JPH02134554A - Method and apparatus for measuring concentration of component of solution - Google Patents

Method and apparatus for measuring concentration of component of solution

Info

Publication number
JPH02134554A
JPH02134554A JP63287624A JP28762488A JPH02134554A JP H02134554 A JPH02134554 A JP H02134554A JP 63287624 A JP63287624 A JP 63287624A JP 28762488 A JP28762488 A JP 28762488A JP H02134554 A JPH02134554 A JP H02134554A
Authority
JP
Japan
Prior art keywords
solution
concentration
glucose
sensor
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287624A
Other languages
Japanese (ja)
Inventor
Tomokazu Domon
土門 知一
Masao Koyama
小山 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63287624A priority Critical patent/JPH02134554A/en
Publication of JPH02134554A publication Critical patent/JPH02134554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To improve accuracy regardless of contamination of biosensors and time change by providing the first biosensor corresponding to the component of first solution and the second biosensor responding to the compositions of the first and second solution. CONSTITUTION:In a measuring container 2 which is arranged in a constant temperature device 1, a glucose sensor 3 and a cane-sugar sensor 4 are arranged so as to face each other. At first, a phosphate buffer having a specified concentration is injected into the container 2. An amplifier part 21 is adjusted. The difference between the outputs of the sensors 3 and 4 is made to be zero. The sensitivities of the sensors are calibrated. Then, at first, 1%-glucose standard liquid is injected into the container 2. The content is detected with a photosensor 19. The output ratio between the sensors 3 and 4 is operated in an operation control part 22 and stored. Then, the difference in outputs of the sensors 3 and 4 is obtained by using 3%-glucose standard liquid by the same way. The outputs of the sensors 3 and 4 are operated and stored for solution to be measured whose glucose concentration and cane-sugar concentration are unknown by the same way. In this way, the glucose concentration and the cane- sugar concentration of the solution to be measured are computed by a specified expression based on above described data.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酵素センサを用いた溶液成分の濃度測定方法
と濃度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method and apparatus for measuring the concentration of solution components using an enzyme sensor.

(従来の技術) 近年、酵素電極(酵素センサ)を用い、生体中の成分を
簡便に且つ迅速に測定できるバイオセンサが広く用いら
れている。
(Prior Art) In recent years, biosensors that use enzyme electrodes (enzyme sensors) and can easily and quickly measure components in living organisms have been widely used.

従来、例えばグルコース濃度を測定するグルコースセン
サに、グルコース酸化酵素と、02電極、H2O2電極
、l5FET等を組合わせたものがすでに開示されてお
り、グルコースは、血液や尿等の測定溶液中に存在する
酸素と共にグルコースオキシダーゼにより選択的に反応
するため、グルコース濃度が測定できる。ところで、血
液や尿中には、アスコルビン酸や尿酸のように酸化され
易い物質が存在しているので、これらの妨害によって測
定値に誤差が生じるために、新たにグルコース酸化酵素
電極の下地電極と同一種である酸素電極を追加したグル
コースセンサが提案されている(特公昭62−1015
6号公報)。
Conventionally, a glucose sensor for measuring glucose concentration, which combines glucose oxidase, an 02 electrode, a H2O2 electrode, a 15FET, etc., has already been disclosed, and glucose is present in a measurement solution such as blood or urine. Since glucose oxidase selectively reacts with oxygen, glucose concentration can be measured. By the way, since there are substances that are easily oxidized such as ascorbic acid and uric acid in blood and urine, these interferences cause errors in measurement values. A glucose sensor with an additional oxygen electrode of the same type has been proposed (Special Publication No. 62-1015
Publication No. 6).

このグルコースセンサは、第4図に示すように、グルコ
ース酸化酵素電極100と、グルコース酸化酵素電極1
00と同一種の材質である酸素電極101と、定電圧電
源102に接続された共通の対極である白金電極103
とを有している。そして、グルコース酸化酵素電極10
0と酸素電極101の各出力をそれぞれ検出回路104
,105に入力し、検出回路104.105の出力を相
殺回路106に入力して、グルコース成分のみの濃度を
測定するようにしたものである。
As shown in FIG. 4, this glucose sensor includes a glucose oxidase electrode 100 and a glucose oxidase electrode 1.
An oxygen electrode 101 made of the same material as 00, and a platinum electrode 103 as a common counter electrode connected to a constant voltage power source 102.
It has And glucose oxidase electrode 10
0 and each output of the oxygen electrode 101 is detected by a detection circuit 104.
, 105, and the outputs of the detection circuits 104 and 105 are input to the cancellation circuit 106 to measure the concentration of only the glucose component.

(発明が解決しようとする課題) 上記したグルコースセンサでは、グルコース酸化酵素電
極100と酸素電極101の感度は、各電極100.1
01の汚れや経時変化によって別々に変化するので、検
出精度が低下するという欠点があった。また、上記した
グルコースセンサでは、酸素の妨害を受けるので酸素電
極101を追加してグルコース酸化酵素電極100と酸
素電極101の各出力を相殺する方法により、この場合
、グルコース濃度しか測定できず、必要に応じて酸素濃
度の測定はできなかった。
(Problems to be Solved by the Invention) In the glucose sensor described above, the sensitivity of the glucose oxidase electrode 100 and the oxygen electrode 101 is
Since the detection accuracy varies depending on dirt on the 01 and changes over time, there is a drawback that the detection accuracy decreases. In addition, since the above-mentioned glucose sensor is interfered with by oxygen, by adding an oxygen electrode 101 and canceling out the respective outputs of the glucose oxidase electrode 100 and the oxygen electrode 101, in this case, only the glucose concentration can be measured. Therefore, it was not possible to measure the oxygen concentration.

本発明は上記した課題を解決する目的でなされ、バイオ
センサに汚れや経時変化が生じても精度の良い測定がで
き、しかも、2つの溶液成分の濃度測定を同時に行うこ
とができる溶液成分の濃度測定方法及び濃度測定装置を
提供しようとするものである。
The present invention was made for the purpose of solving the above-mentioned problems, and it is possible to measure the concentration of solution components with high accuracy even if the biosensor is contaminated or changes over time, and the concentration of two solution components can be measured simultaneously. The present invention aims to provide a measuring method and a concentration measuring device.

[発明の構成] (課題を解決するための手段) 前記した課題を解決するために本発明に係る濃度測定方
法は、第1の溶液成分に応答する第1のバイオセンサと
、前記第1の溶液成分及び第2の溶液成分に応答する第
2のバイオセンサとを備え、第1の溶液成分に対する第
1及び第2のバイオセンサの出力比を求め、この出力比
を第1又は第2のバイオセンサの出力に乗じて同一出力
に調整した後、第1のバイオセンサの出力から第1の溶
液成分の濃度を求めると共に、第1及び第2のバイオセ
ンサの出力差から第2の溶液成分の濃度を求めることを
特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, the concentration measuring method according to the present invention includes: a first biosensor responsive to a first solution component; a solution component and a second biosensor responsive to the second solution component, the output ratio of the first and second biosensors with respect to the first solution component is determined, and this output ratio is determined as the output ratio of the first or second biosensor. After adjusting the output by multiplying the output of the biosensor to the same output, the concentration of the first solution component is determined from the output of the first biosensor, and the concentration of the second solution component is determined from the difference in output between the first and second biosensors. It is characterized by finding the concentration of.

また、本発明に係る濃度測定装置は、第1の溶液成分に
応答する第1のバイオセンサと、前記第1の溶液成分及
び第2の溶液成分に応答する第2のバイオセンサと、前
記第1及び第2のバイオセンサのセンサ感度を校正する
校正手段と、前記第1と第2のバイオセンサの出力比及
び出力差を演算して前記第1及び第2の溶液成分の濃度
を算出する制御演算部とを具備したことを特徴とする。
Further, the concentration measuring device according to the present invention includes a first biosensor that responds to a first solution component, a second biosensor that responds to the first solution component and a second solution component, and a second biosensor that responds to the first solution component and the second solution component. a calibration means for calibrating the sensor sensitivities of the first and second biosensors; and calculating the concentrations of the first and second solution components by calculating the output ratio and output difference of the first and second biosensors. It is characterized by comprising a control calculation section.

(作用) 本発明によれば、第1及び第2のバイオセンサのセンサ
感度を校正した後に、第1と第2のバイオセンサの出力
比及び出力差を演算することにより、各バイオセンサの
汚れや経時変化の影響を排除して、第1及び第2の溶液
成分の高精度な濃度測定を同時に行うことができる。
(Function) According to the present invention, after calibrating the sensor sensitivities of the first and second biosensors, by calculating the output ratio and output difference of the first and second biosensors, each biosensor is contaminated with dirt. It is possible to simultaneously measure the concentrations of the first and second solution components with high precision while eliminating the influence of changes over time.

(実施例) 以下、本発明を図示の一実施例に基づいて詳細に説明す
る。
(Example) Hereinafter, the present invention will be described in detail based on an illustrated example.

第1図は、本発明に係る溶液成分の濃度測定装置を示す
構成図である。この図に示すように、恒温設備1内に配
設した測定容器2には、バイオセンサとしてグルコース
センサ3と蔗糖センサ4が対向して配置されている。グ
ルコースセンサ3は、白金陰極5、銀/塩化銀陽極6.
1%カルボキシメチルセルロースNa塩を含む1moΩ
/交塩化カリウム内部電解質溶液7、テトラフロロエチ
レン膜(厚さ25μm)8、塩化ビニル樹脂9から成る
酸素電極のテトラフロロエチレン@8の表面に、コラー
ゲン/グルコースオキシダーゼ膜(厚さ50μm)10
を配設し、更に、その表面に非対称穴径分布を有する半
透膜11の多孔質層をコラーケン/グルコースオキシダ
ーゼ膜10に接するように配設して構成されている(第
2図参照)。
FIG. 1 is a configuration diagram showing an apparatus for measuring the concentration of solution components according to the present invention. As shown in this figure, a glucose sensor 3 and a sucrose sensor 4 are placed facing each other as biosensors in a measurement container 2 arranged in a constant temperature facility 1. The glucose sensor 3 includes a platinum cathode 5, a silver/silver chloride anode 6.
1moΩ containing 1% carboxymethyl cellulose Na salt
Collagen/glucose oxidase membrane (thickness 50 μm) 10 is placed on the surface of the tetrafluoroethylene @8 of the oxygen electrode, which consists of / potassium chloride internal electrolyte solution 7, tetrafluoroethylene membrane (thickness 25 μm) 8, and vinyl chloride resin 9.
Further, a porous layer of a semipermeable membrane 11 having an asymmetric pore size distribution is disposed on the surface of the semipermeable membrane 11 so as to be in contact with the collagen/glucose oxidase membrane 10 (see FIG. 2).

方、蔗糖センサ4は、白金陰極5、銀/塩化銀陽極6.
1%カルボキシメチルセルロースNa塩を含む1 mo
、Q / l塩化カリウム内部電解質溶液7、テトラフ
ロロエチレン膜(厚さ25μm)8、塩化ビニル樹脂9
からなる酸素電極のテトラフロロエチレン膜8の表面に
、グルコースオキシターゼ、インベルターゼ、ムタロタ
ーゼの3種類の酵素を含むコラーゲン膜12を配設し、
更に、その表面に非対称穴径分布を有する半透膜11の
多孔質層をコラーゲン膜12に接するように配設して構
成されている(第3図参照)。
On the other hand, the sucrose sensor 4 has a platinum cathode 5, a silver/silver chloride anode 6.
1 mo containing 1% carboxymethylcellulose Na salt
, Q/l potassium chloride internal electrolyte solution 7, tetrafluoroethylene membrane (thickness 25 μm) 8, vinyl chloride resin 9
A collagen membrane 12 containing three types of enzymes, glucose oxidase, invertase, and mutarotase, is disposed on the surface of the tetrafluoroethylene membrane 8 of the oxygen electrode.
Furthermore, a porous layer of a semipermeable membrane 11 having an asymmetric pore size distribution is disposed on its surface so as to be in contact with the collagen membrane 12 (see FIG. 3).

測定容器2には、測定容器2内に供給される溶液13を
撹拌する撹拌子14が配置され、更に、溶液13の供給
と排出を行う手段として、供給用と排出用の各パイプ1
5a、15bとポンプ16a、16bが配設されている
。また、恒温設備1には、測定容器2に注入される溶液
13の温度を調整するヒータ17と、溶液13の温度を
測定する温度センサ18と、溶液13の注入を検知する
フォトセンサ19が配設されており、恒温設備1の下部
には撹拌子14を回転させるマグネチックスターラ20
が配設されている。
A stirrer 14 for stirring the solution 13 supplied into the measurement container 2 is arranged in the measurement container 2, and furthermore, each pipe 1 for supply and discharge is provided as a means for supplying and discharging the solution 13.
5a, 15b and pumps 16a, 16b are provided. The constant temperature equipment 1 also includes a heater 17 that adjusts the temperature of the solution 13 poured into the measurement container 2, a temperature sensor 18 that measures the temperature of the solution 13, and a photosensor 19 that detects the injection of the solution 13. A magnetic stirrer 20 for rotating the stirrer 14 is installed at the bottom of the constant temperature equipment 1.
is installed.

21は、グルコースセンサ3、蔗糖センサ4に接続され
ているアンプ部、22は、グルコースセンサ3と蔗糖セ
ンサ4の出力測定、及び溶液13の温度制御、供給・排
出制御、撹拌制御等を行う制御演算部、23は、制御演
算部22で演算されたグルコースセンサ3、蔗糖センサ
4による濃度測定結果を表示する表示部である。このよ
うに、制御演算部22の演算結果を出力する出力手段と
して表示部22が用いられる。
21 is an amplifier unit connected to the glucose sensor 3 and sucrose sensor 4; 22 is a control unit that measures the output of the glucose sensor 3 and sucrose sensor 4, and controls the temperature, supply/discharge control, stirring control, etc. of the solution 13; The calculation unit 23 is a display unit that displays the concentration measurement results of the glucose sensor 3 and sucrose sensor 4 calculated by the control calculation unit 22. In this way, the display section 22 is used as an output means for outputting the calculation results of the control calculation section 22.

次に、前記した濃度測定装置による溶液成分の濃度測定
方法について説明する。
Next, a method for measuring the concentration of solution components using the above-mentioned concentration measuring device will be explained.

先ず、PH6,5のリン酸塩緩衝液(以後、緩衝液とい
う)2mlを、測定容器2内に供給用のパイプ15aを
通してポンプ16aにより供給する。この時、温度セン
サ18で液温を測定し、ヒータ17によって液温を35
℃に調整し、マグネチックスターラ20の駆動により撹
拌子14を回転させて緩衝液を撹拌する。次に、グルコ
ースセンサ3の出力電流値を、アンプ部21で調整して
蔗糖センサ4の出力電流値に同調させ、グルコースセン
サ3と蔗糖センサ、4の出力差を零にする。
First, 2 ml of a phosphate buffer solution (hereinafter referred to as buffer solution) having a pH of 6.5 is supplied into the measurement container 2 through the supply pipe 15a using the pump 16a. At this time, the temperature sensor 18 measures the liquid temperature, and the heater 17 adjusts the liquid temperature to 35.
℃, and the magnetic stirrer 20 is driven to rotate the stirring bar 14 to stir the buffer solution. Next, the output current value of the glucose sensor 3 is adjusted by the amplifier unit 21 to be synchronized with the output current value of the sucrose sensor 4, and the output difference between the glucose sensor 3 and the sucrose sensor 4 is made zero.

このように、グルコースセンサ3と蔗糖センサ4のセン
サ感度を校正する校正手段として緩衝液が用いられる。
In this way, the buffer solution is used as a calibration means for calibrating the sensor sensitivities of the glucose sensor 3 and sucrose sensor 4.

次に、1%グルコース標準液50μgを、測定容器2内
に注入し撹拌する。この時、グルコース標準液の注入を
フォトセンサ19で検知し、アンプ部21、演算制御部
22によりグルコースセンサ3、蔗糖センサ4の出力測
定が開始される。そして、グルコース標準液を注入して
約2分後にグルコースセンサ3、蔗糖センサ4の出力が
定常値に達すると、演算制御部22は、グルコースセン
サ3、蔗糖センサ4の各出力電流変化量△I6□。
Next, 50 μg of the 1% glucose standard solution is poured into the measurement container 2 and stirred. At this time, the injection of the glucose standard solution is detected by the photosensor 19, and the amplifier section 21 and the arithmetic control section 22 start measuring the outputs of the glucose sensor 3 and sucrose sensor 4. Then, when the outputs of the glucose sensor 3 and sucrose sensor 4 reach steady values approximately 2 minutes after injecting the glucose standard solution, the calculation control unit 22 determines the amount of change in the output current ΔI6 of each of the glucose sensor 3 and sucrose sensor 4. □.

△I Sgs及び、係数に、=△I5./△IGgを演
算して記憶する。
ΔI Sgs and coefficient = ΔI5. /ΔIGg is calculated and stored.

次に、測定容器2内の溶液(緩衝液とグルコース標準液
)13を、排出用のパイプ15bを通してポンプ16b
により排出した後、前の測定の影響を除くために測定容
器2内の洗浄を実施する。
Next, the solution (buffer solution and glucose standard solution) 13 in the measurement container 2 is passed through the discharge pipe 15b to the pump 16b.
After discharging the sample, the inside of the measurement container 2 is cleaned to remove the influence of the previous measurement.

洗浄は緩衝液の排出・供給を繰返すことによって行われ
る。測定容器2内の洗浄が終了すると、パイプ15aを
通してポンプ16aにより新たな緩衝液を供給する。こ
の時の液温は、ヒータ17によって前記同様に35°C
に保ち、マグネチックスターラ20の駆動により撹拌子
14を回転させて緩衝液を撹拌する。そして、前記同様
グルコースセンサ3の出力電流値を、アンプ部21で調
整して蔗糖センサ4の出力電流値に同調させ、グルコー
スセンサ3と蔗糖センサ4の出力差を零にする。
Washing is performed by repeatedly discharging and supplying the buffer solution. When the inside of the measurement container 2 has been washed, a new buffer solution is supplied by the pump 16a through the pipe 15a. At this time, the liquid temperature is set to 35°C by the heater 17 as before.
The buffer solution is stirred by rotating the stirring bar 14 by driving the magnetic stirrer 20. Then, as described above, the output current value of the glucose sensor 3 is adjusted by the amplifier unit 21 to be synchronized with the output current value of the sucrose sensor 4, so that the output difference between the glucose sensor 3 and the sucrose sensor 4 is made zero.

次に、3%蔗糖標準液50μΩを、測定容器2内に注入
し撹拌する。この時、蔗糖標準液の注入をフォトセンサ
19で検知し、アンプ部21、演算制御部22によりグ
ルコースセンサ3、蔗糖センサ4の出力測定が開始され
る。そして、蔗糖標準液を注入して約2分後にグルコー
スセンサ3、蔗糖センサ4の出力が定常値に達すると、
演算制御部22は、グルコースセンサ3、蔗糖センサ4
の各出力電流変化量△I GS+△ISS、及び係数A
=△l5S−ΔIGS・K1を演算して記憶する。
Next, 50 μΩ of a 3% sucrose standard solution is poured into the measurement container 2 and stirred. At this time, the photo sensor 19 detects the injection of the sucrose standard solution, and the amplifier section 21 and calculation control section 22 start measuring the outputs of the glucose sensor 3 and sucrose sensor 4. Then, about 2 minutes after injecting the sucrose standard solution, when the outputs of the glucose sensor 3 and sucrose sensor 4 reach steady values,
The calculation control unit 22 includes a glucose sensor 3 and a sucrose sensor 4.
Each output current change amount △I GS + △ISS, and coefficient A
=Δl5S−ΔIGS·K1 is calculated and stored.

次に、測定容器2内の溶液(緩衝液と蔗糖標準液)13
をパイプ15bを通してポンプ16bにより排出し、緩
衝液の排出・供給を繰返して洗浄を行った後、パイプ1
5aを通してパイプ16aにより新たな緩衝液を供給す
る。この時の液温もヒータにより35℃に保ち、マグネ
チックスタラ20の駆動により撹拌子14を回転させて
緩衝液を撹拌する。
Next, the solution (buffer solution and sucrose standard solution) 13 in the measurement container 2 is
is discharged through the pipe 15b by the pump 16b, and after repeated discharge and supply of the buffer solution for cleaning, the pipe 1
Fresh buffer is supplied by pipe 16a through 5a. At this time, the liquid temperature is also maintained at 35° C. by a heater, and the magnetic stirrer 20 is driven to rotate the stirring bar 14 to stir the buffer solution.

そして、今度はグルコース濃度、蔗糖濃度が未知濃度の
測定溶液(50μ斐)を測定容器2内に注入し撹拌する
。このとき、測定容器の注入をフォトセンサ19で検知
し、注入の2分後グルコースセンサ3、蔗糖センサ4の
出力が定常値に達すると、制御演算部22は、グルコー
スセンサ3、蔗糖センサ4の各出力電流変化量ΔI o
、、ΔI、えを演算して記憶する。
Next, a measurement solution (50 μl) with unknown glucose and sucrose concentrations is poured into the measurement container 2 and stirred. At this time, the injection into the measurement container is detected by the photosensor 19, and when the outputs of the glucose sensor 3 and sucrose sensor 4 reach steady values 2 minutes after the injection, the control calculation section 22 controls the output of the glucose sensor 3 and sucrose sensor 4. Each output current change amount ΔI o
, , ΔI, are calculated and stored.

このように、制御演算部22には、ΔI6.。In this way, the control calculation unit 22 has ΔI6. .

△IS、、に、=ΔI s−/Δ■CM・ △IGS・
 △ESS・A=I55−△I O5” Kl 、△I
 Gx*△ISxが記憶されているので、測定溶液のグ
ルコース濃度G8、蔗糖濃度S1はそれぞれ次式から求
められる。
△IS, , = ΔI s-/Δ■CM・△IGS・
△ESS・A=I55−△I O5” Kl, △I
Since Gx*ΔISx is stored, the glucose concentration G8 and sucrose concentration S1 of the measurement solution can be determined from the following equations.

S、=  (△l58−△Ia8・K+)      
  (%)・・・〈2) ここで、△■G8は測定溶液でのグルコースセンサ3の
出力電流変化量、△ISxは測定溶液での蔗糖センサ4
の出力電流変化量、△Io、は1%グルコース標準液で
のグルコースセンサ3の出力電流変化量、K1は△■s
、/△Ic−(△Is、は196グルコース標準液での
蔗糖センサ4の出力電流変化量)、AはへI、x−△■
ax”K1 である。
S, = (△l58−△Ia8・K+)
(%)...<2) Here, △■G8 is the amount of change in the output current of the glucose sensor 3 in the measurement solution, and △ISx is the amount of change in the output current of the glucose sensor 4 in the measurement solution.
The output current change amount, △Io, is the output current change amount of the glucose sensor 3 with 1% glucose standard solution, and K1 is △■s
, /△Ic- (△Is, is the amount of change in the output current of the sucrose sensor 4 with the 196 glucose standard solution), A is I, x-△■
ax”K1.

よって、(1)、<2)式により、測定溶液中のグルコ
ース濃度68お蔗糖濃度S7を制御演算部22によって
同時に算出することができ、制御演算部22で算出され
たグルコース濃度G、と蔗糖濃度S8は表示部23に出
力されて表示される。
Therefore, using equations (1) and <2), the glucose concentration 68 and sucrose concentration S7 in the measurement solution can be calculated simultaneously by the control calculation unit 22, and the glucose concentration G calculated by the control calculation unit 22 and the sucrose concentration The density S8 is output to the display section 23 and displayed.

また、測定容器2内の溶液13の洗浄終了後、緩衝液内
におけるグルコースセンサ3及び蔗糖センサ4の出力電
流値を同一に調整することにより、グルコースセンサ3
、蔗糖センサ4にそれぞれ汚れや経時変化が生じてもそ
の影響を受けることはなく、高精度な濃度測定を行うこ
とができる。
Furthermore, after washing the solution 13 in the measurement container 2, the output current values of the glucose sensor 3 and the sucrose sensor 4 in the buffer solution are adjusted to be the same.
Even if the sucrose sensor 4 becomes dirty or changes over time, it will not be affected by it, and highly accurate concentration measurement can be performed.

尚、前記した実施例では、第1と第2のバイオセンサに
グルコースセンサと蔗糖センサを用いたが、これに限ら
ず、例えばグルコースセンサと酸素センサを用いて、グ
ルコース濃度と酸素濃度を同時に測定することもできる
In the above embodiment, a glucose sensor and a sucrose sensor were used as the first and second biosensors, but the present invention is not limited to this. For example, a glucose sensor and an oxygen sensor may be used to simultaneously measure the glucose concentration and oxygen concentration. You can also.

[発明の効果コ 以上、実施例に基づいて具体的に説明したように本発明
によれば、2つの溶液成分の濃度測定を同時に、且つ、
容易に測定することができ、しかも、バイオセンサの汚
れや経時変化の影響を排除できるので高精度な濃度測定
が可能となる。
[Effects of the Invention] As specifically explained above based on the examples, according to the present invention, the concentrations of two solution components can be measured simultaneously and
It is easy to measure, and since the effects of dirt on the biosensor and changes over time can be eliminated, highly accurate concentration measurement is possible.

また、各バイオセンサの出力感度を予め適当な値に設定
して測定時に出力感度を比較することにより、各バイオ
センサの汚れや経時変化の状態を把握することができ、
バイオセンサの交換時期の判定を容易に行うことができ
る。
In addition, by setting the output sensitivity of each biosensor to an appropriate value in advance and comparing the output sensitivities during measurement, it is possible to understand the state of each biosensor's dirt and changes over time.
It is possible to easily determine when to replace the biosensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る溶液成分の濃度測定装置を示す
構成図、第2図は、同装置のグルコースセンサを示す断
面図、第3図は、同装置の蔗糖センサを示す断面図、第
4図は、従来の溶液成分の濃度測定装置を示す構成図で
ある。 2・・・測定容器    3・・・グルコースセンサ4
・・・蔗糖センサ 10・・・コラーゲン/グルコースオキシラーゼ膜12
・・・コラーゲン膜 16a 、  16b・・・ポン
プ21・・・アンプ部   22・・・制御演算部23
・・・表示部
FIG. 1 is a configuration diagram showing a solution component concentration measuring device according to the present invention, FIG. 2 is a sectional view showing a glucose sensor of the same device, and FIG. 3 is a sectional view showing a sucrose sensor of the same device. FIG. 4 is a configuration diagram showing a conventional solution component concentration measuring device. 2...Measurement container 3...Glucose sensor 4
... Sucrose sensor 10 ... Collagen/glucose oxylase membrane 12
...Collagen membrane 16a, 16b...Pump 21...Amplifier section 22...Control calculation section 23
...Display section

Claims (3)

【特許請求の範囲】[Claims] (1)第1の溶液成分に応答する第1のバイオセンサと
、前記第1の溶液成分及び第2の溶液成分に応答する第
2のバイオセンサとを備え、第1の溶液成分に対する第
1及び第2のバイオセンサの出力比を求め、この出力比
を第1又は第2のバイオセンサの出力に乗じて同一出力
に調整した後、第1のバイオセンサの出力から第1の溶
液成分の濃度を求めると共に、第1及び第2のバイオセ
ンサの出力差から第2の溶液成分の濃度を求めることを
特徴とする溶液成分の濃度測定方法。
(1) A first biosensor that responds to a first solution component; and a second biosensor that responds to the first solution component and a second solution component; and the output ratio of the second biosensor, and after adjusting the output to the same output by multiplying the output ratio by the output of the first or second biosensor, calculate the output ratio of the first solution component from the output of the first biosensor. A method for measuring the concentration of a solution component, characterized by determining the concentration and also determining the concentration of a second solution component from the difference in output between a first and second biosensor.
(2)第1の溶液成分に応答する第1のバイオセンサと
、前記第1の溶液成分及び第2の溶液成分に応答する第
2のバイオセンサと、前記第1及び第2のバイオセンサ
のセンサ感度を校正する校正手段と、前記第1と第2の
バイオセンサの出力比及び出力差を演算して前記第1及
び第2の溶液成分の濃度を算出する制御演算部とを具備
したことを特徴とする溶液成分の濃度測定装置。
(2) a first biosensor that responds to a first solution component; a second biosensor that responds to the first solution component and the second solution component; and the first and second biosensors. comprising a calibration means for calibrating the sensor sensitivity, and a control calculation section for calculating the concentrations of the first and second solution components by calculating the output ratio and output difference of the first and second biosensors. A concentration measuring device for solution components, characterized by:
(3)請求項(2)記載の溶液成分の濃度測定装置にお
いて、前記制御演算部で算出された演算結果を出力する
出力手段と、前記第1及び第2の溶液の供給と排出を行
う給・排手段とを具備したことを特徴とする溶液成分の
濃度測定装置。
(3) The solution component concentration measuring device according to claim (2), further comprising an output means for outputting the calculation result calculated by the control calculation section, and a supply unit for supplying and discharging the first and second solutions.・A device for measuring the concentration of solution components, characterized in that it is equipped with a discharge means.
JP63287624A 1988-11-16 1988-11-16 Method and apparatus for measuring concentration of component of solution Pending JPH02134554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287624A JPH02134554A (en) 1988-11-16 1988-11-16 Method and apparatus for measuring concentration of component of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287624A JPH02134554A (en) 1988-11-16 1988-11-16 Method and apparatus for measuring concentration of component of solution

Publications (1)

Publication Number Publication Date
JPH02134554A true JPH02134554A (en) 1990-05-23

Family

ID=17719661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287624A Pending JPH02134554A (en) 1988-11-16 1988-11-16 Method and apparatus for measuring concentration of component of solution

Country Status (1)

Country Link
JP (1) JPH02134554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116928B2 (en) 2002-12-18 2006-10-03 Ricoh Company, Ltd. Powder discharging device and image forming apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116928B2 (en) 2002-12-18 2006-10-03 Ricoh Company, Ltd. Powder discharging device and image forming apparatus using the same

Similar Documents

Publication Publication Date Title
CN1975403B (en) Method and apparatus for rapid electrochemical analysis
RU2238548C2 (en) Method for measuring concentration of analyzed substance (variants), measuring device for doing the same
AU2006233772B2 (en) Analyte determination method and analyte meter
JP6184322B2 (en) System and method for improved stability of electrochemical sensors
JPH04357449A (en) Biosensor and measuring device thereof
JP7508611B2 (en) Mixed ionophore ion-selective electrodes for improved detection of urea in blood.
JPH01219661A (en) Analysis method and apparatus using enzyme electrode type sensor
US20100327886A1 (en) Measurement device, measurement system, and concentration measurement method
JPH05164724A (en) Biosensor and method for separative quantification using the same
Fogh-Andersen et al. Direct reading glucose electrodes detect the molality of glucose in plasma and whole blood
JP3063837B2 (en) Urine multi-sensor
JPH02134554A (en) Method and apparatus for measuring concentration of component of solution
US20170285016A1 (en) Physical Characteristic Determination of a Biological Sample
JP4249549B2 (en) Sample measuring apparatus and sample measuring method
JPH04191650A (en) Measuring apparatus for ion
JPH0375552A (en) Enzyme electrode
JP2006105615A (en) Electrochemical measuring method and measuring apparatus using it
JPH08220049A (en) Method and device for measuring electrolyte
CN107810409A (en) The method for the CREA sensors that adjusting pin suppresses to calcium
JPH07104313B2 (en) Two component measuring device
JPH0134116Y2 (en)
JPS59143952A (en) Glucose meter
AU2013204104B2 (en) Analyte determination method and analyte meter
CN117871624A (en) Nonlinear model detection method of electrochemical sensor, computer system and computer storage medium
JPS5994059A (en) Sensor for measuring various components