以下、本発明の整流子片の一実施例を図面1こ基づいて
説明する。〔突於:(fす] 第1図は強化用繊維にマトリックスとなる鋼をメツキす
るときの治具を示す平面図、第2図(a)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a commutator element according to the present invention will be described below with reference to FIG. [Tsuto: (fsu)] Figure 1 is a plan view showing a jig for plating reinforcing fibers with steel to serve as a matrix, and Figure 2 (a).

(b)は整流子片を成形するプレス金型であり、(21
図はその断面図、(b)図は平面図、第3図は部分的に
長繊維を配した複合型整流子片の一実施例を示す外観図
である。
(b) is a press mold for forming commutator pieces, (21
The figure is a sectional view, FIG. 3B is a plan view, and FIG. 3 is an external view showing an embodiment of a composite commutator piece in which long fibers are partially arranged.

第1図において、直径12μm、材質5US304゜フ
ィラメント数1000本のステンレス長繊維1を開峨し
て、巾100mm 、長さ500mmのH形のステンレ
ス製枠2に張って固定する。
In FIG. 1, a long stainless steel fiber 1 having a diameter of 12 μm, a material of 5 US 304°, and 1000 filaments is opened, and is stretched and fixed on an H-shaped stainless steel frame 2 having a width of 100 mm and a length of 500 mm.

これを無電解鋼メツキ液に10〜20分間浸漬して約0
.3〜0.4μm厚さの均一な銅層を繊維の表面に形成
する。次いでこの状態で硫酸鋼メツキ液に浸潰し、電流
15Aで約40分間電気メツキを行ない、銅として約6
0〜63vo1%の均一な銅層を電着する。
This is immersed in an electroless steel plating solution for 10 to 20 minutes to reduce the
.. A uniform copper layer with a thickness of 3-0.4 μm is formed on the surface of the fiber. Next, in this state, it was immersed in a sulfuric acid steel plating solution and electroplated at a current of 15 A for about 40 minutes, resulting in about 6
Electrodeposit a uniform copper layer of 0-63 vol.

このプリプレグを約1〜1.5mmの長さに切断して粉
体状の銅被覆ステンレス短繊維とする。
This prepreg is cut into lengths of approximately 1 to 1.5 mm to obtain powdered copper-coated short stainless steel fibers.

これを、第2図(a) 、 (b)に示す整流子の形が
形成される金型3に入れ、圧力約2t / cm”でプ
レス成形を行なう。なお、3aは外型、3bは抜型とし
ての上パンチ、3Cは抜型としての下パンチ、4は整流
子片である。
This is placed in a mold 3 in which the commutator shape shown in FIGS. 2(a) and 2(b) is formed, and press molding is performed at a pressure of approximately 2t/cm. Note that 3a is an outer mold, and 3b is an outer mold. 3C is an upper punch as a cutting die, 3C is a lower punch as a cutting die, and 4 is a commutator piece.

次に、かくのごとくして形成された成形体は、プレス金
型と同じ形状の黒鉛製の散に入れ、圧力30〜40kg
/ cm2.温度800℃で約30分以上還元性雰囲気
において焼結を行なって目的の整流子片4を得る。
Next, the molded body thus formed is placed in a graphite powder having the same shape as the press mold, and is placed under a pressure of 30 to 40 kg.
/cm2. Sintering is performed in a reducing atmosphere at a temperature of 800° C. for about 30 minutes or more to obtain the desired commutator piece 4.

このようにして製作された整流子片4は、後加工を全く
必要としない。
The commutator piece 4 manufactured in this manner does not require any post-processing.

以上説明したものは、本発明の基本的技術思想によるも
のであるが、機械的強度を一層向上させたものとしては
第3図に示される。
Although what has been described above is based on the basic technical idea of the present invention, a version with further improved mechanical strength is shown in FIG.

すなわち、整流子片5として最も応力の集中する箇所A
、B、Oには、銅被覆ステンレス長繊維を部分的に積層
し、鋼被覆ステンレス短繊維と共にプレス成形し、次い
で焼結を行う。
In other words, the location A where the stress is most concentrated as the commutator piece 5
, B, and O, copper-coated stainless steel long fibers are partially laminated, press-molded together with steel-coated stainless steel short fibers, and then sintered.

このように、応力の集中する所を長繊維で補強する短繊
維と長繊維の複合的な組み合わせた手段によって得られ
た整流子片5は、硬銅の整流子片11の約二倍強の強度
を示すようになる。
In this way, the commutator piece 5 obtained by a composite combination of short fibers and long fibers that reinforces stress-concentrated areas with long fibers has a strength that is approximately twice as strong as that of the hard copper commutator piece 11. Begins to show strength.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明によれば、鋼を被覆したステ
ンレス短繊維を主材とした焼結による整流子4は、短繊
維であることから複雑な形状の成形が容易であり、繊維
にマトリ、クスとなる銅をあらかじめ被覆しであるので
繊維の分散も均一である。更に長繊維を部分的に配する
複合形とすることによって、優れた材質特性の整流子片
5を生産性の高い手段で得ることが可能である。
As explained above, according to the present invention, the commutator 4 made of sintered steel-coated stainless steel short fibers can be easily molded into complex shapes because they are short fibers. Since the fibers are coated with copper in advance, the fibers are evenly distributed. Further, by using a composite type in which long fibers are partially arranged, it is possible to obtain commutator pieces 5 with excellent material properties by means of high productivity.

なお、本発明における強化用繊維は、実施例に示したス
テンレス繊維だけでなく、カーボン繊維。
Note that the reinforcing fibers in the present invention include not only the stainless steel fibers shown in the examples but also carbon fibers.

ボロン繊維、炭化ケイ素繊維、アルミナ繊維などの無機
繊維を用いることも可能である。また、鋼を被覆した短
繊維も、銅を被覆した長繊維を切断して作るだけでなく
、最初から短繊維やウィスカーに鋼を被覆して使用して
も特に支障をきたすことはない。
It is also possible to use inorganic fibers such as boron fibers, silicon carbide fibers, and alumina fibers. Furthermore, short fibers coated with steel can be made not only by cutting long fibers coated with copper, but also by coating the short fibers or whiskers with steel from the beginning without causing any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強化用繊維にマトリックスとなる銅をメツキす
るときの治具を示す平面図、第2図(a)。 (b)は整流子片を成形するプレス金型であり、(a)
図はその断面図、(b)図は平面図、第3図は部分的t
こ長繊維を配した複合型整流子片の一実施例を示す1・
・・・・・ステンレス長繊維、2・・・・・・ステンレ
ス製枠、3・・・・・・金型、4.5・・・・・・整流
子片、11・・−・・・テーパ付き伸銅材、12・・・
・・・整流子片、13・・・・・・廃材。 (b) C
FIG. 1 is a plan view showing a jig for plating reinforcing fibers with copper as a matrix, and FIG. 2(a). (b) is a press mold for forming commutator pieces, and (a)
The figure is a sectional view, (b) is a plan view, and Figure 3 is a partial t
1 showing an example of a composite type commutator piece with long fibers arranged.
... Stainless steel long fiber, 2 ... Stainless steel frame, 3 ... Mold, 4.5 ... Commutator piece, 11 ... - ... Tapered copper elongated material, 12...
... Commutator piece, 13... Waste material. (b)C

Claims (2)

【特許請求の範囲】[Claims] (1)電動機の整流子片において、繊維強化用長繊維に
マトリックスとなる銅を被覆し、これを短かく切断した
複合材を加圧焼結して得るようにしたことを特徴とする
整流子片。
(1) A commutator piece for an electric motor, characterized in that the long fibers for fiber reinforcement are coated with copper as a matrix, and the composite material is cut into short pieces and sintered under pressure. Piece.
(2)前記繊維強化用長繊維にマトリックスとなる銅を
被覆し、これを短かく切断した複合材を加圧焼結して得
られた整流子片の応力が、集中する部分にはさらに銅を
被覆した長繊維強化複合材を配設するようにしたことを
特徴とする請求項第(1)項記載の整流子片。
(2) The long fibers for fiber reinforcement are coated with copper as a matrix, and the composite material is cut into short pieces and pressure sintered. The commutator piece according to claim 1, further comprising a long fiber reinforced composite material coated with a long fiber reinforced composite material.
JP28974788A 1988-11-16 1988-11-16 Commutator segment Pending JPH02136051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28974788A JPH02136051A (en) 1988-11-16 1988-11-16 Commutator segment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28974788A JPH02136051A (en) 1988-11-16 1988-11-16 Commutator segment

Publications (1)

Publication Number Publication Date
JPH02136051A true JPH02136051A (en) 1990-05-24

Family

ID=17747236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28974788A Pending JPH02136051A (en) 1988-11-16 1988-11-16 Commutator segment

Country Status (1)

Country Link
JP (1) JPH02136051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744793A1 (en) * 1995-05-22 1996-11-27 Le Carbone-Lorraine Alternators slip-rings and cylindric collectors made from sintered cupro-graphitic composite material
FR2840737A1 (en) * 2002-06-10 2003-12-12 Bosch Gmbh Robert Slip ring for electrical machine, is hollow cylinder with pin or single strand cable projecting from one annular end surface, parallel with axis of cylinder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744793A1 (en) * 1995-05-22 1996-11-27 Le Carbone-Lorraine Alternators slip-rings and cylindric collectors made from sintered cupro-graphitic composite material
FR2734669A1 (en) * 1995-05-22 1996-11-29 Le Carbonne Lorraine ALTERNATOR RINGS AND CYLINDRICAL COLLECTORS IN FRITEE CUPRO-GRAPHIC COMPOSITE MATERIAL
US5789842A (en) * 1995-05-22 1998-08-04 Le Carbone Lorraine Alternator rings and cylindrical commutators made of a sintered copper-graphite composite material
FR2840737A1 (en) * 2002-06-10 2003-12-12 Bosch Gmbh Robert Slip ring for electrical machine, is hollow cylinder with pin or single strand cable projecting from one annular end surface, parallel with axis of cylinder

Similar Documents

Publication Publication Date Title
JPS6147891B2 (en)
CN111285677A (en) Preparation method of high-density laminated composite part
DE112015003524T5 (en) Aluminum-silicon carbide composition and its production process
JPH04272616A (en) Superconductive wire rod and manufacture thereof
JPH02136051A (en) Commutator segment
EP0604625B1 (en) Sintered brake pad for disc brakes
KR940008937B1 (en) Fabricating method of composite material
CN108620593A (en) A kind of large-size ultra-thin Metal Substrate density gradient material and its preparation method and application
KR960031023A (en) METHOD FOR MANUFACTURING PARTIAL COMPOSITE REINFORCED LIGHT-ALLOY PARTS AND PRE-MOLDED FABRICATED THEREFOR
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
CN1060981C (en) Manufacture of precise cop latch
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JPH01111830A (en) Reinforcing fiber for production of fiber-reinforced composite metallic material
US3172797A (en) Method of producing bearing akke structures is*9x s shafts, spindles and similar elements
JPS6148541A (en) Manufacture of fiber reinforced copper type composite material
CN220005994U (en) Supporting structure for 3D printing metal material
JP2864390B2 (en) Preform manufacturing method of metal matrix composite material
JPH01108328A (en) Production of fiber reinforced sintered metallic body
JP4727961B2 (en) Low thermal expansion linear body and method for producing the same
JPH10130701A (en) Intermetallic compound composite material and its production
JP4411517B2 (en) Composite porous preform, composite material using the same, composite porous preform manufacturing method, and composite material manufacturing method
JPS6339441A (en) Electric brush
JPS63130733A (en) Manufacture of copper-base composite material
JPS6267132A (en) Production of composite metallic material
CN115261747A (en) Powder metallurgy composite functional material, and manufacturing method and application thereof