JPH0213587B2 - - Google Patents

Info

Publication number
JPH0213587B2
JPH0213587B2 JP59048173A JP4817384A JPH0213587B2 JP H0213587 B2 JPH0213587 B2 JP H0213587B2 JP 59048173 A JP59048173 A JP 59048173A JP 4817384 A JP4817384 A JP 4817384A JP H0213587 B2 JPH0213587 B2 JP H0213587B2
Authority
JP
Japan
Prior art keywords
blood
leukocyte removal
fibers
diameter
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59048173A
Other languages
Japanese (ja)
Other versions
JPS60193468A (en
Inventor
Hiroyuki Watanabe
Hiroshi Rikumaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP59048173A priority Critical patent/JPS60193468A/en
Priority to EP85102975A priority patent/EP0155003B1/en
Priority to DE8585102975T priority patent/DE3578502D1/en
Priority to US06711667 priority patent/US4701267B1/en
Publication of JPS60193468A publication Critical patent/JPS60193468A/en
Publication of JPH0213587B2 publication Critical patent/JPH0213587B2/ja
Priority to JP3135364A priority patent/JPH0651063B2/en
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、血液、体液等の血球浮遊液から白血
球を選択的に除去するためのフイルターに関する
ものである。 近年、血液学、免疫学の発達により、従来の全
血輸血に代わつて、患者が必要とする血液の成分
だけを与え、不要な成分は極力与えない成分輸血
が注目をあびている。成分輸血には、赤血球輸
血、白血球輸血、血小板輸血、血漿輸血などがあ
り、貧血、心臓及び肺疾患の患者等に赤血球のみ
を輸注する症例は極めて多い、その理由として、
全血、赤血球濃厚液を輸血された患者が、悪感、
発熱、頭痛、吐き気などの副作用を示すことが報
告されている。これらの原因は、輪注される血液
中の白血球が有しているHLA坑原、ないしは組
織坑原と呼ばれる抗原と受血者の抗体との免疫反
応、すなわち、抗白血球抗体産生によるものと言
われる。したがつて、赤血球輸血の場合には、白
血球、血小板等、抗原となる物質をできるだけ除
去した赤血球濃厚液を輪注することが望ましい。 これらの知見より、現在、白血球、血小板をで
きるだけ除去した濃厚赤血球を得る方法が種々検
討されている。この方法は、大別すると3通りあ
る。一つには、遠心分離により白血球、血小板、
血漿を分離し、濃厚赤血球を得る方法、二つに
は、全血にデキストランを加え、赤血球を沈降さ
せた後、白血球を含む血漿を除去し、さらに、生
理的食塩水でデキストランを洗浄除去し、洗浄濃
厚赤血球を得る方法、三つには、繊維を適当に充
填したフイルターで白血球を捕捉し、白血球除去
濃厚血液を得る方法である。 しかしながら、遠心分離法は、その装置が高価
であること、白血球および血小板を90%程度除去
するためには、生理食塩水での洗浄を3回以上く
り返さなければならないこと、白血球を吸引せず
に、分離した赤血球を吸引して分離するため、赤
血球の20%程度は無駄となることに問題がある
が、デキストラン沈降法も白血球除去率を90%程
度にするには、3回以上の生理食塩水の洗浄とデ
キストランの洗浄が必要であり、時間がかかり、
操作性も難儀である。 繊維を充填したフイルター装置で白血球を捕
捉、除去し、白血球のない赤血球に富んだ赤血球
製剤を得るための方法としては、特公昭58−
54125号および特公昭58−54126号があるが、これ
らの発明は、血液を変性させない合成繊維、半合
成繊維、再生人造繊維、無機繊維、天然繊維の少
なくとも1種が、カラムに0.15g/cm3以下の密度
で詰められた白血球分離フイルター装置、および
平均直径が10μm以下の血液を変性させない合成
繊維、半合成繊維、再生人造繊維、無機繊維また
は天然繊維からなる白血球分離材というものであ
る。そして、繊維として、その表面に微小な突起
を有するような繊維の使用も開示されており、平
均直径(D)について、真円に換算した直径、すなわ
ち、そのものの重さをxg、長さをycm、密度ρ
g/cm3とすると、 で定義されることが記載されている。 上記白血球分離フイルター装置および白血球分
離材は、血液から簡単な操作で純度、収率良く白
血球を補捉、除去できるという特徴があるが、実
際に病院で使用する大きさのフイルターでは、処
理速度が5ml/min程度であり、200ml処理する
のに約40分、500ml処理するのに100分程度かか
り、処理時間として長くかかりすぎるという問
題、また、この間、血液を室温放置すれば、血液
の変性が進むという問題、さらには、処理速度を
上げるには極端にフイルターの容量が大きくな
り、一定の大きさで繊維を0.15g/cm3以上詰める
と、赤血球まで、捕捉するため目詰まりし、極端
に処理速度が減少するという問題があつた。 本発明者らは、多量の血液から簡単な操作で、
高い効率で、しかも、ごく短時間の処理で白血球
を分離除去する方法について鋭意検討した結果、
直径が3μm未満の繊維で形成され、嵩密度が0.15
g/cm3を超え0.50g/cm3以下で、厚さが1mmから
30mmの不織布が、従来のものに比較して、繊維層
を薄くすること、およびフイルタの圧損を小さく
することができ、その結果、処理時間が10分の1
くらいと大巾に短縮されて、しかも、高い効率で
白血球を分離除去できることを見出した。この
際、上記の不織布は、繊維の互いのもつれにより
その位置に固定されているものであることが好ま
しい。 本発明によれば、繊維径が極端に細い繊維から
なる不織布を使用することにより、フイルター装
置の縦方向および横方向に対して、繊維を均密に
充填することができる。さらには、細い繊維を均
密に充填できるため、細い繊維では考えられない
ほど充填密度を上げることが可能である。そのた
め、血液との接触面積を大きくすると共に、白血
球除去に必要な縦方向の長さ(厚み)を著しく短
くすることができる。したがつて、血液を流した
場合のフイルターの圧損が少なく、処理速度が速
くなり、短時間処理ができるものである。 また、細径繊維の不織布にすることにより、繊
維間〓が一定かつ均密で、繊維間〓を小さくする
ことができ、血液のチヤンネリングが防止でき、
白血球の除去性能が向上、さらには、製品間のバ
ラツキも減少することになる。そして、製品の厚
さを薄く、小型化が可能であるから、プライミン
グボリユームを小さくし、血液の回収率が向上す
る効果がある。また、処理速度が速く、操作時間
が短いことは、4℃保存の血液を室温で処理する
場合、血液温度の上昇を防ぐことができ、血液の
変性防止等にも効果がある。さらに、不織布にす
ることにより、処理時に出る糸くずがなくなり、
輸血時の糸くずの混入が防止できるという効果も
ある。 本発明において使用する繊維は、血液を変性さ
せない合成繊維であり、ポリアミド、芳香性ポリ
アミド、ポリエステル、ポリアクリロニトリル
系、ポリトリフルオロクロルエチレン、ポリメチ
ルメタアクリレート、ポリスチレン、ポリエチレ
ン、ポリプロピレンなどがある。そして、直径が
3μm未満の繊維を作るには、一般的には難しい
が、直径が3μm未満の繊維を作る方法としては、
溶融ブロー法(melt−blowing process)があ
り、この方法により、本発明の直径が3μm未満
の繊維を作成した。しかし、本発明に使用する
3μm未満の繊維は、この方法に限定されるもの
ではない。 本発明の不織布は、繊維が繊維の互いのもつれ
によりその位置に固定されているものであること
が好ましい。不織布とするための繊維間の固定法
としては、これらの繊維の融点付近の熱を加えて
熱固着させたり、接着剤による固定法があり、こ
れらは勿論、本発明に使用できるが、本発明で用
いる繊維のように繊維が細くなると、エアーブロ
ー法、高圧蒸気ブロー法などにより、繊維を互い
にもつれさせるだけで繊維間が固定され、このよ
うに作成した不織布は、例えば、破壊するような
大きな力を加えない限り安定であり、血液処理に
も充分耐えることができる。したがつて、このよ
うな完全に固着させないエアーブロー法、高圧蒸
気ブロー法などによる単に繊維を互いにもつれさ
せるだけの繊維の固定法が好ましく採用される。 本発明の不織布を構成する繊維の直径は3μm
未満であり、好ましくは0.1μmから3μm未満、さ
らに好ましくは0.1μmから2.0μmの範囲である。
繊維の直径が0.1μmより小さい場合は、実際には
作成が難しいが、均密に充填すると繊維間〓が狭
小になり、白血球と共に赤血球も捕捉することに
なり、目詰りを生じ、処理速度が極端に減少して
しまうことになる。繊維の直径が3μm以上の場
合は、充填密度を上げて、繊維間〓を小さくする
ことが必要であり、例えば、直径が3μm以上の
繊維では、0.50g/cm3を超える充填密度にしない
と白血球の除去率が低下してしまうことになる。
さらには、充填密度を高くするため、高圧下で充
填することになり、繊維の破壊が生じてしまうこ
とになる。また、一定容積での血液接触面積が小
さいため、白血球除去フイルターの容積が著しく
大きくなつてしまい、病院では取扱いが難しい。 本発明の不織布の嵩密度は、0.15g/cm3を超え
0.50g/cm3以下であることが必要であり、好まし
くは0.20g/cm3から0.30g/cm3の範囲である。不
織布の嵩密度が0.15g/cm3より小さい場合は、例
えば、50ml/minという高速処理になると白血球
が洩れてくる。また、不織布の嵩密度が0.50g/
cm3より大きくなると、繊維間〓が緻密になつて、
赤血球も捕捉されるようになり、赤血球の回収率
が低下してくる。 本発明の不織布の厚さは、血液や血球浮遊液の
高速処理のためには1mmから30mm、好ましくは1
mmから20mm、さらに好ましくは2mmから10mmの範
囲である。不織布の厚さが1mmより薄くなると、
白血球の捕捉が十分ではなく、白血球の捕捉率が
低下してくる。また、不織布の厚さが30mmより厚
くなると、圧損が大きくなり、処理速度が低下し
てくる。 本発明のフイルター面積は、血液や血球浮遊液
の高速処理のためには、繊維間の間〓部を含めた
血液入口側の総面積が10cm2/血液500mlから2000
cm2/血液500ml、好ましくは20cm2/血液500mlから
1000cm2/血液500ml、さらに好ましくは30cm2/血
液500mlから300cm2/血液500mlの範囲である。フ
イルター面積が10cm2/血液500mlより小さいと、
白血球除去フイルターの表面が白血球で飽和され
てくるため、処理速度が遅くなつてくる。また、
フイルター面積が2000cm2/血液500mlより大きい
場合は、白血球除去処理後の白血球除去フイルタ
ー内の赤血球回収のための生理食塩水が多量に必
要になつたり、白血球除去フイルター内に残る赤
血球も多くなるため赤血球の回収率が低下してく
る。 なお、本発明の不織布の嵩密度とは、均一な不
織布1cm3当たりの、その重さを測定した値を言
う。 本発明の目的とする多量の血液から簡単な操作
で収率よく、しかもごく短時間の処理で白血球を
捕捉除去するには、繊維の直径が3μm未満で、
嵩密度が0.15g/cm3を超え、0.50g/cm3以下で、
厚さが1mmから30mmの不織布からなるフイルター
であることが必要であり、好ましくは不織布が繊
維の互いのもつれによりその位置に固定されてい
るものであつて、さらには、不織布の嵩密度、お
よびフイルター面積が前記の範囲にあることであ
る。 以下、図面によつて本発明の白血球除去フイル
ターおよび該フイルターによるフイルター装置の
詳細を説明する。 第1図および第2図は、本発明の白血球除去フ
イルターによるフイルター装置の一実施態様を示
し、第3図および第4図は、別の実施態様を示す
ものである。第1図および第2図において、1は
フイルター装置本体で、二つの丸盆状枠体2,
2′が空胴部を形成するように、リング部材3で
嵌合し、丸盆状枠体2,2′の内面には、それぞ
れ多数の突条4,4′が形成され、その内側に、
メツシユ状支持材5,5′に挟まれて、不織布か
らなるフイルター6が設けられている。7は一方
の丸盆状枠体2に設けられた血液流入管、8は他
方の丸盆状枠体2′に設けられた血液流出管であ
り、9,9′はパツキングである。そして、フイ
ルター6はメツシユ状支持材5,5′によつて、
嵩密度が0.15g/cm3を超え0.50g/cm3以下の範囲
に保持されている。 第3図および第4図のフイルター装置も、前記
フイルター装置とほぼ同様であるが、血液流入管
13および血液流出管14が丸盆状枠体10,1
0′のそれぞれ中心部に設けられ、空胴部には、
メツシユ状支持材11,11′に挟まれて、不織
布からなるフイルター12が設けられている。1
5,15′はパツキングである。 メツシユ状支持材は、血液の流体が均一流にな
るようにメツシユ状にしており、流路規制部の役
割もしている。血液は血液流入管7あるいは13
より導入され、メツシユ状支持材5あるいは11
を通過することにより、均一流となり、次にフイ
ルター6あるいは12に導入され、白血球および
血小板等が捕捉され、血小板および血漿が通過
し、白血球除去濃厚赤血球となつた血液は、メツ
シユ状支持材5′あるいは11′を通過することに
より、さらに均一流となり、血液流出管8あるい
は14から回収されることになる。 上記フイルターは、繊維表面の粘着性、荷電
性、疎水性および繊維間〓などにより、血液中の
白血球、血小板等を選択的に捕捉し、赤血球、血
漿のみを通過させるもので、繊維表面の粘着性、
荷電性、疎水性の効果は、繊維間〓に大きく影響
される。 さらに、白血球、血小板等の捕捉性および赤血
球、血漿の通過性は、不織布の嵩密度に関係す
る。健康人の全血、PRC液、および牛の血液、
PRC液を使用した詳細な試験結果によれば、不
織布の嵩密度は、0.15g/cm3を超え0.50g/cm3
下が適し、ポリエステル糸からなる不織布の嵩密
度は0.20g/cm3から0.30g/cm3程度が好ましい。 第5図は、本発明の白血球除去フイルターによ
るフイルター装置の一使用態様を示すものであ
る。人体から採取された血液は、採血バツグ16
から落差圧により、回路17を通り、本発明の白
血球除去フイルターによるフイルター装置18に
供給される。フイルター装置18に導入された血
液は、フイルター装置の不織布よりなる白血球除
去フイルターにより、白血球、血小板等が捕捉さ
れ、血小板、血漿が主となる血液となり、回路1
9を通過後、回収バツグ20に供給される。赤血
球の回収率をより高める場合は、あらかじめ用意
した生理食塩水バツグ21より、同様にして、回
路22を通してフイルター装置18に導入し、回
路および白血球除去フイルターに一部残存してい
る赤血球を回収できる。なお、23は回収バツ
グ、24は調整バルブである。 以上は、人体から採取された血液が採血バツグ
に入つている例を示したが、直接、人体より血液
を採取し、循環ポンプ等により、フイルター装置
に導入し、白血球などを除去した血小板、血漿が
主となる血液を再び体内にもどすこともできる。 以上述べたように、本発明による白血球除去フ
イルターは、血液、血球浮遊液から簡単な操作
で、収率よく、しかも、ごく短時間の処理で、白
血球を分離、除去できるものである。 以下、実施例を挙げて説明する。 実施例 1 直径1.2μmのポリエステル繊維を溶融ブロー法
で作成した嵩密度0.18g/cm3の繊維塊が繊維の互
いのもつれによつてその位置に固定されている不
織布を、直径110mm、厚さ7mmの円柱状に切断し、
有効内径100mm(有効内径=血液または血球浮遊
液が実際にフイルター表面に接触する部分の径を
示す。以後の実施例においても同じ)、厚さ11mm
のカラム中に固定した、300mlの採血バツグ2個
からそれぞれ落差800mmの位置に、上記の白血球
除去フイルター装置をつけ、さらに800mm下方に
1の輸液バツグをつけて、処理した液を貯蔵す
る回収バツグとし、その間をそれぞれ内径3mm、
外径5mmのチユーブで連結した処理装置を作成し
た。この処理装置の採血バツグ2個に、A型の健
康人のヘマトクリツト38%の新鮮CPD液添加血
液全血250mlずつを入れ、落差を利用した自然落
下法により、室温25℃で1バツグずつ順番に白血
球除去処理を行つた。 次に、生理食塩水90mlを自然落下法により、こ
の白血球除去フイルター装置に流し、フイルター
内の赤血球を回収した。 その結果、この新鮮血液500mlの処理時間は6
分35秒であり、処理速度にして76ml/分という高
流速であつた。また、白血球除去率は99.7%であ
り、赤血球回収率は95%であつた。 比較例 1 直径が9.6μm、長さが40mmから70mmのポリエス
テル繊維を、直径が30mm、長さ100mmのカラムに
9gを均一に詰めた白血球除去フイルター装置
(嵩密度0.13g/cm3)を作成した。300mlの採血バ
ツグ2個からそれぞれ落差800mmの位置に、上記
の白血球除去フイルター装置をつけ、さらに800
mm下方に1の輸液バツグをつけて、処理した血
液を貯蔵する回収バツグとし、その間をそれぞれ
内径3mm、外径5mmのチユーブで連結した処理装
置を作成した。この処理装置の採血バツグ2個
に、A型の健康人のヘマトクリツト38%の新鮮
CPD液添加血液全血250mlずつを入れ、落差を利
用した自然落下法により、室温25℃で1バツグず
つ順番に白血球除去処理を行つた。 次に、生理食塩水80mlを自然落下法により、こ
の白血球除去フイルター装置に流し、フイルター
内の赤血球を回収した。 その結果、この新鮮血液500mlの処理時間は1
時間32分35秒であり、処理速度にして5.4ml/分
であつた。また、白血球除去率は93.2%、赤血球
回収率は93%であつた。 実施例1によれば、本発明の白血球除去フイル
ターは、従来の白血球除去フイルターと比較して
約14倍の高速処理であり、白血球除去率が良く、
赤血球回収率も従来法と同程度の優秀な性能であ
つた。 実施例 2 直径が1.8μmのポリエステル繊維を溶融ブロー
法で作成した嵩密度0.22g/cm3の繊維塊が繊維の
互いのもつれによつてその位置に固定されている
不織布を、直径78mm、厚さ4mmの円柱状に切断
し、有効内径68mm、厚さ8mmのカラム中に固定し
た。300mlの採血バツグ2個からそれぞれ落差800
mmの位置に、上記の白血球除去フイルター装置を
つけ、さらに800mm下方に1の輸液バツグをつ
けて、処理した液を貯蔵する回収バツグとし、そ
の間をそれぞれ内径3mm、外径5mmのチユーブで
連結した処理装置を作成した。この処理装置の採
血バツグ2個に、B型の健康人のヘマトクリツト
42%の新鮮ACD−A液添加血液全血250mlずつを
入れ、落差を利用した自然落下法により、室温25
℃で1バツグずつ順番に白血球除去処理を行つ
た。 次に、生理食塩水40mlを自然落下法により、白
血球除去フイルター装置に流し、フイルターの赤
血球を回収した。 その結果、この新鮮血液500mlの処理時間は7
分15秒であり、処理速度にして69ml/分という高
流速であつた。また、白血球除去率100%、赤血
球回収率は98%であつた。 比較例 2 直径が7.2μm、長さが40mmから70mmのポリアミ
ド繊維(ナイロン−66)を、直径が36mm、長さ70
mmのカラムに6.6gを均一に詰めた白血球除去フ
イルター装置(嵩密度0.09g/cm3)を作成した。
300mlの採血バツグ2個からそれぞれ落差800mmの
位置に、上記の白血球除去フイルターをつけ、さ
らに800mm下方に1の輸液バツグをつけて、処
理した血液を貯蔵する回収バツグとし、その間を
それぞれ内径3mm、外径5mmのチユーブで連結し
た処理装置を作成した。この処理装置の採血バツ
グ2個に、B型の健康人のヘマトクリツト42%の
新鮮ACD−A液添加血液全血250mlずつを入れ、
落差を利用した自然落下法により、室温25℃で1
バツグずつ順番に白血球除去処理を行つた。 次に、生理食塩水80mlを自然落下法により、こ
の白血球除去フイルター装置に流し、フイルター
内の赤血球を回収した。 その結果、この新鮮血液500mlの処理時間は1
時間24分45秒であり、処理速度にして5.9ml/分
であつた。また、白血球除去率は95.1%、赤血球
回収率は94%であつた。 実施例2によれば、本発明の白血球除去フイル
ターは、従来の白血球除去フイルターと比較して
約12倍の高速処理であり、白血球除去率が良く、
赤血球回収率も従来法と同程度の優秀な性能であ
つた。 実施例 3 直径が0.8μmのポリアミド繊維(ナイロン−
66)を溶融ブロー法で作成した嵩密度0.16g/cm3
の繊維塊が繊維の互いのもつれによつてその位置
に固定されている不織布を、直径100mm、厚さ2
mmの円柱状に切断し、有効内径90mm厚さ6mmのカ
ラム中に固定した。300mlの採血バツグ2個から
それぞれ落差800mmの位置に、上記の白血球除去
フイルター装置をつけ、さらに800mm下方に1
の輸液バツグをつけて、処理した液を貯蔵する回
収バツグとし、その間をそれぞれ内径3mm、外径
5mmのチユーブで連結した処理装置を作成した。
この処理装置の採血バツグ2個に、A型の健康人
のヘマトクリツト45%の新鮮CPD液添加血液全
血250mlずつを入れ、落差を利用した自然落下法
により、室温25℃にて1バツグずつ順番に白血球
除去処理を行つた。 次に、生理食塩水50mlを自然落下法により、こ
の白血球除去フイルター装置に流し、フイルター
内の赤血球を回収した。 その結果、この新鮮血液500mlの処理時間は6
分29秒であり、処理速度にして77ml/分という高
流速であつた。また、白血球除去率は99.9%であ
り、赤血球回収率は98%であつた。 比較例 3 直径が5.2μm、長さが40mmから70mmのアクリロ
ニトリル系合成繊維を、直径が80mm、長さ40mmの
カラムに18gを均一に詰めた白血球除去フイルタ
ー装置(嵩密度0.090g/cm3)を作成した。300ml
の採血バツグ2個からそれぞれ落差800mmの位置
に、上記の白血球除去フイルター装置をつけ、さ
らに800mm下方に1の輸液バツグをつけて、処
理した血液を貯蔵する回収バツグとし、その間を
それぞれ内径3mm、外径5mmのチユーブで連結し
た処理装置を作成した。この処理装置の採血バツ
グ2個に、A型の健康人のヘマトクリツト45%の
新鮮CPD液添加血液全血250mlずつを入れ、落差
を利用した自然落下法により、室温25℃で1バツ
グずつ順番に白血球除去処理を行つた。 次に、生理食塩水210mlを自然落下法により、
この白血球除去フイルター装置に流し、フイルタ
ー内の赤血球を回収した。 その結果、この新鮮血液500mlの処理時間は19
分14秒であり、処理速度にして26ml/分であつ
た。また、白血球除去率は68.4%、赤血球回収率
は91.3%であつた。 実施例3によれば、本発明の白血球除去フイル
ターは78ml/分という高速処理であつた。また、
従来法で高速処理を試みたが、処理速度は26ml/
分と速くしたところ、白血球除去率が低下した。
したがつて、従来法では処理速度を早くするには
限度があり、本発明のような高速処理はできな
い。 実施例 4 直径2.8μmのポリエステル繊維を溶融ブロー法
にて作成した嵩密度0.28g/cm3の不織布を製造す
る際、溶融ブロー時250℃で2秒間乾熱処理し、
繊維の互いにもつれあつた接点を熱固着した不織
布を作成した。この不織布を、直径160mm、厚さ
8mmの円柱状に切断し、有効内径150mm、厚さ12
mmのカラム中に固定した。300mlの採血バツグ2
個からそれぞれ落差800mmの位置に、上記の白血
球除去フイルターをつけ、さらに800mm下方に1
の輸液バツグをつけて、処理した液を貯蔵する
回収バツグとし、その間をそれぞれ内径3mm、外
径5mmのチユーブで連結した処理装置を作成し
た。この処理装置の採血バツグ2個に、O型の健
康人のヘマトクリツト64%のCPD液添加血液濃
厚液(遠心分離法により一部血漿を除去したも
の)の1日4℃で保存したものを200mlずつを入
れ、落差を利用した自然落下法により、4℃の冷
蔵庫より取り出し、ただちに、室温10℃で1バツ
グずつ順番に白血球除去処理を行つた。 つぎに、生理食塩水220mlを自然落下法により、
この白血球除去フイルターに流し、フイルター内
の赤血球を回収した。 その結果、この新鮮血400mlの処理時間は6分
27秒であり、処理速度にして62ml/分という高流
速であつた。また、白血球除去率98.9%であり、
赤血球の回収率は91%であつた。 比較例 4 直径3.8μmのポリエステル繊維から成る嵩密度
0.16g/cm3の不織布を、直径100mm、厚さ6mmの
円柱状に切断し、有効内径90mm、厚さ10mmのカラ
ム中に固定した。300mlの採血バツグ2個からそ
れぞれ落差800mmの位置に、上記の白血球除去フ
イルター装置をつけ、さらに800mm下方に1の
輸液バツグをつけて、処理した液を貯蔵する回収
バツグとし、その間をそれぞれ内径3mm、外径5
mmのチユーブで連結した処理装置を作成した。こ
の処理装置の採血バツグ2個に、A型の健康人の
ヘマトクリツト44%の新鮮CPD液添加血液全血
250mlずつを入れ、落差を利用した自然落下法に
より、室温25℃にて1バツグずつ順番に白血球除
去処理を行つた。 つぎに、生理食塩水80mlを自然落下法により、
この白血球除去フイルター装置に流し、フイルタ
ー内の赤血球を回収した。 その結果、この新鮮血液500mlの処理時間は6
分48秒であり、処理速度にして74ml/分という高
流速であつた。しかし、白血球除去率は75%と低
かつた。赤血球回収率は93%であつた。 比較例 5 直径7.0μmのポリエステル繊維から成る嵩密度
0.16g/cm3の不織布を、直径100mm、厚さ6mmの
円柱状に切断し、有効内径90mm、厚さ10mmのカラ
ム中に固定した。300mlの採血バツグ2個からそ
れぞれ落差800mmの位置に、上記の白血球除去フ
イルター装置をつけ、さらに800mm下方に1の
輸液バツグをつけて、処理した液を貯蔵する回収
バツグとし、その間をそれぞれ内径3mm、外径5
mmのチユーブで連結した処理装置を作成した。こ
の処理装置の採血バツグ2個に、A型の健康人の
ヘマトクリツト46%の新鮮CPD液添加血液全血
250mlずつを入れ、落差を利用した自然落下法に
より、室温25℃にて1バツグずつ順番に白血球除
去処理を行つた。 つぎに、生理食塩水80mlを自然落下法により、
この白血球除去フイルター装置に流し、フイルタ
ー内の赤血球を回収した。 その結果、この新鮮血500mlの処理時間は5分
26秒であり、処理速度にして92ml/分という高流
速であつた。しかし、白血球除去率は58%と低か
つた。赤血球回収率は93%であつた。 比較例 6 直径2.4μmのポリエステル繊維から成る嵩密度
0.6g/cm3の不織布を、直径100mm、厚さ6mmの円
柱状に切断し、有効内径90mm、厚さ10mmのカラム
中に固定した。300mlの採血バツグ2個からそれ
ぞれ落差800mmの位置に、上記の白血球除去フイ
ルター装置をつけ、さらに800mm下方に1の輸
液バツグをつけて、処理した液を貯蔵する回収バ
ツグとし、その間をそれぞれ内径3mm、外径5mm
のチユーブで連結した処理装置を作成した。この
処理装置の採血バツグ2個に、A型の健康人のヘ
マトクリツト49%の新鮮CPD液添加血液全血250
mlずつを入れ、落差を利用した自然落下法によ
り、室温25℃にて1バツグずつ順番に白血球除去
処理を行つた。 しかし、白血球除去フイルター装置が詰まつて
しまい、血液は25mlしか得られなかつた。得られ
た血液だけについて分析したところ、白血球除去
率は100%であり、赤血球回収率は5%であつた。 比較例 7 直径2.4μmのポリエステル繊維から成る嵩密度
0.05g/cm3の不織布を、直径100mm、厚さ6mmの
円柱状に切断し、有効内径90mm、厚さ10mmのカラ
ム中に固定した。300mlの採血バツグ2個からそ
れぞれ落差800mmの位置に、上記の白血球除去フ
イルター装置をつけ、さらに800mm下方に1の
輸液バツグをつけて、処理した液を貯蔵する回収
バツグとし、その間をそれぞれ内径3mm、外径5
mmのチユーブで連結した処理装置を作成した。こ
の処理装置の採血バツグ2個に、A型の健康人の
ヘマトクリツト46%の新鮮CPD液添加血液全血
250mlずつ入れ、落差を利用した自然落下法によ
り、室温25℃にて1バツグずつ順番に白血球除去
処理を行つた。 つぎに、生理食塩水80mlを自然落下法により、
この白血球除去フイルター装置に流し、フイルタ
ー内の赤血球を回収した。 その結果、この新鮮血液500mlの処理時間は3
分24秒であり、処理速度にして147ml/分という
高流速であつた。しかし、白血球除去率は63%と
低かつた。赤血球回収率は97%であつた。 各実施例および比較例の結果をまとめて下表に
示す。
The present invention relates to a filter for selectively removing white blood cells from a blood cell suspension such as blood or body fluid. In recent years, due to the development of hematology and immunology, component transfusion, which gives only the blood components required by the patient and minimizes unnecessary components, has been attracting attention instead of the conventional whole blood transfusion. Blood component transfusions include red blood cell transfusions, white blood cell transfusions, platelet transfusions, and plasma transfusions, and there are many cases in which only red blood cells are transfused to patients with anemia, heart and lung disease, etc. The reasons for this are:
Patients who received transfusions of whole blood or concentrated red blood cells experienced nausea,
It has been reported that side effects include fever, headache, and nausea. The cause of these is an immune reaction between the recipient's antibodies and the HLA antigens or tissue antigens possessed by the white blood cells in the injected blood, that is, the production of anti-leukocyte antibodies. be exposed. Therefore, in the case of red blood cell transfusion, it is desirable to inject a concentrated red blood cell solution from which antigenic substances such as white blood cells and platelets have been removed as much as possible. Based on these findings, various methods of obtaining concentrated red blood cells from which leukocytes and platelets have been removed as much as possible are currently being investigated. This method can be roughly divided into three types. For one thing, white blood cells, platelets,
The second method is to separate plasma and obtain concentrated red blood cells. Dextran is added to whole blood, red blood cells are precipitated, plasma containing white blood cells is removed, and dextran is washed away with physiological saline. , a method for obtaining washed concentrated red blood cells; and a third method for obtaining concentrated blood from which leukocytes have been removed by trapping leukocytes with a filter suitably filled with fibers. However, centrifugation requires expensive equipment, requires washing with saline three or more times to remove about 90% of white blood cells and platelets, and does not aspirate white blood cells. The problem is that about 20% of the red blood cells are wasted because the separated red blood cells are separated by suction, but the dextran sedimentation method also requires three or more menstrual cycles to achieve a leukocyte removal rate of about 90%. Requires saline wash and dextran wash, which is time consuming;
Operability is also difficult. A method for capturing and removing white blood cells using a filter device filled with fibers and obtaining a red blood cell preparation rich in red blood cells without white blood cells is described in Japanese Patent Publication No. 58-
No. 54125 and Japanese Patent Publication No. 58-54126, these inventions require that at least one of synthetic fibers, semi-synthetic fibers, recycled artificial fibers, inorganic fibers, and natural fibers that do not denature blood be added to the column at a concentration of 0.15 g/cm. A leukocyte separation filter device packed with a density of 3 or less, and a leukocyte separation material made of synthetic fibers, semi-synthetic fibers, recycled man-made fibers, inorganic fibers, or natural fibers that do not denature blood and have an average diameter of 10 μm or less. The use of fibers having minute protrusions on their surfaces is also disclosed, and the average diameter (D) is the diameter converted to a perfect circle, that is, the weight of the fiber is xg, and the length is ycm, density ρ
Assuming g/cm 3 , It is stated that it is defined by The above-mentioned leukocyte separation filter device and leukocyte separation material have the characteristic of being able to capture and remove leukocytes from blood with simple operations and with high purity and yield, but filters of the size actually used in hospitals have a slow processing speed. The problem is that it takes about 40 minutes to process 200ml and about 100 minutes to process 500ml, which is too long as a processing time.Also, if the blood is left at room temperature during this time, it may cause denaturation of the blood. Moreover, in order to increase the processing speed, the capacity of the filter must be extremely large, and if fibers of a certain size are packed with more than 0.15 g/cm 3 , even red blood cells will be captured, resulting in clogging. There was a problem that the processing speed decreased. The present inventors have discovered that from a large amount of blood, with a simple operation,
As a result of intensive research into a method to separate and remove white blood cells with high efficiency and in a very short time,
Made of fibers with a diameter of less than 3 μm and a bulk density of 0.15
More than g/ cm3 and less than 0.50g/ cm3 , thickness from 1mm
The 30mm nonwoven fabric allows for thinner fiber layers and lower filter pressure loss than conventional ones, resulting in a 1/10th processing time.
We have discovered that it is possible to separate and remove white blood cells with high efficiency while being able to shorten the process to approximately 100 lbs. In this case, it is preferable that the above-mentioned nonwoven fabric is fixed in position by mutual entanglement of fibers. According to the present invention, by using a nonwoven fabric made of fibers having an extremely small fiber diameter, it is possible to uniformly fill the filter device with fibers in the longitudinal and lateral directions. Furthermore, since thin fibers can be packed evenly, it is possible to increase the packing density to an extent that would be unimaginable with thin fibers. Therefore, the contact area with blood can be increased, and the length (thickness) in the vertical direction required for removing leukocytes can be significantly shortened. Therefore, when blood is passed through the filter, there is less pressure loss, the processing speed is increased, and processing can be performed in a short time. In addition, by using a nonwoven fabric with small diameter fibers, the distance between the fibers is constant and uniform, and the distance between the fibers can be reduced, preventing blood channeling.
The ability to remove white blood cells is improved, and the variation between products is also reduced. Furthermore, since the product can be made thinner and more compact, the priming volume can be reduced and the blood recovery rate can be improved. In addition, the high processing speed and short operation time can prevent blood temperature from rising when blood stored at 4° C. is processed at room temperature, and is also effective in preventing blood denaturation. Furthermore, by using non-woven fabric, there is no lint produced during processing.
It also has the effect of preventing lint from being mixed in during blood transfusion. The fibers used in the present invention are synthetic fibers that do not denature blood, and include polyamide, aromatic polyamide, polyester, polyacrylonitrile, polytrifluorochloroethylene, polymethyl methacrylate, polystyrene, polyethylene, and polypropylene. And the diameter
Although it is generally difficult to make fibers with a diameter of less than 3 μm, there are methods to make fibers with a diameter of less than 3 μm.
There is a melt-blowing process by which the fibers of the present invention with a diameter of less than 3 μm were made. However, for use in the present invention
Fibers less than 3 μm are not limited to this method. In the nonwoven fabric of the present invention, it is preferable that the fibers are fixed in position by mutual entanglement of the fibers. Methods for fixing the fibers to form a non-woven fabric include applying heat near the melting point of these fibers to fix them, and fixing them with adhesives, and these methods can of course be used in the present invention, but the present invention When the fibers become thin, such as those used in It is stable unless force is applied and can withstand blood treatment. Therefore, a method of fixing the fibers by simply entangling the fibers with each other, such as an air blow method or a high pressure steam blow method, which does not completely fix the fibers, is preferably employed. The diameter of the fibers constituting the nonwoven fabric of the present invention is 3 μm
preferably from 0.1 μm to less than 3 μm, more preferably from 0.1 μm to 2.0 μm.
If the diameter of the fibers is smaller than 0.1 μm, it is actually difficult to make, but if the fibers are packed evenly, the space between the fibers will become narrow, and red blood cells will be captured along with white blood cells, causing clogging and slowing down the processing speed. This will result in a drastic decrease. If the fiber diameter is 3 μm or more, it is necessary to increase the packing density and reduce the distance between the fibers. For example, for fibers with a diameter of 3 μm or more, the packing density must exceed 0.50 g/cm 3 . This results in a decrease in the removal rate of leukocytes.
Furthermore, in order to increase the packing density, the fibers must be filled under high pressure, which may result in destruction of the fibers. Furthermore, since the blood contact area in a given volume is small, the volume of the leukocyte removal filter becomes significantly large, making it difficult to handle in hospitals. The bulk density of the nonwoven fabric of the present invention exceeds 0.15 g/cm 3
It needs to be 0.50 g/cm 3 or less, preferably in the range of 0.20 g/cm 3 to 0.30 g/cm 3 . If the bulk density of the nonwoven fabric is less than 0.15 g/cm 3 , white blood cells will leak out at high speed processing of 50 ml/min, for example. In addition, the bulk density of the nonwoven fabric is 0.50g/
When it is larger than cm 3 , the interfibers become denser,
Red blood cells also become trapped, and the recovery rate of red blood cells decreases. The thickness of the nonwoven fabric of the present invention is 1 mm to 30 mm, preferably 1 mm for high-speed processing of blood and blood cell suspension.
The range is from mm to 20 mm, more preferably from 2 mm to 10 mm. When the thickness of the nonwoven fabric becomes thinner than 1mm,
The capture of leukocytes is not sufficient, and the capture rate of leukocytes decreases. Moreover, if the thickness of the nonwoven fabric becomes thicker than 30 mm, the pressure loss will increase and the processing speed will decrease. For high-speed processing of blood and blood cell suspension, the filter area of the present invention is such that the total area on the blood inlet side including the space between the fibers is 10 cm 2 /500 ml of blood to 2000 ml of blood.
cm 2 / 500ml of blood, preferably from 20cm 2 / 500ml of blood
1000 cm 2 /500 ml of blood, more preferably in the range of 30 cm 2 /500 ml of blood to 300 cm 2 /500 ml of blood. If the filter area is smaller than 10cm 2 /500ml of blood,
As the surface of the leukocyte removal filter becomes saturated with leukocytes, the processing speed becomes slower. Also,
If the filter area is larger than 2000 cm 2 /500 ml of blood, a large amount of physiological saline will be required to collect red blood cells in the leukocyte removal filter after leukocyte removal processing, and a large number of red blood cells will remain in the leukocyte removal filter. The recovery rate of red blood cells decreases. In addition, the bulk density of the nonwoven fabric of the present invention refers to the value measured by the weight per 1 cm 3 of a uniform nonwoven fabric. In order to capture and remove white blood cells from a large amount of blood with simple operations and in a very short time, which is the objective of the present invention, the diameter of the fibers is less than 3 μm;
The bulk density is more than 0.15 g/cm 3 and less than 0.50 g/cm 3 ,
It is necessary that the filter is made of a non-woven fabric with a thickness of 1 mm to 30 mm, preferably the non-woven fabric is fixed in position by mutual entanglement of fibers, and the bulk density of the non-woven fabric and The filter area is within the above range. Hereinafter, details of the leukocyte removal filter of the present invention and a filter device using the filter will be explained with reference to the drawings. 1 and 2 show one embodiment of a filter device using a leukocyte removal filter of the present invention, and FIGS. 3 and 4 show another embodiment. In Figures 1 and 2, 1 is the filter device main body, two round tray-shaped frames 2,
2' are fitted with a ring member 3 so as to form a cavity, and a large number of protrusions 4, 4' are formed on the inner surfaces of the round tray-shaped frames 2, 2', respectively. ,
A filter 6 made of non-woven fabric is provided sandwiched between the mesh-like supports 5 and 5'. Reference numeral 7 indicates a blood inflow pipe provided on one of the round tray-shaped frames 2, 8 is a blood outflow pipe provided on the other round tray-shaped frame 2', and 9 and 9' are packings. The filter 6 is supported by the mesh-like supporting members 5 and 5'.
The bulk density is maintained within a range of more than 0.15 g/cm 3 and less than 0.50 g/cm 3 . The filter devices shown in FIGS. 3 and 4 are also substantially similar to the filter device described above, except that the blood inflow pipe 13 and the blood outflow pipe 14 are connected to the round tray-shaped frames 10 and 1.
0' in the center, and in the cavity,
A filter 12 made of non-woven fabric is provided sandwiched between mesh-like supporting materials 11 and 11'. 1
5, 15' is packing. The mesh-shaped support material is mesh-shaped so that the blood fluid flows uniformly, and also serves as a flow path regulating section. Blood flows through blood inflow tube 7 or 13
The mesh-like support material 5 or 11 is introduced from
The blood becomes a uniform flow, and is then introduced into the filter 6 or 12, where white blood cells, platelets, etc. are captured. ' or 11', the flow becomes more uniform and is recovered from the blood outflow tube 8 or 14. The above-mentioned filter selectively captures white blood cells, platelets, etc. in the blood, and only allows red blood cells and plasma to pass through, due to the adhesiveness, chargeability, hydrophobicity, and inter-fiber properties of the fiber surface. sex,
The effects of chargeability and hydrophobicity are greatly influenced by the distance between fibers. Furthermore, the ability to capture white blood cells, platelets, etc. and the permeability of red blood cells and plasma are related to the bulk density of the nonwoven fabric. Healthy human whole blood, PRC fluid, and bovine blood,
According to detailed test results using PRC liquid, the suitable bulk density of nonwoven fabric is more than 0.15g/cm 3 and less than 0.50g/cm 3 , and the bulk density of nonwoven fabric made of polyester yarn is from 0.20g/cm 3 to 0.50g/cm 3 . Approximately 0.30 g/cm 3 is preferable. FIG. 5 shows one mode of use of the filter device using the leukocyte removal filter of the present invention. Blood collected from the human body has a blood collection tag of 16.
It is supplied to a filter device 18 by the leukocyte removal filter of the present invention through a circuit 17 due to the differential pressure. The blood introduced into the filter device 18 has white blood cells, platelets, etc. captured by the leukocyte removal filter made of non-woven fabric of the filter device, and becomes blood mainly composed of platelets and plasma.
After passing through 9, it is supplied to a collection bag 20. If the recovery rate of red blood cells is to be further increased, red blood cells partially remaining in the circuit and the leukocyte removal filter can be collected by introducing the saline bag 21 prepared in advance into the filter device 18 through the circuit 22 in the same manner. . In addition, 23 is a collection bag, and 24 is an adjustment valve. The above example shows blood collected from a human body being placed in a blood collection bag, but blood is directly collected from the human body, introduced into a filter device using a circulation pump, etc., and platelets and plasma from which white blood cells and other substances have been removed are collected. It is also possible to return the main blood to the body. As described above, the leukocyte removal filter according to the present invention is capable of separating and removing leukocytes from blood or a blood cell suspension with simple operations, high yield, and a very short processing time. Examples will be described below. Example 1 A nonwoven fabric with a diameter of 110 mm and a thickness of polyester fibers of 1.2 μm in diameter and a bulk density of 0.18 g/cm 3 made by a melt-blowing method was fixed in place by the mutual entanglement of the fibers. Cut into 7mm cylinders,
Effective inner diameter 100 mm (effective inner diameter = diameter of the part where blood or blood cell suspension actually contacts the filter surface. The same applies to subsequent examples), thickness 11 mm
Attach the above-mentioned leukocyte removal filter device at a height of 800 mm from two 300 ml blood collection bags fixed in the column, and attach an infusion bag 1 800 mm below, and a collection bag to store the processed fluid. and the inner diameter between them is 3mm,
A processing device was created that was connected by tubes with an outer diameter of 5 mm. Add 250 ml of fresh whole blood of a healthy person with type A blood supplemented with CPD solution with a hematocrit of 38% to two blood collection bags of this processing device, and collect one bag at a time at a room temperature of 25°C using a gravity drop method using a drop. Leukocyte removal treatment was performed. Next, 90 ml of physiological saline was poured into this leukocyte removal filter device by a gravity drop method, and the red blood cells in the filter were collected. As a result, the processing time for this 500ml of fresh blood is 6
The processing time was 76 ml/min, which was a high flow rate. Furthermore, the leukocyte removal rate was 99.7% and the red blood cell recovery rate was 95%. Comparative Example 1 A leukocyte removal filter device (bulk density 0.13 g/cm 3 ) was created by uniformly packing 9 g of polyester fibers with a diameter of 9.6 μm and a length of 40 mm to 70 mm into a column with a diameter of 30 mm and a length of 100 mm. did. Attach the leukocyte removal filter device described above at a height of 800 mm from two 300 ml blood collection bags, and add 800 mm to each bag.
A processing device was constructed by attaching an infusion bag of 1 mm below the bag to serve as a collection bag for storing treated blood, and connecting the bag with a tube having an inner diameter of 3 mm and an outer diameter of 5 mm. The two blood collection bags of this processing device contained a fresh hematocrit of 38% from a healthy type A person.
250 ml of CPD solution-added whole blood was added to each bag, and leukocytes were removed one by one at a room temperature of 25° C. using a gravity drop method using a drop. Next, 80 ml of physiological saline was poured into this leukocyte removal filter device by a gravity drop method, and the red blood cells in the filter were collected. As a result, the processing time for 500ml of fresh blood is 1
The time was 32 minutes and 35 seconds, and the processing speed was 5.4 ml/min. Furthermore, the leukocyte removal rate was 93.2% and the red blood cell recovery rate was 93%. According to Example 1, the leukocyte removal filter of the present invention has a high processing speed that is about 14 times faster than conventional leukocyte removal filters, and has a good leukocyte removal rate.
The red blood cell recovery rate was also excellent, comparable to that of the conventional method. Example 2 A nonwoven fabric with a diameter of 78 mm and a thickness of It was cut into a cylindrical shape with a length of 4 mm and fixed in a column with an effective inner diameter of 68 mm and a thickness of 8 mm. 800 drop each from two 300ml blood collection bags
The leukocyte removal filter device described above was attached at the position of mm, and an infusion bag of 1 was attached 800 mm below to serve as a collection bag for storing the treated fluid, and these were connected by tubes with an inner diameter of 3 mm and an outer diameter of 5 mm. A processing device was created. The two blood collection bags of this processing device contain hematocrit blood from a healthy person with blood type B.
Add 250 ml of whole blood containing 42% fresh ACD-A solution, and use the gravity drop method to cool it to room temperature of 25 ml.
Leukocyte removal treatment was performed one bag at a time at ℃. Next, 40 ml of physiological saline was poured into the leukocyte removal filter device by a gravity drop method, and red blood cells were collected from the filter. As a result, the processing time for this 500ml of fresh blood is 7
The processing time was 69 ml/min, which was a high flow rate. Furthermore, the leukocyte removal rate was 100% and the red blood cell recovery rate was 98%. Comparative Example 2 A polyamide fiber (nylon-66) with a diameter of 7.2 μm and a length of 40 to 70 mm was made with a diameter of 36 mm and a length of 70 mm.
A leukocyte removal filter device (bulk density 0.09 g/cm 3 ) was prepared by uniformly packing 6.6 g into a mm column.
Attach the leukocyte removal filter described above at a height of 800 mm from the two 300 ml blood collection bags, and then attach one infusion bag 800 mm below to serve as a collection bag for storing the processed blood. A processing device was created that was connected by tubes with an outer diameter of 5 mm. Put 250 ml of fresh whole blood of a healthy person with blood type B and a hematocrit of 42% supplemented with ACD-A solution into two blood collection bags of this processing device.
1 at a room temperature of 25℃ using the natural fall method using the head.
Leukocyte removal treatment was performed on each bag in turn. Next, 80 ml of physiological saline was poured into this leukocyte removal filter device by a gravity drop method, and the red blood cells in the filter were collected. As a result, the processing time for 500ml of fresh blood is 1
The time was 24 minutes and 45 seconds, and the processing speed was 5.9 ml/min. Furthermore, the leukocyte removal rate was 95.1% and the red blood cell recovery rate was 94%. According to Example 2, the leukocyte removal filter of the present invention has a high processing speed that is about 12 times faster than conventional leukocyte removal filters, has a good leukocyte removal rate, and has a high leukocyte removal rate.
The red blood cell recovery rate was also excellent, comparable to that of the conventional method. Example 3 Polyamide fiber (nylon) with a diameter of 0.8 μm
66) with a bulk density of 0.16 g/cm 3 made by melt blowing method.
A nonwoven fabric with a diameter of 100 mm and a thickness of 2
It was cut into cylindrical pieces with a diameter of 90 mm and fixed in a column with an effective inner diameter of 90 mm and a thickness of 6 mm. Attach the leukocyte removal filter device described above at a height of 800 mm from two 300 ml blood collection bags, and then attach one leukocyte removal filter device 800 mm below each bag.
A treatment device was constructed in which an infusion bag was attached and a collection bag was used to store the treated liquid, and the bag was connected with a tube having an inner diameter of 3 mm and an outer diameter of 5 mm.
250 ml of fresh whole blood with a hematocrit of 45% CPD solution from a healthy person with blood type A was added to two blood collecting bags of this processing device, and each bag was collected one by one at a room temperature of 25°C using a gravity drop method using a drop. leukocyte removal treatment was performed. Next, 50 ml of physiological saline was poured into this leukocyte removal filter device by a gravity drop method, and the red blood cells in the filter were collected. As a result, the processing time for this 500ml of fresh blood is 6
The processing time was 77 ml/min, which was a high flow rate. Furthermore, the leukocyte removal rate was 99.9% and the red blood cell recovery rate was 98%. Comparative Example 3 Leukocyte removal filter device (bulk density 0.090 g/cm 3 ) in which 18 g of acrylonitrile synthetic fibers with a diameter of 5.2 μm and a length of 40 mm to 70 mm are evenly packed into a column with a diameter of 80 mm and a length of 40 mm. It was created. 300ml
The leukocyte removal filter device described above was attached at a height of 800 mm from the two blood collection bags, and an infusion bag was attached 800 mm below to serve as a collection bag for storing the processed blood. A processing device was created that was connected by tubes with an outer diameter of 5 mm. 250 ml of fresh whole blood supplemented with CPD solution from a healthy person with type A blood with a hematocrit of 45% was placed into two blood collection bags of this processing device, and each bag was collected one by one at a room temperature of 25°C using a gravity drop method using a drop. Leukocyte removal treatment was performed. Next, add 210ml of physiological saline using the gravity method.
The blood was passed through this leukocyte removal filter device, and the red blood cells in the filter were collected. As a result, the processing time for this 500ml of fresh blood is 19
The processing time was 26 ml/min. Furthermore, the leukocyte removal rate was 68.4% and the red blood cell recovery rate was 91.3%. According to Example 3, the leukocyte removal filter of the present invention had a high processing speed of 78 ml/min. Also,
I tried high-speed processing using the conventional method, but the processing speed was only 26ml/
When the rate was increased to 1 minute, the leukocyte removal rate decreased.
Therefore, in the conventional method, there is a limit to how high the processing speed can be increased, and high-speed processing as in the present invention is not possible. Example 4 When manufacturing a nonwoven fabric with a bulk density of 0.28 g/cm 3 made by melt-blowing polyester fibers with a diameter of 2.8 μm, dry heat treatment was performed at 250° C. for 2 seconds during melt-blowing.
A nonwoven fabric was created by thermally fixing the intertwined contact points of fibers. This nonwoven fabric was cut into a cylinder shape with a diameter of 160 mm and a thickness of 8 mm, and an effective inner diameter of 150 mm and a thickness of 12 mm.
fixed in a mm column. 300ml blood collection bag 2
Attach the leukocyte removal filters mentioned above at a height of 800 mm from each cell, and then 800 mm below the filters.
A treatment device was constructed in which an infusion bag was attached and a collection bag was used to store the treated liquid, and the bag was connected with a tube having an inner diameter of 3 mm and an outer diameter of 5 mm. Two blood collection bags of this processing device were filled with 200 ml of blood concentrate from a healthy blood type O person with a hematocrit of 64% added with CPD solution (some plasma was removed by centrifugation), which had been stored at 4°C for one day. Each bag was removed from a refrigerator at 4°C using a gravity drop method using a drop, and immediately subjected to leukocyte removal treatment one bag at a time at room temperature of 10°C. Next, add 220ml of physiological saline using the gravity drop method.
It was passed through this leukocyte removal filter, and the red blood cells in the filter were collected. As a result, the processing time for 400ml of fresh blood was 6 minutes.
The processing time was 27 seconds, and the processing speed was a high flow rate of 62 ml/min. In addition, the leukocyte removal rate is 98.9%,
The recovery rate of red blood cells was 91%. Comparative Example 4 Bulk density made of polyester fiber with a diameter of 3.8 μm
A 0.16 g/cm 3 nonwoven fabric was cut into a column with a diameter of 100 mm and a thickness of 6 mm, and fixed in a column with an effective inner diameter of 90 mm and a thickness of 10 mm. Attach the leukocyte removal filter device described above at a height of 800 mm from two 300 ml blood collection bags, and then attach one infusion bag 800 mm below, which serves as a collection bag to store the processed fluid, and between them each have an inner diameter of 3 mm. , outer diameter 5
A processing device connected with mm tubes was created. The two blood collection bags of this processing device are filled with whole blood containing fresh CPD liquid with a hematocrit of 44% from a healthy person with type A blood.
250 ml of each bag was added, and leukocytes were removed one by one at a room temperature of 25° C. using a gravity drop method using a drop. Next, add 80ml of physiological saline using the gravity drop method.
The blood was passed through this leukocyte removal filter device, and the red blood cells in the filter were collected. As a result, the processing time for this 500ml of fresh blood is 6
The processing time was 74 ml/min, which was a high flow rate. However, the leukocyte removal rate was low at 75%. The red blood cell recovery rate was 93%. Comparative Example 5 Bulk density made of polyester fiber with a diameter of 7.0 μm
A 0.16 g/cm 3 nonwoven fabric was cut into a column with a diameter of 100 mm and a thickness of 6 mm, and fixed in a column with an effective inner diameter of 90 mm and a thickness of 10 mm. Attach the leukocyte removal filter device described above at a height of 800 mm from two 300 ml blood collection bags, and then attach one infusion bag 800 mm below, which serves as a collection bag to store the processed fluid, and between them each have an inner diameter of 3 mm. , outer diameter 5
A processing device connected with mm tubes was created. The two blood collection bags of this processing device are filled with whole blood containing fresh CPD solution added with a hematocrit of 46% from a healthy person with type A blood.
250 ml of each bag was added, and leukocytes were removed one by one at a room temperature of 25° C. using a gravity drop method using a drop. Next, add 80ml of physiological saline using the gravity drop method.
The blood was passed through this leukocyte removal filter device, and the red blood cells in the filter were collected. As a result, the processing time for 500ml of fresh blood is 5 minutes.
The processing time was 26 seconds, and the processing speed was a high flow rate of 92 ml/min. However, the leukocyte removal rate was low at 58%. The red blood cell recovery rate was 93%. Comparative Example 6 Bulk density made of polyester fibers with a diameter of 2.4 μm
A 0.6 g/cm 3 nonwoven fabric was cut into a column with a diameter of 100 mm and a thickness of 6 mm, and fixed in a column with an effective inner diameter of 90 mm and a thickness of 10 mm. Attach the leukocyte removal filter device described above at a height of 800 mm from two 300 ml blood collection bags, and then attach one infusion bag 800 mm below, which serves as a collection bag to store the processed fluid, and between them each have an inner diameter of 3 mm. , outer diameter 5mm
A processing device was created that was connected with two tubes. The two blood collection bags of this processing device contain 250 ml of fresh whole blood with a hematocrit of 49% from a healthy person with blood type A.
ml each, and leukocyte removal treatment was performed one bag at a time at a room temperature of 25°C using a gravity drop method using a drop. However, the leukocyte removal filter device became clogged and only 25 ml of blood could be obtained. When only the obtained blood was analyzed, the leukocyte removal rate was 100% and the red blood cell recovery rate was 5%. Comparative Example 7 Bulk density made of polyester fibers with a diameter of 2.4 μm
A 0.05 g/cm 3 nonwoven fabric was cut into a cylinder with a diameter of 100 mm and a thickness of 6 mm, and fixed in a column with an effective inner diameter of 90 mm and a thickness of 10 mm. Attach the leukocyte removal filter device described above at a height of 800 mm from two 300 ml blood collection bags, and then attach one infusion bag 800 mm below, which serves as a collection bag to store the processed fluid, and between them each have an inner diameter of 3 mm. , outer diameter 5
A processing device connected with mm tubes was created. The two blood collection bags of this processing device are filled with whole blood containing fresh CPD solution added with a hematocrit of 46% from a healthy person with type A blood.
Each bag was filled with 250 ml, and leukocytes were removed one by one at a room temperature of 25° C. using a gravity drop method using a drop. Next, add 80ml of physiological saline using the gravity drop method.
The blood was passed through this leukocyte removal filter device, and the red blood cells in the filter were collected. As a result, the processing time for this 500ml of fresh blood is 3
The processing time was 147 ml/min, which was a high flow rate. However, the leukocyte removal rate was low at 63%. The red blood cell recovery rate was 97%. The results of each example and comparative example are summarized in the table below.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の白血球除去フイルターによる
フイルター装置の一実施態様を示す正面図、第2
図は同縦断側面図、第3図は別の実施態様を示す
正面図、第4図は同縦断側面図、第5図は本発明
の白血球除去フイルターによるフイルター装置の
使用態様を示す説明図である。 1……フイルター装置本体、2,2′……丸盆
状枠体、3……リング部材、4,4′……突条、
5,5′……メツシユ状支持材、6……フイルタ
ー、7……血液流入管、8……血液流出管、9,
9′……パツキング、10,10′……丸盆状枠
体、11,11′……メツシユ状支持材、12…
…フイルター、13……血液流入管、14……血
液流出管、15,15′……パツキング、16…
…採血バツグ、17……回路、18……フイルタ
ー装置、19……回路、20……回収バツグ、2
1……生理食塩水バツグ、22……回路、23…
…回収バツグ、24……調整バルブ。
FIG. 1 is a front view showing one embodiment of a filter device using a leukocyte removal filter of the present invention, and FIG.
3 is a front view showing another embodiment, FIG. 4 is a longitudinal side view of the same, and FIG. 5 is an explanatory view showing how the filter device using the leukocyte removal filter of the present invention is used. be. 1... Filter device main body, 2, 2'... Round tray-shaped frame body, 3... Ring member, 4, 4'... Projection,
5, 5'...Mesh-shaped support material, 6...Filter, 7...Blood inflow pipe, 8...Blood outflow pipe, 9,
9'... Packing, 10, 10'... Round tray-shaped frame, 11, 11'... Mesh-shaped support material, 12...
...Filter, 13...Blood inflow pipe, 14...Blood outflow pipe, 15, 15'...Packing, 16...
...Blood collection bag, 17...Circuit, 18...Filter device, 19...Circuit, 20...Collection bag, 2
1...Physiological saline bag, 22...Circuit, 23...
...Recovery bag, 24...Adjustment valve.

Claims (1)

【特許請求の範囲】 1 厚さが1mmから30mmの不織布からなる白血球
除去フイルターにおいて、繊維の直径が3μm未
満、嵩密度が0.15g/cm3を超え0.50g/cm3以下で
あることを特徴とする白血球除去フイルター。 2 不織布が、繊維の互いのもつれによりその位
置に固定されているものである特許請求の範囲第
1項記載の白血球除去フイルター。
[Claims] 1. A leukocyte removal filter made of a nonwoven fabric with a thickness of 1 mm to 30 mm, characterized in that the diameter of the fibers is less than 3 μm and the bulk density is more than 0.15 g/cm 3 and less than 0.50 g/cm 3 leukocyte removal filter. 2. The leukocyte removal filter according to claim 1, wherein the nonwoven fabric is fixed in position by mutual entanglement of fibers.
JP59048173A 1984-03-15 1984-03-15 Leucocyte removal filter Granted JPS60193468A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59048173A JPS60193468A (en) 1984-03-15 1984-03-15 Leucocyte removal filter
EP85102975A EP0155003B1 (en) 1984-03-15 1985-03-14 Filtering unit for removing leukocytes
DE8585102975T DE3578502D1 (en) 1984-03-15 1985-03-14 FILTER UNIT FOR SEPARATING LEUKOCYTES.
US06711667 US4701267B1 (en) 1984-03-15 1985-03-14 Method for removing leukocytes
JP3135364A JPH0651063B2 (en) 1984-03-15 1991-05-13 How to selectively remove white blood cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59048173A JPS60193468A (en) 1984-03-15 1984-03-15 Leucocyte removal filter
JP3135364A JPH0651063B2 (en) 1984-03-15 1991-05-13 How to selectively remove white blood cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3135364A Division JPH0651063B2 (en) 1984-03-15 1991-05-13 How to selectively remove white blood cells

Publications (2)

Publication Number Publication Date
JPS60193468A JPS60193468A (en) 1985-10-01
JPH0213587B2 true JPH0213587B2 (en) 1990-04-04

Family

ID=26388401

Family Applications (2)

Application Number Title Priority Date Filing Date
JP59048173A Granted JPS60193468A (en) 1984-03-15 1984-03-15 Leucocyte removal filter
JP3135364A Expired - Lifetime JPH0651063B2 (en) 1984-03-15 1991-05-13 How to selectively remove white blood cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3135364A Expired - Lifetime JPH0651063B2 (en) 1984-03-15 1991-05-13 How to selectively remove white blood cells

Country Status (1)

Country Link
JP (2) JPS60193468A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120600A1 (en) 2004-06-09 2005-12-22 Asahi Kasei Medical Co., Ltd. Method for removing leukocyte and filter for use therein
JP2009022762A (en) * 1998-05-13 2009-02-05 Asahi Kasei Kuraray Medical Co Ltd Filter device and method for treatment of blood
JP2013138920A (en) * 2008-12-03 2013-07-18 Terumo Corp Blood bag system
WO2015088019A1 (en) 2013-12-13 2015-06-18 旭化成メディカル株式会社 Leukocyte removal filter material and leukocyte removal method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002264A1 (en) * 1986-10-06 1988-04-07 Terumo Kabushiki Kaisha Blood component separator
JPH0614968B2 (en) * 1987-06-15 1994-03-02 テルモ株式会社 Leukocyte capture and separation device
JPH0720539B2 (en) * 1988-03-03 1995-03-08 テルモ株式会社 White blood cell separator
JPH0659305B2 (en) * 1988-06-23 1994-08-10 旭メディカル株式会社 Blood component separation method
JPH0659304B2 (en) * 1988-06-23 1994-08-10 旭メディカル株式会社 Blood component separation method
JPH03188872A (en) * 1989-12-20 1991-08-16 Taiichiro Iwakura Method for deactivating aids virus
ES2151492T3 (en) * 1991-08-22 2001-01-01 Asahi Medical Co FILTER MATERIAL TO SELECTLY REMOVE LEUCOCITS AND APPLIANCE WITH FILLING OF THE SAME.
US20010037978A1 (en) * 1999-04-20 2001-11-08 Daryl R. Calhoun Filter assembly having a flexible housing and method of making same
ES2202491T3 (en) * 1995-12-26 2004-04-01 Asahi Medical Co., Ltd. FILTRATION MATERIAL FOR THE ELIMINATION OF LEUCOCITS.
KR100463615B1 (en) 1999-11-01 2004-12-29 아사히 카세이 메디칼 가부시키가이샤 Filter for Selectively Removing Leukocyte
JP2002113097A (en) * 2000-05-23 2002-04-16 Toray Ind Inc Adsorbent and in vitro circulation column
JP4505950B2 (en) * 2000-06-06 2010-07-21 東レ株式会社 Adsorbent and extracorporeal circulation column
CA2464351A1 (en) * 2001-10-16 2003-04-24 Asahi Medical Co., Ltd. Method for selectively removing virus and leukocytes, removing material and removing apparatus
PL1837028T3 (en) 2005-01-06 2012-12-31 Asahi Kasei Medical Co Ltd Method of removing leukocyte
KR100972702B1 (en) 2005-03-31 2010-07-27 도레이 카부시키가이샤 Adsorbent and column for extracorporeal circulation
US20100176051A1 (en) * 2006-08-31 2010-07-15 Toray Industries, Inc., A Corporation Of Japan Adsorption carrier containing composite fiber
KR101398768B1 (en) 2006-09-29 2014-05-27 도레이 카부시키가이샤 Cell-adsorbing column
US20100270232A1 (en) 2007-12-27 2010-10-28 Toray Industries, Inc. Fiber construct for treating biological components
EP2633872B1 (en) 2010-10-27 2019-04-24 Toray Industries, Inc. Carrier for blood component adsorption and blood component adsorption column
JP2012120458A (en) * 2010-12-06 2012-06-28 Kaneka Corp Cell separator
EP3311857B1 (en) 2015-06-17 2024-04-10 Asahi Kasei Medical Co., Ltd. Blood-processing filter
JP6210651B2 (en) * 2016-01-18 2017-10-11 フォースエンジニアリング株式会社 Medical filter device
BR112020003093A2 (en) 2017-09-08 2020-08-25 Toray Industries, Inc. adsorption material for immunosuppressive leukocytes, and, adsorption column
WO2020183951A1 (en) * 2019-03-12 2020-09-17 テルモ株式会社 Filtration device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119012A (en) * 1978-03-06 1979-09-14 Asahi Chem Ind Co Ltd Filter for leucocyte separation, and method for separating leucocyte using the same
JPS5631737A (en) * 1979-08-22 1981-03-31 Baxter Travenol Lab Blood filter for white corpuscle
JPS5653616A (en) * 1979-10-09 1981-05-13 Asahi Chem Ind Co Ltd Separating method of leukocyte, its separator and its separation filter
JPS5721009B2 (en) * 1978-07-31 1982-05-04

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012578Y2 (en) * 1980-07-08 1985-04-23 三菱レイヨン株式会社 Fiber entanglement separation material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119012A (en) * 1978-03-06 1979-09-14 Asahi Chem Ind Co Ltd Filter for leucocyte separation, and method for separating leucocyte using the same
JPS5721009B2 (en) * 1978-07-31 1982-05-04
JPS5631737A (en) * 1979-08-22 1981-03-31 Baxter Travenol Lab Blood filter for white corpuscle
JPS5653616A (en) * 1979-10-09 1981-05-13 Asahi Chem Ind Co Ltd Separating method of leukocyte, its separator and its separation filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022762A (en) * 1998-05-13 2009-02-05 Asahi Kasei Kuraray Medical Co Ltd Filter device and method for treatment of blood
WO2005120600A1 (en) 2004-06-09 2005-12-22 Asahi Kasei Medical Co., Ltd. Method for removing leukocyte and filter for use therein
JP2013138920A (en) * 2008-12-03 2013-07-18 Terumo Corp Blood bag system
WO2015088019A1 (en) 2013-12-13 2015-06-18 旭化成メディカル株式会社 Leukocyte removal filter material and leukocyte removal method

Also Published As

Publication number Publication date
JPS60193468A (en) 1985-10-01
JPH0651063B2 (en) 1994-07-06
JPH0663131A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
JPH0213587B2 (en)
US4701267A (en) Method for removing leukocytes
JP6208186B2 (en) Blood component separation system, separation material
KR950005186B1 (en) Device and method for depletion of the leukocyte content of blood and blood components
JP4134043B2 (en) Leukocyte removal method, leukocyte removal filter and use thereof
JPH0327317A (en) Device and method to reduce the leucocyte content of blood and blood components
JPH0213588B2 (en)
JPH04240456A (en) Filter apparatus for removing leukocyte and method for using it
WO2015153287A1 (en) Blood filtering of inflammatory biomarkers to treat post-resuscitation syndrome
JPH0659304B2 (en) Blood component separation method
EP0365676A1 (en) Blood component separator
JP2888590B2 (en) Equipment for plasma and packed red blood cell collection
JPH04329965A (en) Selective removal method of leukocyte
JP2918595B2 (en) White blood cell separator
JP3208132B2 (en) Blood component separation method
JP3088764B2 (en) Blood component separation method
JPH0566152B2 (en)
JPH01320065A (en) Blood component separating system
JP3157519B2 (en) Blood component separation system
JPS5854125B2 (en) Leukocyte separation filter and leukocyte separation method
JPS6012578Y2 (en) Fiber entanglement separation material
JP3635654B2 (en) Blood component collection device
JP3301835B2 (en) Leukocyte removal filter and leukocyte removal system
US20230173147A1 (en) Blood separation system and blood products
JPS5854126B2 (en) Leukocyte separation material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term