JPH02134515A - Flow measurement - Google Patents

Flow measurement

Info

Publication number
JPH02134515A
JPH02134515A JP28863288A JP28863288A JPH02134515A JP H02134515 A JPH02134515 A JP H02134515A JP 28863288 A JP28863288 A JP 28863288A JP 28863288 A JP28863288 A JP 28863288A JP H02134515 A JPH02134515 A JP H02134515A
Authority
JP
Japan
Prior art keywords
flow
flow rate
microphone
signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28863288A
Other languages
Japanese (ja)
Inventor
Koichi Machida
浩一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP28863288A priority Critical patent/JPH02134515A/en
Publication of JPH02134515A publication Critical patent/JPH02134515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To make an apparatus compact by amplifying flow-rate noises obtained through a microphone, arranging the noises into frequencies in a band in use through a frequency filter, and displaying the numerical value after DC conversion. CONSTITUTION:Flow-rate noises generated between the valve of a governor and a valve sheet which are detected through a microphone are inputted into a flowmeter. At this time, the signal from the microphone 3 is amplified in an amplifier 5. The signal is arranged into a usable frequency bands through a filter 6. The signal undergoes DC conversion in a DC converter 7. The signal is corrected in a corrector 9 based on a pressure value from the pressure gage. Thereafter, the value is displayed on a display device 10. In this constitution, the apparatus can be made compact.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、流路内を流れる流体(気体、液体)を測定す
るための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring a fluid (gas, liquid) flowing in a flow path.

[従来の技術] 流体の流量測定方法には、流体の種類、流量、性状等に
より多種あるか、都市ガスを例にとると次のような方法
かある。
[Prior Art] There are various methods for measuring the flow rate of fluid depending on the type, flow rate, properties, etc. of the fluid. Taking city gas as an example, there are the following methods.

a、膜式ガスメータ この測定方法は、ガスを一定容績の袋(計量室)の中に
入れ、充満後排出しその回数を容積単位に換算して外部
表示する方法であって、現在都市ガスの一般需要家に取
り付けられているガスメータの殆どはこの方式である。
a. Membrane gas meter This measurement method involves putting gas into a bag (measuring chamber) of a certain capacity, filling it and then discharging it, and converting the number of times gas is filled into a unit of volume and displaying it externally.Currently, city gas Most of the gas meters installed in general consumers are of this type.

b、フルイブイック流量計 この測定方法は、ノズルの前方に徐々に拡大する側壁を
形成し、ノズルから噴出させた流体かコアンダ効果によ
りこの側壁に付着して流れるという性質を利用したもの
で、一方の側壁に沿って流れる流体の一部を側壁に設け
た制御ノズルに導き、この制御ノズルから噴射された流
体エネルギーにより反対側の側壁に沿って流れるように
切り換え、この切り換えの数、つまり発振周波数か流量
に比例するという原理に基づくものであって、このメー
タは一部実用化されているが、小流量域ての安定性に欠
ける点があり、あまり広くは利用されていない。
b. Full-buoy flowmeter This measurement method uses the property that a gradually expanding side wall is formed in front of the nozzle, and the fluid ejected from the nozzle adheres to this side wall and flows due to the Coanda effect. A part of the fluid flowing along the side wall is guided to a control nozzle provided on the side wall, and the fluid energy injected from this control nozzle switches the fluid to flow along the opposite side wall, and the number of switches, that is, the oscillation frequency This meter is based on the principle that it is proportional to the flow rate, and although some of this meter has been put into practical use, it lacks stability in the small flow rate range, so it is not widely used.

C4流速式ガスメータ この測定方法は、流路内の一部を絞り、この絞り部分に
流速センサを取り付け、検出された流速から流量を換算
して表示するという方法であるが、流量センサか流れの
抵抗となる等の問題を有し、これも実用化されている例
は殆ど無い。
C4 flow rate type gas meter This measurement method involves restricting a part of the flow path, attaching a flow rate sensor to this restricted part, and converting and displaying the flow rate from the detected flow rate. This has problems such as resistance, and there are almost no examples of this being put into practical use.

d、絞り機構式メータ 前記a〜Cの流量計は比較的小流量(低圧力)の測定に
利用されるものであるか、この絞り機構式メータは、比
較的大流量(高圧力)の測定に利用されており、絞り部
の前後に生ずる差圧を測って流量を測定するものである
d. Throttle mechanism meter Are the flowmeters a to C above used for measuring relatively small flow rates (low pressure)?This throttle mechanism meter is used for measuring relatively large flow rates (high pressure). It is used to measure the flow rate by measuring the differential pressure that occurs before and after the constriction.

[従来技術の課題] 上記4例における流量測定方法においては、何れも測定
流路内にメータを取り付ける必要がある。このため、既
設配管にメータを取り付けるときは、いちいち配管を切
断する必要があり、この工事時間内は流体を止めたり、
別にバイパスをとったりしており、供給上の問題と経費
上の問題がある。又、絞り機構式メータの場合は、圧力
損失が大きいという問題がある。
[Problems with Prior Art] In the flow rate measurement methods in the four examples above, it is necessary to install a meter in the measurement flow path. Therefore, when installing a meter to existing piping, it is necessary to cut the piping each time, and during this construction period, the fluid must be stopped or
Other bypasses are being taken, and there are supply and cost issues. Further, in the case of a throttle mechanism type meter, there is a problem that pressure loss is large.

本発明は以上の如き点に鑑みて提案されるもので、流路
(配管)を切断したすせずに極めて安い経費で供給管路
内の流量を測定することができると共に圧力損失を伴わ
ない流量測定方法を提案するのが目的である。
The present invention has been proposed in view of the above points, and it is possible to measure the flow rate in a supply pipe at an extremely low cost without cutting the flow path (piping), and it does not involve pressure loss. The purpose is to propose a flow measurement method.

[技術的な課題を解決するための手段]測定流路内にお
いて発生する流量雑音を音響変換器を利用して電気信号
に変換すると共にこの変換した電気信号を周波数フィル
ターを利用してある一定の周波数帯域に整理し、この整
理された周波数信号をDC変換して表示する、ある測定
流路内を流れる流体の流量測定方法。
[Means for solving the technical problem] The flow noise generated in the measurement flow path is converted into an electric signal using an acoustic transducer, and the converted electric signal is converted to a certain level using a frequency filter. A method for measuring the flow rate of a fluid flowing in a certain measurement flow path, which organizes the frequency signals into frequency bands, converts the frequency signals into DC, and displays them.

上記測定方法において、被測定流体に圧力の変動があっ
た場合、この圧力変動が測定誤差を生むことが考えられ
るのて、高精度が要求される場合には圧力値により補正
するようにするとよい。
In the above measurement method, if there is a pressure fluctuation in the fluid to be measured, this pressure fluctuation may cause a measurement error, so if high accuracy is required, it is recommended to correct it using the pressure value. .

測定流路内において流量雑音を発生させる手段としては
、流路内に絞り部を形成したり、耶魔板を挿入したりし
てもよいし、或いはハルツとバルブシート間を流れると
きの流量雑音を検出するようにしてもよい。この流量雑
音の検出手段としては、マイクロホンを利用することが
てきる。このマイクロホンは、流路内に挿入する必要は
なく、流量雑音発生部に外側から密着すれば十分である
As a means of generating flow noise in the measurement flow path, it is possible to form a constriction part in the flow path, insert a dam plate, or to generate flow noise when flowing between the Harz and the valve seat. may be detected. A microphone can be used as a means for detecting this flow noise. This microphone does not need to be inserted into the flow path, and it is sufficient to closely contact the flow noise generating section from the outside.

音響変換器は通常のアンプを利用することかでき、周波
数フィルターは流量雑音のうち、共振周波数帯域を除去
し、安定した周波数帯域のみにろ波することが必要であ
る。
An ordinary amplifier can be used as the acoustic transducer, and the frequency filter is required to remove the resonant frequency band from the flow noise and filter only the stable frequency band.

第5図はガスの供給管に取り付けられたレイノルドガバ
ナを利用して流量雑音を取得した際のパワースペクトル
と周波数との関係を示すものである。この図から明らか
なように、ガバナの共振周波帯域は2.3Ktlz /
 d ivから5KH,/div位であるので、5KH
,/divからl OKtlz /div位が使用周波
数帯域として有効である。
FIG. 5 shows the relationship between the power spectrum and frequency when flow rate noise is obtained using a Reynolds governor attached to a gas supply pipe. As is clear from this figure, the resonant frequency band of the governor is 2.3Ktlz/
It is about 5KH, /div from d iv, so 5KH
, /div to l OKtlz /div is effective as the frequency band to be used.

[作用] 配管中の流量雑音発生部の外側にはマイクロホンが取り
付けられており、このマイクロホンで取得された流量雑
音はアンプに導かれて増巾されたのち、周波数フィルタ
ーにより使用帯域の周波数に整理され、DC変換後に数
値表示される。
[Function] A microphone is attached to the outside of the flow noise generating part in the piping, and the flow noise picked up by this microphone is guided to an amplifier and amplified, and then organized into frequencies within the usage band by a frequency filter. and is displayed numerically after DC conversion.

[実施例] 第1図は、上記本発明の実施例を示すもので、符号の1
はガス配管にして、この中にはガスか流れている。2は
レイノルドガバナにして、ガス配管1を経由して供給さ
れているガス圧を調整している。
[Example] Fig. 1 shows an example of the above-mentioned present invention.
is a gas pipe, and gas is flowing through it. Reference numeral 2 is a Reynolds governor that regulates the gas pressure supplied via the gas pipe 1.

3はガバナ2のバルブ(整圧ハルツ)に最も近い位置に
外側から密着させたマイクロホンにして、このマイクロ
ホン3で検出された前記ガバナ2内のパルプとバルブシ
ート間で発生した流量雑音は、流量計4に入る。流量計
4の構成は第2図に示されており、マイクロホン3から
の信号はアンプ5て増巾され、フィルター6で使用可能
な周波数帯域に整理され、DC変換器7でDC変換され
たのち、第1図に示した圧力計8からの圧力値に基づき
補正器9で補正されてから、表示器10に表示され、レ
コーダ11に記録される。
3 is a microphone that is placed in close contact with the valve (pressure regulating Harz) of the governor 2 from the outside, and the flow noise generated between the pulp in the governor 2 and the valve seat detected by this microphone 3 is the Total of 4. The configuration of the flow meter 4 is shown in FIG. 2, in which the signal from the microphone 3 is amplified by an amplifier 5, organized into a usable frequency band by a filter 6, and converted to DC by a DC converter 7. , is corrected by a corrector 9 based on the pressure value from the pressure gauge 8 shown in FIG.

第3図には流量と流量雑音の関係を示した。Figure 3 shows the relationship between flow rate and flow noise.

第4図には流量と流量計出力の関係を示した。これらの
データは、上記実施例から得たものてあり、流量雑音及
び流量計出力は流量に対して相関関係をもっていること
が解る。
Figure 4 shows the relationship between flow rate and flowmeter output. These data were obtained from the above example, and it can be seen that the flow rate noise and flow meter output have a correlation with the flow rate.

[本発明の効果] 本発明は以上のように、流路内で発生する流量雑音を基
にして流量を測定するようにした。この結果、次の如き
結果を期待てきる。
[Effects of the Present Invention] As described above, the present invention measures the flow rate based on the flow noise generated within the flow path. As a result, we can expect the following results.

a、流量雑音は配管の外側からマイクロホン等により取
得(聴取)できるのて、配管をいちいち切断しないて済
み、特に大流量(高圧力)流体の測定用として有用であ
る。
a. Flow rate noise can be acquired (heard) from outside the piping using a microphone or the like, so there is no need to cut the piping each time, and this is particularly useful for measuring large flow rate (high pressure) fluids.

b、配管中の流量雑音発生箇所としては既設のレイノル
ドガバナ、流量調節弁などがあるのて、これらを利用す
ることにより、流量雑音発生箇所を特別に作らないて済
む。この結果、配管の切断とか、バイパスをとる必要が
なく、又、流量測定のために圧力損失を招くこともない
b. There are already existing Reynolds governors, flow control valves, etc. as flow rate noise generating points in the piping, so by using these, there is no need to create a special flow rate noise generating point. As a result, there is no need to cut the pipe or take a bypass, and no pressure loss is caused due to flow rate measurement.

C1都市ガスの場合、その供給配管中に取り付けられた
ガバナを利用して流量管理設備を構築てきるのて、流量
管理設備を構築する際に経費が少なくて済む。
In the case of C1 city gas, the flow rate control equipment can be constructed using a governor installed in the supply piping, so the cost for constructing the flow rate management equipment can be reduced.

d1本発明を実施するための装置は、小型化が可能であ
る。よってどこへでも持ち運ぶことがてきるので、現場
工事への対応性がよく、非常に便利である。
d1 The device for carrying out the present invention can be miniaturized. Therefore, it can be carried anywhere, making it highly adaptable to on-site construction and extremely convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明をガスの供給配管内に取り付けられたレ
イノルドガバナに実施した際の実施例図、第2図は流量
計を示すブロックタイヤグラム、第3図は流量と流量雑
音との関係を示す説明図、第4図は流量と流量計出力と
の関係を示す説明図、第5図は流量雑音のパワースペク
トル図である。 ガス配管 レイノルドガバナ マイクロホン 流量計 アンプ フィルター DC変換器 圧力計 補正器 表示器 レコータ 壬しR 〉 Q)O cIJl′1″1 〉 ”: C”−K”(C’sL−”  COと田ご−に?
へL−2田\ CD スフ
Figure 1 is an example diagram of the present invention applied to a Reynolds governor installed in a gas supply pipe, Figure 2 is a block tire diagram showing a flow meter, and Figure 3 is the relationship between flow rate and flow noise. FIG. 4 is an explanatory diagram showing the relationship between flow rate and flowmeter output, and FIG. 5 is a power spectrum diagram of flow noise. Gas piping Reynold Governor Microphone Flowmeter Amplifier Filter DC Converter Pressure Gauge Compensator Display Recorder To?
He L-2 field\CD Sufu

Claims (2)

【特許請求の範囲】[Claims] 1.測定流路内において発生する流量雑音を音響変換器
を利用して電気信号に変換すると共に、この変換した電
気信号を周波数フィルターを利用してある一定の周波数
帯域に整理し、この整理された周波数信号をDC変換し
て表示する、ある測定流路内を流れる流体の流量測定方
法。
1. The flow noise generated in the measurement flow path is converted into an electrical signal using an acoustic transducer, and the converted electrical signal is organized into a certain frequency band using a frequency filter. A method for measuring the flow rate of a fluid flowing in a certain measurement channel, which converts the signal into DC and displays it.
2.測定流路内を流れる流体の圧力を検出し、この検出
値に基づいて測定値を補正する請求項1記載の流量測定
方法。
2. 2. The flow rate measurement method according to claim 1, wherein the pressure of the fluid flowing in the measurement channel is detected, and the measured value is corrected based on the detected value.
JP28863288A 1988-11-14 1988-11-14 Flow measurement Pending JPH02134515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28863288A JPH02134515A (en) 1988-11-14 1988-11-14 Flow measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28863288A JPH02134515A (en) 1988-11-14 1988-11-14 Flow measurement

Publications (1)

Publication Number Publication Date
JPH02134515A true JPH02134515A (en) 1990-05-23

Family

ID=17732687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28863288A Pending JPH02134515A (en) 1988-11-14 1988-11-14 Flow measurement

Country Status (1)

Country Link
JP (1) JPH02134515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174298A (en) * 1999-12-17 2001-06-29 System Ooru:Kk Discriminating method for fluid flow state and device and various devices applied by the discriminating method and device
JP2007017325A (en) * 2005-07-08 2007-01-25 Chugoku Electric Power Co Inc:The Flow rate measuring system and flow rate measuring technique
KR20130077838A (en) * 2010-05-14 2013-07-09 벨킨 인터내셔널 인크 Apparatus configured to detect gas usage, method of providing same, and method of detecting gas usage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220869A (en) * 1976-06-03 1977-02-17 Seiko Epson Corp Battery watch
JPS60161526A (en) * 1984-01-31 1985-08-23 Matsushita Electric Ind Co Ltd Apparatus for detecting gas flow rate
JPS6391516A (en) * 1986-10-07 1988-04-22 Kubota Ltd Method for measuring flow-down rate of vertical drainpipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220869A (en) * 1976-06-03 1977-02-17 Seiko Epson Corp Battery watch
JPS60161526A (en) * 1984-01-31 1985-08-23 Matsushita Electric Ind Co Ltd Apparatus for detecting gas flow rate
JPS6391516A (en) * 1986-10-07 1988-04-22 Kubota Ltd Method for measuring flow-down rate of vertical drainpipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174298A (en) * 1999-12-17 2001-06-29 System Ooru:Kk Discriminating method for fluid flow state and device and various devices applied by the discriminating method and device
JP2007017325A (en) * 2005-07-08 2007-01-25 Chugoku Electric Power Co Inc:The Flow rate measuring system and flow rate measuring technique
KR20130077838A (en) * 2010-05-14 2013-07-09 벨킨 인터내셔널 인크 Apparatus configured to detect gas usage, method of providing same, and method of detecting gas usage
JP2013530391A (en) * 2010-05-14 2013-07-25 ベルキン・インターナショナル・インコーポレイテッド Apparatus configured to detect gas usage, method of providing the same, and method of detecting gas usage
US9222816B2 (en) 2010-05-14 2015-12-29 Belkin International, Inc. Apparatus configured to detect gas usage, method of providing same, and method of detecting gas usage
JP2016105091A (en) * 2010-05-14 2016-06-09 ベルキン・インターナショナル・インコーポレイテッド Apparatus configured to detect gas usage, method of providing same, and method of detecting gas usage

Similar Documents

Publication Publication Date Title
US4790194A (en) Flow measurement device
US4550615A (en) Fluid flowmeter
US4262523A (en) Measurement of fluid density
US5421212A (en) Method and device in acoustic flow measurement for ensuring the operability of said measurement
CA2539640A1 (en) Detection and measurement of two-phase flow
RU2019115360A (en) IMPROVEMENTS IN FLUID CONTROL
CA1140265A (en) Gas flow monitor
DE69309939D1 (en) FLOWMETER
US3908761A (en) Method for determining liquid production from a well
US4347747A (en) Single phase flow measurement
Aumanand et al. A novel method of using a control valve for measurement and control of flow
JPH02134515A (en) Flow measurement
JPS59176643A (en) Measuring device for fine leakage of valve
JP3184885B2 (en) Gas meter calibration device
US5481924A (en) Method and apparatus for assessing and quantifying pulsation induced error in gas turbine flow meters
US4572003A (en) Sidetone generator flowmeter
JPS58189518A (en) Mass flowmeter
JP2004191103A (en) Pressure governor and flow measuring method
JPH11258098A (en) Gas leakage detecting device
JPS5817417B2 (en) Flowmeter
JP3877099B2 (en) Vibration measuring device
CN109655116B (en) System and method for controlling precision of small pulsating flow by utilizing gas micro-pressure difference based on PWM control method
RU2175436C2 (en) Jet-type automatically generating flowmeter-counter
JPS6370119A (en) Flow rate measuring apparatus
RU2403545C1 (en) Device for determining static and dynamic characteristics of gas-dynamic objects