JPH02135834A - Signal synchronizing system - Google Patents

Signal synchronizing system

Info

Publication number
JPH02135834A
JPH02135834A JP63289382A JP28938288A JPH02135834A JP H02135834 A JPH02135834 A JP H02135834A JP 63289382 A JP63289382 A JP 63289382A JP 28938288 A JP28938288 A JP 28938288A JP H02135834 A JPH02135834 A JP H02135834A
Authority
JP
Japan
Prior art keywords
station
synchronization
stations
main
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63289382A
Other languages
Japanese (ja)
Other versions
JPH0695681B2 (en
Inventor
Takafumi Maeda
隆文 前田
Tatsuya Kano
狩野 達弥
Takakazu Matsuyama
敬和 松山
Toshio Anzai
安斉 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Hitachi Ltd
Mitsubishi Electric Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Hitachi Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Hitachi Ltd, Mitsubishi Electric Corp filed Critical Toshiba Corp
Priority to JP63289382A priority Critical patent/JPH0695681B2/en
Publication of JPH02135834A publication Critical patent/JPH02135834A/en
Publication of JPH0695681B2 publication Critical patent/JPH0695681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To attain timewise efficiency at initializing of network by applying switching control of three transit states of asynchronous new station invitation state for a short period at initializing, invitation inhibit state for synchronizing looking and synchronizing new station invitation state for a prescribed period after signal synchronization establishment. CONSTITUTION:In the initial state when a network is built up, the interval of invitation specified by the IEEE 802.4 recommendations is minimized to quicken the time till the system operation is available and when the system operation is enabled, the invitation of new station is inhibited and the signal synchronization between a master station and a slave station is established quickly and efficiently. After the establishment of signal synchronization, the invitation of new station for network expansion is executed sequentially in an individual timing by each participant station periodically without losing the synchronization establishing state. Thus, the timewise efficiency at the initialize of the network is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、データ伝送方式に係り、特にトークン・パッ
シング・バスを用いて互いに離れた複数地点のデータ(
例えば電圧、電流等の瞬時値)を同時にサンプリングす
るための信号同期方式に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a data transmission method, and in particular, the present invention relates to a data transmission method, and in particular, the present invention relates to a data transmission system that uses a token passing bus to transmit data (
For example, the invention relates to a signal synchronization method for simultaneously sampling instantaneous values of voltage, current, etc.

〔従来の技術〕[Conventional technology]

ローカルエリアネットワーク(以下、LANという)は
近年急速に普及しつつあるが、その中で注目すべき動向
のひとつに米国ゼネラルモーターズ社の提唱したMAP
(マニュファクチュアリングオートメーシJンプロトコ
ルM anufacturingAutomation
 Protocal)と呼ばれる工業用LANに対する
関心の高まりがあげられる。 FA (ファクトリ−オ
ートメーション F actory A ut。
Local area networks (hereinafter referred to as LANs) have been rapidly spreading in recent years, and one notable trend is the MAP proposed by General Motors of the United States.
(Manufacturing Automation Protocol)
There is a growing interest in industrial LANs called LANs. FA (Factory Automation)

■ation) 、OA(オフィス オートメーション
○ff1ce Automation)のためにロボッ
ト、コンピュータ等多数の機器が工場、鳳務所に導入さ
れているが、これらの機器の相互接続を容易かつ安価に
行えることを目的として前記MAPの標準化が進められ
ている。一企業のLANというよりは業界の標準を目ざ
しており、多数の有力企業が参加している。国際標準化
機構(ISO)の08I(オープン システム インタ
ーコネクション0pen System Interc
onectLon)階層モデルの各層を埋める形で標準
化が進められており、下位2層(物理層、データリンク
層)のうちの論理リンク制御サブレイヤを除く部分は、
米国の電気・電子技術者会議(The In5titu
te of Electrical and Elec
tronics Engineers Inc、以下I
EEEという)802.4委員会のトークン・パッシン
グ・バスが使用される。現在IEEE802゜4規格で
は物理層の伝送媒体としては同軸ケーブルを使用する事
としているが、光フアイバケーブルの適用についても検
討されつつあり、媒体を先筒4図はこのトークン・パッ
シング・バスを光ファイバで構成したネットワークを示
す構成図である。図において、1.〜1nはネットワー
・・りを構成する局、21〜2nは光フアイバケーブル
、3はこの光フアイバケーブル2.〜2nを介して前記
局11〜1nの相互を接続する光スターカプラである。
A large number of devices such as robots and computers have been introduced into factories and offices for OA (Office Automation), and the purpose of this technology is to interconnect these devices easily and inexpensively. As such, standardization of the MAP is progressing. It aims to become an industry standard rather than a single company's LAN, and many leading companies are participating. International Organization for Standardization (ISO) 08I (Open System Interconnection)
onectLon) is being standardized by filling each layer of the hierarchical model, and the lower two layers (physical layer, data link layer) excluding the logical link control sublayer are
The Institute of Electrical and Electronics Engineers of the United States
te of Electrical and Elec
tronics Engineers Inc.
A token passing bus of the 802.4 committee (referred to as EEE) is used. Currently, the IEEE802.4 standard uses coaxial cable as the physical layer transmission medium, but the application of optical fiber cable is also being considered, and the token passing bus is FIG. 1 is a configuration diagram showing a network configured with fibers. In the figure, 1. -1n are stations forming the network, 21-2n are optical fiber cables, and 3 is this optical fiber cable 2. This is an optical star coupler that connects the stations 11 to 1n with each other through 2n.

次に動作について説明する。バス形ネットワークには各
局が任意にデータを送信する方式(C5MA/CD)も
あるが、伝送データ量が増大し負荷が大きくなると伝送
効率が急速に低下するという欠点がある。これに対して
、トークン・パッシング・バスは、決定論的アクセス方
式によりこの欠点を避けている。即ちトークンと呼ばれ
る送信権がトークン・パッシング・バスに加入している
各局間で順番に受けわたされ、同一時刻に複数の局が送
信することが防止される。トークンはアドレスの大きい
局から小さい局へ順番にわたされ。
Next, the operation will be explained. Although there is a method (C5MA/CD) in which each station arbitrarily transmits data in the bus network, it has the disadvantage that the transmission efficiency rapidly decreases as the amount of transmitted data increases and the load increases. Token passing buses, on the other hand, avoid this drawback through a deterministic access scheme. That is, a transmission right called a token is passed in order among the stations participating in the token passing bus, thereby preventing a plurality of stations from transmitting at the same time. Tokens are passed in order from the station with the largest address to the station with the smallest address.

また各局は自局がトークンをわたすべき局(後続局)を
記憶しており、これによりトークンが巡回する論理上の
リング(以下、論理リングという)が構成される。
Each station also remembers the station (subsequent station) to which it should pass the token, and this constitutes a logical ring (hereinafter referred to as "logical ring") around which the token circulates.

しかしこの論理リングが固定的なものであると、新しく
局が加入したい場合に加入できず、まず加入局のいずれ
かが故障すると論理リングが壊れて通信が停止してしま
うことになる。それ故に、トークン・パッシング・バス
では次のようなリング維持機能を備えている。
However, if this logical ring is fixed, if a new station wants to join, it will not be able to join, and if any of the joining stations breaks down, the logical ring will break and communication will stop. Therefore, the token passing bus has the following ring maintenance function.

(1)  ノイズ等によりトークンが一時的に消失した
時は前トークン保持局がトークン再発行を行う。
(1) When a token is temporarily lost due to noise, etc., the previous token holding station will reissue the token.

する。do.

(3)  はぼ一定の周期で新局勧誘を行い、論理リン
グに加入を希望する局の加入を許可する6一方、このト
ークン・パッシング・バスを用いて1機器の高速制御を
行う応用分野があり、この中で各局で特定信号を同時刻
に繰り返し発生する必要があるシステムがある0例えば
、複数地点で同一時刻における電圧・電流等の瞬時値を
求めるためのサンプリング信号の同期が必要なシステム
を考える。このようなシステムの場合、トークン・パッ
シング・バスを用いて信号同期を行う方法としては、特
定局、例えば局1□を信号同期に関する主局、他の局1
□〜1nを信号同期に関する従局とし、主局11が周期
的に送信するデータフレームを利用して従局12〜1n
が主局11に合わせて同期をとる方法が考えられる。
(3) Invite new stations at regular intervals and allow stations that wish to join the logical ring.6 On the other hand, there is an application field in which high-speed control of a single device is performed using this token passing bus. Among these, there are systems in which it is necessary to repeatedly generate a specific signal at the same time at each station.For example, there is a system in which sampling signals need to be synchronized to obtain instantaneous values of voltage, current, etc. at the same time at multiple points. think of. In such a system, a method for performing signal synchronization using a token passing bus is to make a specific station, for example, station 1□, the master station for signal synchronization, and other stations 1
□ ~ 1n are slave stations related to signal synchronization, and slave stations 12 ~ 1n are transmitted using data frames periodically transmitted by the main station 11.
One possible method is to synchronize with the main station 11.

第5図はこのような従来の信号同期方式を示すタイムチ
ャートであり、主局11は主同期信号S1を周期Tで発
生させるとともに、この主同期信号S1に同期して主局
11のデータフレームDユを送信し、従局1□〜1nは
データフレームD工の着信時刻から逆算して主同期信号
S工の発生時刻を知るもので、これによってネットワー
クに参加する全ての局の信号同期を可能とする。ここで
、主局1□が送信する同期のための前記データフレーム
ロ工を主同期データフレームとする。さらに主同期信号
S1に同期して主同期データフレームD1を一定周期で
送信するため、主局1□は主同期データフレームD0の
送信に先立って空データフレームDsを送信し、かつ主
同期データフレームD1の送信完了時刻と主同期信号S
1の時間差に応じて空データフレームDsの長さを変え
ている。これにより、主局11は主同期信号S1に同期
した主同期データフレームD1の送信が可能となる。−
方従局では、前記主同期データフレームD1の受信完了
時刻と局同期制御信号との時間差により自局内の局同期
制御信号を位相制御することで、主同期信号S1に追随
して局同期制御信号の信号同期が行われる。
FIG. 5 is a time chart showing such a conventional signal synchronization method, in which the main station 11 generates the main synchronization signal S1 with a period T, and synchronizes with this main synchronization signal S1 to generate the data frame of the main station 11. The slave stations 1□ to 1n calculate back from the arrival time of the data frame D to know the generation time of the main synchronization signal S, which enables signal synchronization of all stations participating in the network. shall be. Here, the data frame processing for synchronization transmitted by the main station 1□ is assumed to be a main synchronization data frame. Furthermore, in order to transmit the main synchronization data frame D1 at a constant cycle in synchronization with the main synchronization signal S1, the main station 1□ transmits an empty data frame Ds before transmitting the main synchronization data frame D0, and D1 transmission completion time and main synchronization signal S
The length of the empty data frame Ds is changed according to the time difference of 1. This enables the main station 11 to transmit the main synchronization data frame D1 synchronized with the main synchronization signal S1. −
The slave station controls the phase of the station synchronization control signal within its own station based on the time difference between the reception completion time of the main synchronization data frame D1 and the station synchronization control signal, so that the station synchronization control signal follows the main synchronization signal S1. Signal synchronization is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の信号同期方式は以上のように構成されているので
、ネットワークの維持・拡張のためにネットワークの参
加局が勧誘フレームを送信して新局勧誘を行う場合、初
期化時には新局勧誘の間隔を長く設定するとネットワー
クの構築の所要時間が長くなってシステム運用開始が遅
延し、また。
Conventional signal synchronization systems are configured as described above, so when participating stations in the network transmit solicitation frames to solicit new stations in order to maintain and expand the network, the interval between new station solicitations is set at the time of initialization. If you set it for a long time, the time required to build the network will increase, which will delay the start of system operation.

信号同期に関する主局が、主同期信号に同期して主同期
データフレームを送信するよう同期引込みをする際に新
局勧誘が行われると、計測した時間より算出した空デー
タフレームの長さに対して。
When a new station invitation is performed when the main station related to signal synchronization performs synchronization pull-in to transmit the main synchronization data frame in synchronization with the main synchronization signal, the length of the empty data frame calculated from the measured time hand.

勧誘フレームと応答ウィンドウの和の長さ分の差異が生
じ、その差異を補正するため制御方式が複雑になり、さ
らに、主局および従局の同期引込みの完了後には、同期
確立状態を安定に保つためある程度長い間隔で新局勧誘
を行う必要があるばかりでなく、各局の新局勧誘が非同
期に実行されるため、新局勧誘が実行されるたびに主同
期データフレームの送信完了時刻が主同期信号に対して
大きく変動し、それに追従して従局の送信タイミングが
大きく変動して、送信準備のための時間的余裕を考慮し
なければならず信号同期の制御手順が複雑になり、ソフ
トウェアに制約が生じるなどの問題点があった。
There is a difference in the length of the sum of the solicitation frame and the response window, and the control method becomes complicated to compensate for this difference.Furthermore, after the synchronization of the master station and the slave station is completed, it is necessary to maintain the synchronization established state stably. Therefore, not only is it necessary to conduct new station solicitation at relatively long intervals, but also because each station's new station solicitation is executed asynchronously, the transmission completion time of the main synchronization data frame every time new station solicitation is executed is the same as the main synchronization data frame. The signal fluctuates greatly, and the transmission timing of the slave station fluctuates significantly to follow it, making it necessary to consider the time margin for transmission preparation, making the signal synchronization control procedure complicated, and causing software constraints. There were problems such as the occurrence of

この発明は上記のような問題点を解消するためになされ
たもので、ネットワークの初期化時の時間的効率化が図
れるとともに、信号同期引込制御に関するソフトウェア
の負担を軽減できる信号同期方式を得ることを目的とす
る。
This invention was made in order to solve the above-mentioned problems, and provides a signal synchronization method that can improve time efficiency during network initialization and reduce the burden on software related to signal synchronization pull-in control. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る信号同期方式は、信号同期に関する主局
が、自局および従局に対して、初期化時の短周期の非同
期新局勧誘状態、主局および従局の同期引込みのための
勧誘禁止状態、および信号同期確立後の一定周期の同期
新局勧誘状態の3つの遷移状態を設け、それら各遷移状
態を切換え制御するようにしたものである。
In the signal synchronization method according to the present invention, a master station regarding signal synchronization sends its own station and slave stations into a short-cycle asynchronous new station solicitation state at the time of initialization, and a solicitation prohibited state for synchronization pull-in of the master station and slave stations. , and a synchronous new station invitation state at a constant period after signal synchronization is established, and these transition states are switched and controlled.

〔作用〕 上記により、ネットワークが構築される初期状態では、
IEEE802.4規格で規定されている勧誘間隔を最
小にして、システム運用が可能になるまでの時間を速く
し、システム運用が可能になると新局勧誘を禁止して、
速やかにかつ効率的に主局および従局の信号同期を確立
し、信号同期確立後は、さらにネットワーク拡張のため
新局勧誘を、同期確立状態が損なわれないように定周期
的かつ各参加局が個別のタイミングで順次実行していく
ようにする。
[Operation] According to the above, in the initial state when the network is constructed,
Minimize the solicitation interval stipulated in the IEEE802.4 standard to speed up the time until system operation is possible, and prohibit solicitation of new stations once system operation is possible.
Establish signal synchronization between the master station and slave stations quickly and efficiently, and after establishing signal synchronization, invite new stations for further network expansion, and periodically and each participating station Execute them sequentially at individual timings.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による信号同期方式を示す主局
および従局の状態遷移図であり、図において、Iaと!
bは第1の遷移状態で、遷移状態!aは頻繁な新局勧誘
が行われる主局における初期状態、遷移状態1bは頻繁
な新局勧誘が行われる従局における初期状態である。ま
た、Haとnbは第2の遷移状態で、遷移状態■aは新
局勧誘が禁止される主局における同期引込専念状態、遷
移状態nbは新局勧誘が禁止される従局における同期引
込専念状態である。さらに、■aとmbは第3の遷移状
態で、遷移状態maはネットワーク拡張のために一定の
周期で同期して新局勧誘を行う主局における定常同期確
立状態、遷移状態mbは同様に一定周期で同期新局勧誘
を行う従局における定常同期確立状態である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a state transition diagram of a master station and a slave station showing a signal synchronization method according to an embodiment of the present invention. In the figure, Ia and !
b is the first transition state, transition state! A is the initial state of the master station where new station invitations occur frequently, and transition state 1b is the initial state of the slave station where new station invitations are made frequently. In addition, Ha and nb are the second transition states, transition state a is a state dedicated to synchronization pull-in in the master station where new station solicitation is prohibited, and transition state nb is a state dedicated to synchronization pull-in in the slave station where new station solicitation is prohibited. It is. Furthermore, ■a and mb are the third transition states, transition state ma is a steady synchronization established state in the main station that synchronizes and invites new stations at regular intervals for network expansion, and transition state mb is also constant. This is a state in which steady synchronization is established in a slave station that periodically invites new stations for synchronization.

ここで、従来の場合と同様に、第4図のトークン・パッ
シング・バスにおいて2局11を信号同期に関する主局
、局12〜1nを信号同期に関する従局とする。また、
第2図は主局1□および従局12〜1nの状態ステータ
スの送信方法を説明するための主同期データフレームの
構成図、第4図は主局1.および従局1□〜1nの動作
を示すフローチャートである。
Here, as in the conventional case, in the token passing bus shown in FIG. 4, the two stations 11 are assumed to be master stations for signal synchronization, and the stations 12 to 1n are assumed to be slave stations for signal synchronization. Also,
FIG. 2 is a configuration diagram of a main synchronization data frame for explaining the method of transmitting the status of the main station 1□ and the slave stations 12 to 1n, and FIG. and a flowchart showing the operations of slave stations 1□ to 1n.

次に動作について説明する。説明は、各遷移状態の個々
の動作についてまず説明する。
Next, the operation will be explained. The explanation will first describe the individual operations of each transition state.

ア>ys移状態1aの場合 遷移状態1aでは、主局11がシステム運用可能でない
と判断した初期化状態であり、主局1□は第2図に示す
主同期データフレームD1上で状態ステータスC8を送
信し、従局1□〜1nにネットワークが初期状態である
ことを通知するとともに、IEEE802.4規格で規
定されている勧誘間隔(max−I nter−S o
licit−Count)を最小に設定し、短周期で新
局勧誘を行ってネットワーク構築に努める。
A > ys Transition state 1a In transition state 1a, the main station 11 is in an initialization state in which it is determined that the system is not operable, and the main station 1□ receives the state status C8 on the main synchronization data frame D1 shown in FIG. to notify slave stations 1□ to 1n that the network is in the initial state, and also to set the solicitation interval (max-Inter-S o
(Licit-Count) to the minimum, and endeavors to build a network by inviting new stations at short intervals.

イ)遷移状態1bの動作 遷移状態1bは、従局12〜1nが、主局】、lより受
信した主同期データフレームD1中の状態ステータスC
8が初期状態であると判断したときに遷移する状態で、
従局1.〜1nは、主局1□と同様、勧誘間隔を最小に
設定して短周期で新局勧誘し、ネットワーク構築に努め
る。
b) Operation of transition state 1b In transition state 1b, the slave stations 12 to 1n receive the state status C in the main synchronization data frame D1 received from the master station ], l.
A state that transitions when it is determined that 8 is the initial state,
Subordinate 1. Similarly to the main station 1□, ~1n attempts to establish a network by setting the solicitation interval to the minimum and soliciting new stations at short intervals.

つ)遷移状態11aの動作 遷移状態■aでは、信号同期が未確立の状態で、主局1
1が同期引込みのため自局の勧誘を禁止するとともに主
同期データフレームD1上の状態ステータスC8を送信
し、従局12〜】nにも勧誘禁止を指令する。
1) Operation of transition state 11a In transition state 11a, signal synchronization has not been established, and the main station 1
1 prohibits its own station from soliciting for synchronization pull-in, transmits the status status C8 on the main synchronization data frame D1, and also instructs slave stations 12 to ]n to prohibit solicitation.

工)遷移状態nbの動作 遷移状態nbでは、従局12〜]nが、主局1゜より受
信した主同期データフレームD1上の状態ステータスC
8に基づき、自局の勧誘を禁止する制御を行う。
(English) Operation of transition state nb In transition state nb, slave stations 12 to ]n check the state status C on the main synchronization data frame D1 received from the main station 1°.
8, performs control to prohibit solicitation of its own station.

オ)遷移状態maの動作 遷移状態maは、ネットワークの信号同期が確立した状
態で、主局1.が、状態11aにおいて勧誘を禁止し信
号同期引込みを行った後、ネットワークの信号同期が確
立したと判断すると1本状態に遷移する。主局1□は再
び主局1□及び従局1゜〜1nの新局勧誘を再開するた
め、主同期データフレームD1上で状態ステータスC8
を送信するとともに、前記主同期データフレームD1上
で信号同期に影響を与えないような適当な間隔で、定周
期的に勧誘同期指令SSを従局1□〜1nに送信する。
E) Operation of transition state ma In transition state ma, the signal synchronization of the network is established, and the main station 1. However, after prohibiting solicitation and performing signal synchronization pull-in in state 11a, when it is determined that signal synchronization of the network has been established, it transitions to the 1-line state. The master station 1□ restarts the invitation of new stations from the master station 1□ and the slave stations 1゜~1n, so it changes the state status C8 on the main synchronization data frame D1.
At the same time, an invitation synchronization command SS is periodically transmitted to the slave stations 1□ to 1n on the main synchronization data frame D1 at appropriate intervals so as not to affect signal synchronization.

力)遷移状態mbの動作 遷移状態mbでは、従局1□〜1nは、主局11からの
状態ステータスC8に基づいて、前記勧誘同期指令SS
に同期して1回、かつ従局1□〜10間で新局勧誘のタ
イミングが重ならないように。
Operation of transition state mb In transition state mb, slave stations 1□ to 1n receive the solicitation synchronization command SS based on the state status C8 from the master station 11.
Once in synchronization with , and so that the timing of new station invitations does not overlap between subordinate stations 1□ to 10.

勧誘同期指令検出後、各従局1□〜1n個別の一定時限
後に新局勧誘を行う。
After the invitation synchronization command is detected, a new station is invited after a fixed time period for each subordinate station 1□ to 1n.

したがって主局11および従局1□〜1nにおける動作
は第4図のフローチャートに示す流れとなる。ステップ
STIでは自局が信号同期に関する主局となるか従局と
なるかの判定を行う。通常。
Therefore, the operations in the main station 11 and the slave stations 1□ to 1n follow the flow shown in the flowchart of FIG. In step STI, it is determined whether the local station becomes a master station or a slave station regarding signal synchronization. usually.

ネットワークをできる限り存続させるため、ネットワー
ク参加局中のアドレス最大局を主局とするのが妥当であ
る0次に主局となる場合はステップST2、従局となる
場合はステップST3の動作を行う。ステップST2で
は主局として、ネットワークの構成状態より予じめ設定
されたシステム運用開始可能な最小構成局条件と比較し
、システム運用可能かどうかを判定する。その結果、シ
ステム運用可能であればステップST4.可能でなけれ
ばステップST8の動作を行う、ステップST3では従
局として、主局1□からの主同期データフレームD1中
の状態ステータスC8を参照し。
In order to keep the network as long as possible, it is appropriate to designate the station with the highest address among the network participating stations as the master station.If the station becomes the 0th-order master station, step ST2 is performed, and if it becomes the slave station, step ST3 is performed. In step ST2, the main station compares the network configuration state with the preset minimum configuration station conditions for starting system operation, and determines whether the system can be operated. As a result, if the system is operational, step ST4. If it is not possible, the operation of step ST8 is performed. In step ST3, as a slave station, the status status C8 in the main synchronization data frame D1 from the main station 1□ is referred to.

主局が遷移状態HaであればステップST9、遷移状態
maでなければステップST5の動作を行う、ステップ
ST4では主局として、ネットワークの信号同期が確立
しているか、各局の状態ステータスから判定し、信号同
期が確立していればステップST6、確立していなけれ
ばステップST7の動作を行う、ステップST5では従
局として。
If the main station is in the transition state Ha, perform the operation in step ST9, and if not in the transition state ma, perform the operation in step ST5. In step ST4, the main station determines whether network signal synchronization has been established from the state status of each station, If signal synchronization has been established, step ST6 is performed; if not, step ST7 is performed; in step ST5, the station operates as a slave station.

主局からの上記状態ステータスC8を参照し、主局が遷
移状態11aであればステップ5T10.遷移状態11
aでなければステップSTI 1の動作を行う。
Referring to the state status C8 from the main station, if the main station is in the transition state 11a, step 5T10. Transition state 11
If it is not a, the operation of step STI 1 is performed.

ステップST6では、上記オ)に記載の遷移状態maの
動作を行う。ステップST7では、上記つ)に記載の遷
移状態Uaの動作を行う、ステップST8では、上記ア
)に記載の遷移状態1aの動作を行う、ステップST9
では、上記力)に記載の遷移状態mbの動作を行う、ス
テップ5TIOでは、上記工)に記載の遷移状態nbの
動作を行う。ステップ5TIIでは、上記イ)に記載の
遷移状態1bの動作を行う。
In step ST6, the operation of the transition state ma described in e) above is performed. In step ST7, the operation of the transition state Ua described in the above item 3) is performed.In step ST8, the operation of the transition state 1a described in the above item 1) is performed.Step ST9
Then, in step 5TIO, the operation of the transition state mb described in the above step) is performed, and the operation of the transition state nb described in the above step) is performed. In step 5TII, the operation in the transition state 1b described in (a) above is performed.

なお、上記実施例では第3図のステップST2の判定条
件として、現在のネットワークの構成局情報が、予じめ
設定されたシステム運用開始可能な最小構成条件を満足
しているか否かとしているが、適用するシステムによっ
ては、リング形成後一定時限経過しているか否か、或い
は新局が加入しなくなってから一定時限経過しているか
否かとしてもよく、上記実施例と同様の効果を奏する。
In the above embodiment, the determination condition in step ST2 in FIG. 3 is whether the current network constituent station information satisfies the preset minimum configuration condition for starting system operation. Depending on the system to be applied, it may be determined whether a certain period of time has elapsed after the ring was formed, or whether a certain period of time has elapsed since a new station stopped joining, and the same effect as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、初期化時の短周期の
非同期新局勧誘状態、同期引込みのための勧誘禁止状態
、および信号同期確立後の一定周期の同期新局勧誘状態
の3つの遷移状態を切換え制御するように構成したので
、初期化時には新局勧誘の間隔を最小にしてネットワー
ク構築の所要時間の短縮化、および初期化の効率化がは
かられ、主局および従局の同期引込みの際には、新局勧
誘が禁止されて信号同期制御の手順の簡略化、および同
期引込み時間の短縮化ができ、さらに信号同期確立後に
は主局に同期して新局勧誘が行われて同期の安定化がは
かれるなどの効果がある。
As described above, according to the present invention, there are three states: a short-cycle asynchronous new station solicitation state at the time of initialization, a solicitation prohibited state for synchronization pull-in, and a synchronous new station solicitation state of a fixed period after signal synchronization is established. Since the configuration is configured to switch and control the transition state, the interval between new station invitations is minimized during initialization, reducing the time required for network construction and increasing the efficiency of initialization, and synchronizing the master and slave stations. At the time of pull-in, new station solicitation is prohibited, simplifying the signal synchronization control procedure and shortening the synchronization pull-in time.Furthermore, after signal synchronization is established, new station solicitation is performed in synchronization with the main station. This has the effect of stabilizing synchronization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による信号同期方式を示す
各局の状態遷移図、第2図はこの実施例で伝送される主
同期データフレームの構成図、第3図はこの実施例の動
作を示すフローチャート。 第4図はこの発明が適用されるバス形ネットワークの構
成図、第5図は従来の信号同期方式を示すタイムチャー
トである。 1、は主局、1□〜1nは従局、21〜2nは光フアイ
バケーブル、3は光スターカプラ、T1〜Tnはトーク
ンフレーム、Dlは主同期データフレーム、Slは主同
期信号、Dsは空データフレーム、Ia、Ibは第1の
遷移状態、Ila、 Ilbは第2の遷移状態、■a、
Inbは第3の遷移状態。 SSは勧誘同期指令、CSは状態ステータス。 なお、図中、同一符号は同一、又は相当部分を示す。 第3図
Fig. 1 is a state transition diagram of each station showing a signal synchronization system according to an embodiment of the present invention, Fig. 2 is a configuration diagram of a main synchronization data frame transmitted in this embodiment, and Fig. 3 is an operation of this embodiment. Flowchart showing. FIG. 4 is a configuration diagram of a bus type network to which the present invention is applied, and FIG. 5 is a time chart showing a conventional signal synchronization system. 1 is the main station, 1□ to 1n are slave stations, 21 to 2n are optical fiber cables, 3 is an optical star coupler, T1 to Tn are token frames, Dl is the main synchronization data frame, Sl is the main synchronization signal, and Ds is the blank. Data frame, Ia and Ib are first transition states, Ila and Ilb are second transition states, ■a,
Inb is the third transition state. SS is the solicitation synchronization command, and CS is the state status. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Figure 3

Claims (1)

【特許請求の範囲】[Claims]  複数の局が論理上のリングを形成して、前記論理上の
リングにトークンを巡回させ、前記トークンを保有して
いる局にのみデータの送信権を与えるトークン・パッシ
ング・バス、あるいはそれに類似した通信規約を有する
ネットワークにて、前記各局の送信するデータの送信タ
イミングを同期させる信号同期方式において、前記複数
の局の中の1つを信号同期に関する主局、他を信号同期
に関する従局とし、前記主局は同期のために送信する主
同期データフレームの送信に先立って、前記主同期デー
タフレームの送信完了時刻と主同期信号との時間差に基
づいて長さを定めた空データフレームを送信するととも
に、前記空データフレームを送信する際、ネットワーク
の初期化時には新局勧誘の間隔を最小にして、前記各局
が短周期で新局勧誘を行う第1の遷移状態、前記主局お
よび従局の同期引込みのために新局勧誘を禁止する第2
の遷移状態、および、信号同期が確立した後、前記主局
の勧誘同期指令をもとに前記ネットワークの全参加局が
同期して新局勧誘を順次行う第3の遷移状態、の3つの
遷移状態の切換え制御を行うことを特徴とする信号同期
方式。
A token passing bus, in which a plurality of stations form a logical ring, circulate tokens around the logical ring, and grant the right to transmit data only to the station that holds the token, or a similar device. In a signal synchronization method for synchronizing the transmission timing of data transmitted by each station in a network having a communication protocol, one of the plurality of stations is a master station for signal synchronization, the others are slave stations for signal synchronization, and the Prior to transmitting a main synchronization data frame for synchronization, the main station transmits an empty data frame whose length is determined based on the time difference between the transmission completion time of the main synchronization data frame and the main synchronization signal. , a first transition state in which each station invites new stations in a short period by minimizing the interval between new station invitations during network initialization when transmitting the empty data frame; and synchronized pull-in of the master station and slave stations. The second ban on soliciting new stations for
and a third transition state in which all participating stations in the network synchronize and sequentially solicit new stations based on the solicitation synchronization command from the main station after signal synchronization is established. A signal synchronization method characterized by controlling state switching.
JP63289382A 1988-11-16 1988-11-16 Signal synchronization method Expired - Lifetime JPH0695681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63289382A JPH0695681B2 (en) 1988-11-16 1988-11-16 Signal synchronization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63289382A JPH0695681B2 (en) 1988-11-16 1988-11-16 Signal synchronization method

Publications (2)

Publication Number Publication Date
JPH02135834A true JPH02135834A (en) 1990-05-24
JPH0695681B2 JPH0695681B2 (en) 1994-11-24

Family

ID=17742495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63289382A Expired - Lifetime JPH0695681B2 (en) 1988-11-16 1988-11-16 Signal synchronization method

Country Status (1)

Country Link
JP (1) JPH0695681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192645A (en) * 1990-11-22 1992-07-10 Toshiba Corp Synchronization transmission control system
JP2008042699A (en) * 2006-08-09 2008-02-21 Sumitomo Electric Ind Ltd Communication apparatus and communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192645A (en) * 1990-11-22 1992-07-10 Toshiba Corp Synchronization transmission control system
JP2008042699A (en) * 2006-08-09 2008-02-21 Sumitomo Electric Ind Ltd Communication apparatus and communication method

Also Published As

Publication number Publication date
JPH0695681B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
CN102197607B (en) Power management method and system of a network device, and the network device
US9906320B2 (en) Industrial network apparatus and data communication method
JP2535615B2 (en) Data synchronous transmission system
US8687520B2 (en) Cluster coupler unit and method for synchronizing a plurality of clusters in a time-triggered network
CN106603367A (en) CAN bus communication method for time synchronization
US20100061404A1 (en) Method for starting a communication system, a communication system having a communication medium and a plurality of subscribers connected thereto, and subscribers of such a communication system
JPH11261579A (en) Synchronizing method and bridge
US5467351A (en) Extendible round robin local area hub network
JPH02135834A (en) Signal synchronizing system
Starke et al. A test bed study of network determinism for heterogeneous traffic using time-triggered ethernet
JP2002247059A (en) Timing synchronizing method among nodes in ring type network and its node
Wang et al. Design of High-Speed and High-Reliability Communication Network Based on FC-AE-1553 Optical Fiber Bus Technology
JPH063921B2 (en) Signal synchronization method
CN113037372B (en) Time-triggered passive optical bus and implementation method thereof
WO2001057681A1 (en) System and method to effectively compensate for delays in an electronic interconnect
JPH0621955A (en) Clock supply switching system
JPH01238243A (en) Signal synchronizing system
US7173914B2 (en) Communication node receipt of node-output information from processorless central equipment
JPH0666793B2 (en) Signal synchronization method
Taki et al. MECHATROLINK technology for high-speed and precise control in factory automation
JPH0279637A (en) Signal synchronizing system
JPH05191418A (en) Transmission control system
JPH0787463B2 (en) Signal synchronization method
JPS6276839A (en) Data transfer control system
JPH0435933B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 14

EXPY Cancellation because of completion of term