JPH02134531A - Measurement of characteristic vector of vibration - Google Patents

Measurement of characteristic vector of vibration

Info

Publication number
JPH02134531A
JPH02134531A JP63287900A JP28790088A JPH02134531A JP H02134531 A JPH02134531 A JP H02134531A JP 63287900 A JP63287900 A JP 63287900A JP 28790088 A JP28790088 A JP 28790088A JP H02134531 A JPH02134531 A JP H02134531A
Authority
JP
Japan
Prior art keywords
vibration
displacement component
angular displacement
eigenvector
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287900A
Other languages
Japanese (ja)
Inventor
Masayoshi Sakata
昌良 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63287900A priority Critical patent/JPH02134531A/en
Publication of JPH02134531A publication Critical patent/JPH02134531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to obtain an angular displacement component by an excitation test using only a vibration detector by differentiating the interpolation function of the displacement component of the characteristic vector of vibration which is measured at a discontinuous measuring point, and obtaining the angular displacement component. CONSTITUTION:Vibration detectors are provided at a plurality of places on a material to be measured. The interpolation curve of the maximum value of the displacement components of the characteristic vectors of the vibrations which are obtained with said vibration detectors is a continuous curve. Therefore, the displacement component at an arbitrary point is obtained as the function of the direction where the vibration detector is provided. Then, the interpolation curve for every natural frequency is differentiated, and the interpolation curve for angular displacement is prepared. The distance between measuring points is inputted on the interpolation curve of the angular displacement, and the angular displacement at the measuring point is obtained. When the angular displacement component is obtained in this way and when the data of the displacement components for about 10 points are obtained between nodes in a vibration mode, the error between the value of the angular displacement component obtained by differentiating the interpolation curve and the value of the true angular displacement component is within 2%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、実験モード解析において、不連続な測定点
で得た構造物の変位成分の固有ベクトルを関数補間し、
これから角変位成分の固有ベクトルを算出して、変位成
分と角変位成分の両者を含む固有ベクトルを求める手法
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention performs functional interpolation of the eigenvectors of the displacement components of a structure obtained at discontinuous measurement points in experimental mode analysis.
The present invention relates to a method of calculating an eigenvector of an angular displacement component from this and obtaining an eigenvector containing both the displacement component and the angular displacement component.

〔従来の技術〕[Conventional technology]

実験モード解析では第5図に示すように図示のインパル
スハンマーや図示されない加振器などの加振手段3で構
造物1に周波数スペクトルの明らかな加振力を加え、構
造物1上にあらかじめ定めた複数個の測定点5に振動検
出器2を取りつけ、構造物lの振動応答を振動周波数の
関数である振動応答信号6として測定し、この振動応答
信号6と加振力信号7とを実験モード解析装置4に入力
して加振力と振動応答の比である周波数応答関数(伝達
関数)を測定する。この測定した周波数応答関数から、
構造物lの動特性をあられすモーダルパラメータ、すな
わち固有振動数、減衰比ならびに第6図に例示するよう
な振動モードに対応する固有ベクトルなどを同定する。
In the experimental mode analysis, as shown in Fig. 5, an excitation force with a clear frequency spectrum is applied to the structure 1 using an excitation means 3 such as an impulse hammer shown or an exciter not shown, and a predetermined excitation force is applied to the structure 1. A vibration detector 2 is attached to a plurality of measuring points 5, and the vibration response of the structure I is measured as a vibration response signal 6 which is a function of the vibration frequency, and this vibration response signal 6 and the excitation force signal 7 are used in an experiment. The signal is input to the mode analyzer 4 and a frequency response function (transfer function), which is the ratio between the excitation force and the vibration response, is measured. From this measured frequency response function,
Modal parameters that determine the dynamic characteristics of the structure 1, such as the natural frequency, damping ratio, and eigenvectors corresponding to vibration modes as illustrated in FIG. 6, are identified.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のような実験モード解析で得られたモーダルパラメ
ータは、構造物の動特性を評価する上で重要な値である
が、単に評価の対象だけではなく、このパラメータを用
いて、構造物の形状を変更した場合に、どのように特性
が変化するかを予測する数値計算にも用いられてきてい
る。これは一般に構造変更シミュレーシヨンと呼ばれて
いる。
The modal parameters obtained through the experimental modal analysis described above are important values in evaluating the dynamic characteristics of structures, but they are not only the target of evaluation; It has also been used in numerical calculations to predict how the characteristics will change when the This is generally called structural change simulation.

実験モード解析では、後述のように振動方向の変位成分
と、振動方向に平行な面内での各部のまわりの角変位成
分とが必要である。ところが加振試験の際に用いる検出
器では一般に変位方向の振動成分しか振動の情報が得ら
れない、振動方向に平行な面内における測定点まわりの
回転成分である角変位が測定できる振動検出器は精度上
問題があり、利用されていないのが現状である。
In the experimental mode analysis, as described later, a displacement component in the vibration direction and an angular displacement component around each part in a plane parallel to the vibration direction are required. However, with the detectors used during vibration tests, generally only the vibration information in the displacement direction can be obtained.A vibration detector that can measure angular displacement, which is a rotational component around the measurement point in a plane parallel to the vibration direction Currently, it is not used because it has problems with accuracy.

このため、モーダルパラメータとして同定できる固有ベ
クトルとしては変位成分しか情報を得ることができない
ことになり、構造変更のシミュレーシヨンを行う場合、
ある任意の点にモーメントが作用する場合のモードの予
測計算が行えないという問題が生じていた。
For this reason, information can only be obtained from the displacement component as an eigenvector that can be identified as a modal parameter, and when simulating structural changes,
A problem has arisen in that it is not possible to predict the mode when a moment acts on an arbitrary point.

また、現在では、実験モード解析で得たデータと有限要
素法によるデータとの結合が考えられている。実際には
構造物の各点では、第7図に示すような互いにに直角な
3つの変位方向Y li Y *、 Y sの3自由度
と角変位方向θ1.θ2.θ、の3自由度の計6自由度
がある。有限要素法による純粋な数値計算では、これら
の6自由度の情報が得られるのに対し、実験モード解析
では変位方向の3自由度しか情報が得られないために、
有限要素法との十分な結合を定義できないという問題も
生じている。
Furthermore, it is currently being considered to combine data obtained by experimental modal analysis with data obtained by the finite element method. Actually, at each point of the structure, there are three degrees of freedom in three mutually perpendicular displacement directions Y li Y *, Y s and an angular displacement direction θ1, as shown in FIG. θ2. There are 6 degrees of freedom in total, 3 degrees of freedom θ. Pure numerical calculation using the finite element method provides information on these six degrees of freedom, whereas experimental modal analysis provides information on only three degrees of freedom in the displacement direction.
There is also the problem that sufficient coupling with the finite element method cannot be defined.

この発明は、実験モード解析で得られた変位成分しか含
まない固有ベクトルの情報に対して、この変位成分のデ
ータをもとに角変位(回転)成分のデータを求める手法
を提供することを目的とする。
The purpose of this invention is to provide a method for obtaining data on angular displacement (rotation) components based on data on eigenvectors that contain only displacement components obtained through experimental mode analysis. do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は構造物の加振方向と交わる方向の複数箇所に
設けた振動検出器によって直接的あるいは間接的に振動
の固有ベクトルの変位成分を測定し、これら複数箇所に
おける変位成分測定値の各最大値を振動検出器を設けた
方向に補間し、振動検出器を設けた方向の任意の点に対
する補間曲線の値から撮動の固有ベクトルの変位成分を
得るとともに、その任意の点における補間曲線の勾配か
ら振動の固有ベクトルの角変位成分を得るものである 〔作用〕 被測定物上の複数箇所に設けた振動検出器で得られた振
動の固有ベクトルの変位成分の各最大値の補間曲線は連
続曲線なので、任意の点における変位成分を振動検出器
を設けた方向の距離の関数として得ることができる。角
変位成分は上記の点における補間曲線の勾配に相当する
ので、補間曲線についてその勾配を求めれば角変位成分
を得ることができる。補間曲線の関数の形が与えられて
いるので、補間曲線を微分して勾配を求めることができ
る。
This invention measures the displacement component of the eigenvector of vibration directly or indirectly using vibration detectors installed at multiple locations in the direction intersecting the excitation direction of the structure, and each maximum value of the displacement component measurement value at these multiple locations. is interpolated in the direction in which the vibration detector is installed, and the displacement component of the eigenvector of the imaging is obtained from the value of the interpolated curve for any point in the direction in which the vibration detector is installed, and from the slope of the interpolated curve at that arbitrary point. This is to obtain the angular displacement component of the eigenvector of vibration. [Operation] Since the interpolation curve of each maximum value of the displacement component of the eigenvector of vibration obtained by vibration detectors installed at multiple locations on the object to be measured is a continuous curve, The displacement component at any point can be obtained as a function of the distance in the direction in which the vibration detector is provided. Since the angular displacement component corresponds to the slope of the interpolation curve at the above point, the angular displacement component can be obtained by determining the slope of the interpolation curve. Since the function form of the interpolated curve is given, the slope can be found by differentiating the interpolated curve.

〔実施例〕〔Example〕

第1図はこの発明の方法の実施例のフローチャートであ
る。実験モード解析を行うことでm個の測定点において
、基本モードから高次モードにわたるn1lffの各固
有振動数ごとに既に第6図で示したような振動モードを
あられす固有ベクトル(モードシェイプ)がそれぞれ同
定される。この固有ベクトルは変位方向しか測定できな
い振動検出器で計測した場合には、変位成分のベクトル
をあられすことになる。
FIG. 1 is a flowchart of an embodiment of the method of the invention. By performing experimental mode analysis, at m measurement points, the eigenvectors (mode shapes) that generate vibration modes as shown in Figure 6 for each natural frequency of n1lff ranging from the fundamental mode to higher-order modes can be determined. Identified. If this eigenvector is measured with a vibration detector that can only measure the displacement direction, the vector of the displacement component will be detected.

ここで、不連続なm個の測定点である位i1f X j
(j・1.・・・+m)の各座標点ごとに得られた固有
ベクトルの変位成分y r (xj)+(t・1.・・
・+n)と各測定点の位置Xjのデータをもとに変位成
分データを補間関数により補間し、測定点の位置Xの関
数となる固有ベクトルyの連続関数y*−rt(X)を
求める。補間関数としては、スプライン関数が最も適し
ている。スプライン関数は各座標点の正負方向において
高次の微分値もすべて連続であるという条件の下に定め
られた多項式であられされる連続関数である。
Here, the position i1f X j which is m discontinuous measurement points
Displacement component of the eigenvector obtained for each coordinate point of (j・1....+m) y r (xj)+(t・1...
・+n) and the data of the position Xj of each measurement point, the displacement component data is interpolated by an interpolation function, and a continuous function y*-rt(X) of the eigenvector y that is a function of the position X of the measurement point is obtained. A spline function is most suitable as an interpolation function. The spline function is a continuous function expressed by a polynomial defined under the condition that all higher-order differential values are continuous in the positive and negative directions of each coordinate point.

固有ベクトルの角変位成分は第2図に示すように、振動
方向に平行な平面内の着目した座標点まわりの回転にと
もなう成分であり、スプライン関数として求めたy =
 f (X)の座標点Xにおける勾配から求めることが
できる。すなわち角変位成分はy = f (x)を微
分した値と等価である。したがってスプライン関数で求
めた固有ベクトルの曲線y −f (x)を微分した関
数θ−dy/dxが角変位を示す関数となる。
As shown in Figure 2, the angular displacement component of the eigenvector is a component associated with rotation around the focused coordinate point in a plane parallel to the vibration direction, and is calculated as a spline function y =
It can be determined from the gradient at the coordinate point X of f (X). That is, the angular displacement component is equivalent to the value obtained by differentiating y = f (x). Therefore, the function θ-dy/dx, which is obtained by differentiating the eigenvector curve y-f (x) determined by the spline function, becomes a function indicating the angular displacement.

そこで第1図のフローチャートに示すように各固有振動
数ごとの補間曲線y表−f t (X)、(1−1゜・
・・+n)を微分し、角変位の補間曲線θl−f’ム(
X)。
Therefore, as shown in the flowchart in Figure 1, the interpolation curve y table for each natural frequency -f t (X), (1-1°・
...+n), and obtain the interpolation curve θl-f' of angular displacement (
X).

(i・1.・・・+n)を作成する。(i・1....+n) is created.

さらにこの角変位の補間曲線θム(χ)に測定点間の距
離を入力し、測定点X、での角変位θi (Xi ) 
−f’r (xj)、(j−1,−、m)を求める。
Furthermore, input the distance between the measurement points into this angular displacement interpolation curve θm (χ), and calculate the angular displacement θi (Xi) at the measurement point X.
-f'r (xj), (j-1, -, m) are determined.

このように、補間曲線で角変位成分を求める場合には、
当然、誤差をともなうことになる。これに対して振動モ
ードの節から節までをy方向の変位成分を用いてスプラ
イン関数で補間した場合の、測定点数と誤差との関係を
第3図に示す、これによれば節から節までの間にlO点
程度の変位成分のデータがあれば、補間曲線を微分した
ことで求めた角変位成分の値と真の角変位成分の値との
誤差は2%以内になることが示される。
In this way, when finding the angular displacement component using the interpolation curve,
Naturally, this will involve errors. On the other hand, Figure 3 shows the relationship between the number of measurement points and the error when the displacement component in the y direction is interpolated using a spline function from node to node in the vibration mode. If there is displacement component data of about 10 points between the .

さらに第4図においては、一端固定の片持ちはりについ
て、本発明の方法と有限要素法とで求めた固有振動数と
固有ベクトル(振動モード)をそれぞれ比較した結果を
示す。
Further, FIG. 4 shows the results of comparing the natural frequencies and natural vectors (vibration modes) obtained by the method of the present invention and the finite element method for a cantilever beam with one end fixed.

有限要素法では固有ベクトルの変位成分の角変位成分が
算出される。実験モード解析では変位成分しか得られな
いので、有限要素法で得られた固有ベクトルの変位成分
だけを用いて、上記のフローチャートにしたがい、角変
位成分を補間したものと、有限要素法により計算された
角変位成分との比較を行っている。この結果上記二つの
方法における角変位の差異は2%以内であることが示さ
れている。
In the finite element method, the angular displacement component of the displacement component of the eigenvector is calculated. Since only the displacement component can be obtained in the experimental modal analysis, only the displacement component of the eigenvector obtained by the finite element method is used to interpolate the angular displacement component and the angular displacement component calculated by the finite element method according to the flowchart above. A comparison is made with the angular displacement component. The results show that the difference in angular displacement between the above two methods is within 2%.

第3図および第4図に示した結果により、補間曲線で求
めた角変位成分を構造変更のシミュレーシッンや有限要
素法との結合に用いても実用上問題ないことが証明され
る。
The results shown in FIGS. 3 and 4 prove that there is no practical problem even if the angular displacement component obtained by the interpolation curve is used in the simulation of structural changes or in combination with the finite element method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、不連続な測定点で測定した振動の固有
ベクトルの変位成分の補間関数を微分することで角変位
成分も求めるようにしたので、実験モード解析で今まで
得ることができなかった角変位成分を従来と同様の振動
検出器だけを用いる加振試験で求めることができる。ま
た、補間曲線の適用により測定点以外の固有ベクトル(
変位成分、角変位成分)を求めることができるという利
点もある。
According to the present invention, the angular displacement component is also obtained by differentiating the interpolation function of the displacement component of the eigenvector of vibration measured at discontinuous measurement points, which has not been possible until now through experimental modal analysis. The angular displacement component can be determined by a vibration test using only a conventional vibration detector. In addition, by applying an interpolation curve, eigenvectors other than measurement points (
It also has the advantage of being able to determine displacement components and angular displacement components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例における角変位成分算出手順
を示すフローチャート、第2図は固有ベクトルの変位成
分と角変位成分の関係を示す説明図、第3図は測定点数
と角変位成分の誤差との関係を示すグラフ、第4図はこ
の発明の実施例の方法で求めた角変位の値と有限要素法
で求めた角変位の値とを比較する図、第5図は実験モー
ド解析の概要を示す説明図、第6図は実験モード解析で
得られる振動モードと固有ベクトルの変位成分の関係を
示す説明図、第7図は実験モード解析で測定できる自由
度と実際の自由度とを示す斜視説明図である。 1:構造物、2:振動検出器、3;加振手段、4:実験
モード解析装置、5:測定点、y;変位成分、θ:角変
位成分。 5:固有°ペクト、御変位成分 θ:固有ベクトル角変仁す驚守 χ:測定距離 距離 n:モード数  m:測定点数 刺之立毅 第3図 ’y’=f(x) 第2図 MODE。 N− 8,23H2 MODE 。 2FN喝 5E5.99H2 第411 手続補正書(”ゞ3 1.事件の表示 特願昭13−2g’7’7t)1 、発明の名称 &%、n固而べ2面+1/シ芽)定 ち>A 3、補正をする者 事件との関係 住  所 名  称
Fig. 1 is a flowchart showing the procedure for calculating the angular displacement component in an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the relationship between the displacement component of the eigenvector and the angular displacement component, and Fig. 3 is the error between the number of measurement points and the angular displacement component. Fig. 4 is a graph showing the relationship between angular displacement and angular displacement obtained by the method of the embodiment of this invention and the angular displacement obtained by the finite element method. Fig. 5 is a graph showing the relationship between An explanatory diagram showing the overview, Fig. 6 is an explanatory diagram showing the relationship between the vibration mode obtained by experimental mode analysis and the displacement component of the eigenvector, and Fig. 7 shows the degrees of freedom that can be measured by experimental mode analysis and the actual degrees of freedom. It is a perspective explanatory view. 1: Structure, 2: Vibration detector, 3: Excitation means, 4: Experimental mode analysis device, 5: Measurement point, y: Displacement component, θ: Angular displacement component. 5: Eigen° pect, displacement component θ: Eigenvector angle change χ: Measurement distance Distance n: Number of modes m: Number of measurement points Figure 3 'y' = f(x) Figure 2 MODE . N-8,23H2 MODE. 2FN 5E5.99H2 No. 411 Procedural amendment ("ゞ3 1. Indication of the incident Patent application 1977-2g'7'7t) 1, title of the invention & %, n fixed page 2 + 1/sheet) established 3. Name of address related to the case of the person making the amendment

Claims (1)

【特許請求の範囲】[Claims] 1)構造物の加振方向と交わる方向の複数箇所の測定点
に設けた振動検出器によって直接的あるいは間接的に振
動の固有ベクトルの変位成分を測定し、これら複数箇所
における前記の変位成分測定値の各最大値を振動検出器
を設けた方向に補間し、振動検出器を設けた方向の任意
の点に対する補間曲線の値から振動の固有ベクトルの変
位成分を、その任意の点における補間曲線の勾配から振
動の固有ベクトルの角変位成分を得ることを特徴とする
振動の固有ベクトル測定方法。
1) Measure the displacement component of the eigenvector of vibration directly or indirectly using vibration detectors installed at multiple measurement points in the direction intersecting the excitation direction of the structure, and measure the displacement component at these multiple locations. Interpolate each maximum value in the direction of the vibration detector, and calculate the displacement component of the vibration eigenvector from the value of the interpolated curve for any point in the direction of the vibration detector, and calculate the slope of the interpolated curve at that arbitrary point. A vibration eigenvector measurement method characterized by obtaining an angular displacement component of the vibration eigenvector from .
JP63287900A 1988-11-15 1988-11-15 Measurement of characteristic vector of vibration Pending JPH02134531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287900A JPH02134531A (en) 1988-11-15 1988-11-15 Measurement of characteristic vector of vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287900A JPH02134531A (en) 1988-11-15 1988-11-15 Measurement of characteristic vector of vibration

Publications (1)

Publication Number Publication Date
JPH02134531A true JPH02134531A (en) 1990-05-23

Family

ID=17723170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287900A Pending JPH02134531A (en) 1988-11-15 1988-11-15 Measurement of characteristic vector of vibration

Country Status (1)

Country Link
JP (1) JPH02134531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184377A (en) * 2002-12-06 2004-07-02 Railway Technical Res Inst Identification method and device by noncontact measurement of vibration characteristic of structure
CN113465734A (en) * 2021-09-02 2021-10-01 清华大学 Real-time estimation method for structural vibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184377A (en) * 2002-12-06 2004-07-02 Railway Technical Res Inst Identification method and device by noncontact measurement of vibration characteristic of structure
CN113465734A (en) * 2021-09-02 2021-10-01 清华大学 Real-time estimation method for structural vibration

Similar Documents

Publication Publication Date Title
Yam et al. Theoretical and experimental study of modal strain analysis
Døssing Structural testing
Wright et al. Normal-mode force appropriation—theory and application
Chouiyakh et al. Vibration and multi-crack identification of Timoshenko beams under moving mass using the differential quadrature method
Ashory High quality modal testing methods
JP3313028B2 (en) Measurement method of bending stiffness and tension of cable under tension
Catbas et al. Modal analysis of multi-reference impact test data for steel stringer bridges
JP2008514916A (en) Determination of the inflow of the right and left eigenvectors in a Coriolis flowmeter
JP2008514916A5 (en)
Van De Ridder et al. Quantification of the influence of external vibrations on the measurement error of a Coriolis mass-flow meter
Żółtowski et al. The use of modal analysis in the evaluation of welded steel structures.
Sinha et al. Model updating: a tool for reliable modeling, design modification and diagnosis
JPH02134531A (en) Measurement of characteristic vector of vibration
Zheng et al. Theoretical analysis and experimental study of Coriolis mass flow sensor sensitivity
WO2019163701A1 (en) System identification device, system identification method, and recording medium
Rensing et al. Coriolis flowmeter verification via embedded modal analysis
US7523005B2 (en) Clamp-on coriolis mass flow meter using in-situ calibration
JPH1130566A (en) Vibration-characteristic analyzer
Formenti et al. Modal Modeling and Structural Dynamics Modification
JP3550296B2 (en) Measuring method of tension and bending stiffness of structures
Ben-Haim Identification of certain polynomial nonlinear structures by adaptive selectively-sensitive excitation
Krejčí et al. A comparison of two modal analysis methods: An impact hammer versus laser vibrometry
Richardson et al. Structural dynamics modification and modal modeling
Cudney et al. Experimental verification of damping mechanisms in a composite beam
Smith Determining the Influence of Experimental Setup and Inputs on Nonlinear Systems