JPH02134145A - Ultrasonic diagnosis device - Google Patents

Ultrasonic diagnosis device

Info

Publication number
JPH02134145A
JPH02134145A JP28925288A JP28925288A JPH02134145A JP H02134145 A JPH02134145 A JP H02134145A JP 28925288 A JP28925288 A JP 28925288A JP 28925288 A JP28925288 A JP 28925288A JP H02134145 A JPH02134145 A JP H02134145A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
circuit
phase detection
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28925288A
Other languages
Japanese (ja)
Other versions
JPH0712358B2 (en
Inventor
Yasuo Miyajima
泰夫 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28925288A priority Critical patent/JPH0712358B2/en
Publication of JPH02134145A publication Critical patent/JPH02134145A/en
Publication of JPH0712358B2 publication Critical patent/JPH0712358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To ensure satisfactory S/N of an image and to ensure a good image by correlative outputting by multiplication of an ultrasonic input signal input from a radio receiving circuit and an ultra sonic radio transmission signal input from an ultrasonic probe to decrease noise component contained in the ultrasonic input signal between a radio receiving circuit and a frequency analyzing circuit. CONSTITUTION:Correlation means 7 is disposed between an A/D converter 4 and a frequency analyzing circuit 5, and an ultrasonic radio transmission signal h(t) from an ultrasonic probe 1, and a phase detection signal r(t) obtained by phase detecting a received input signal by an orthogonal phase detection circuit 3 are input to the above means to calculate the correlation between these signals h(t).r(t). In the correlation means 7, as h(t) and r(t+r) are synchronized in respect of time and similar to each other in waveform, they have the substantially same spectrum distribution on the spectrum, are calculated in such a manner that the band displaying signal image blood current information is intensified and most of white noise n(t) outside the above band, that is, in a comparatively wide band is removed by the sum of products of r(t) and h(t+r).

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、生体内の移動物体の移動に伴う機能情報とし
て血流情報を超音波送受波およびドツプラ効果の利用に
より得て映像化する超音波診断装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a method for obtaining blood flow information as functional information associated with the movement of a moving object within a living body by using ultrasonic transmission and reception and the Doppler effect. The present invention relates to an ultrasonic diagnostic device that images images.

(従来の技術) 超音波診断法では、Bモード像を代表例とする解剖学的
情報、N1モード像を代表例とする生体内の器管の運動
情報、血流イメージングを代表例とするドプラ効果を利
用した生体内の移動物体の移動に伴う機能情報等を用い
て診断に供するようにしている。また、超音波の生体内
に対する走査法の代表的なものには、電子走査と機械走
査とがある。ここで電子走査法につい説明する。
(Prior art) Ultrasonic diagnostic methods use anatomical information, typically represented by B-mode images, motion information of in-vivo organs, typically represented by N1-mode images, and Doppler, typically represented by blood flow imaging. Functional information associated with the movement of a moving object within a living body using this effect is used for diagnosis. Further, typical methods for scanning inside a living body using ultrasound waves include electronic scanning and mechanical scanning. Here, the electronic scanning method will be explained.

複数の超音波振動子を並設してなるアレイ型超音波探触
子(プローブ)を用い、リニア電子走査であれば、超音
波振動子の複数個を1単位とし、この1単位の超音波振
動子について励振を行ない、超音波ビームの送波を行な
う方法である。例えば順次1振動子分づつピッチをずら
しながら1単位の素子の位置が順々にかわるようにして
励振してゆくことにより、超音波ビームの送波点位置を
電予約にずらしてゆく走査である。
In the case of linear electronic scanning using an array-type ultrasonic probe (probe) consisting of multiple ultrasonic transducers arranged in parallel, multiple ultrasonic transducers are treated as one unit, and this one unit of ultrasound This is a method in which a vibrator is excited and an ultrasonic beam is transmitted. For example, this is scanning in which the position of the transmitting point of the ultrasonic beam is shifted at an electric reservation by sequentially shifting the pitch by one oscillator and exciting the position of one unit of element in turn. .

そして超音波がビームとして集束するように励振される
超音波振動子は、ビームの中心部に位置するものと側方
に位置するものとてその励振のタイミングをずらし、こ
れによって生ずる超音波振動子の各発生音波の位相差を
利用し、反射される超音波を集束(電子フォーカス)さ
せる。モして励振のと同じ振動子により反射超音波を受
波して電気信号に変換して、各送受波によるエコー情報
を例えば断層像として形成し、陰極線管等に画像表示す
る。
The ultrasonic transducers that are excited so that the ultrasonic waves are focused as a beam are shifted in excitation timing between those located in the center of the beam and those located on the sides. The reflected ultrasonic waves are focused (electronic focus) using the phase difference between each generated sound wave. The reflected ultrasonic waves are received by the same vibrator used for excitation and converted into electrical signals, and the echo information from each transmitted and received wave is formed, for example, as a tomographic image, and the image is displayed on a cathode ray tube or the like.

またセクタ電子走査であれば、励振される1単位の超音
波振動子群に対し、超音波ビームの送波方向が超音波ビ
ーム1パルス分毎に順次扇形に変るように各振動子の励
振タイミングを所望の方向に応じて変化させてゆくもの
であり、後の処理は、括本的には上述したリニア電子走
査法と同様である。
In addition, in the case of sector electronic scanning, the excitation timing of each transducer is set so that the transmission direction of the ultrasound beam changes sequentially into a fan shape for each pulse of the ultrasound beam for one unit of excited ultrasound transducers. is changed in accordance with a desired direction, and the subsequent processing is essentially the same as the linear electronic scanning method described above.

以上のようなリニア、セクタ電子走査の他に振動子(探
触子)を走査機構に取付け、走査機構を運動させること
により超音波走査を行なう機械走査もある。
In addition to the above-mentioned linear and sector electronic scanning, there is also mechanical scanning in which a transducer (probe) is attached to a scanning mechanism and ultrasonic scanning is performed by moving the scanning mechanism.

一方、映像法には、超音波送受信にもとなう信号を合成
して断層像化するBモード像以外に、同一方向固定走査
によるMモード像が代表的である。
On the other hand, in the imaging method, in addition to the B-mode image in which the signals underlying ultrasound transmission and reception are combined to form a tomographic image, the M-mode image by fixed scanning in the same direction is typical.

このMモード像は、超音波送受波部位の時間的変化を表
示したものであり、特に心臓の如き動きのある臓器の診
断には好適である。
This M-mode image displays temporal changes in the ultrasound transmitting/receiving site, and is particularly suitable for diagnosing moving organs such as the heart.

また、血流イメージングを代表例とする超音波ドプラ法
は、生体内の移動物体の移動にもとなう機能情報を得て
映像化する方法であり、これを以下詳細に説明する。こ
の超音波ドプラ法は、超音波が移動物体により反射され
ると反射波の周波数か上記移動物体の移動速度に比例し
て偏移する超音波ドプラ効果を利用したものである。具
体的には超音波レートパルス(或いは連続パルス)を生
体内に送波し、その反射波エコーの位相変化により、ド
プラ効果による周波数偏移を得ると、そのエコーを得た
深さ位置における移動物体の運動情報を得ることかでき
る。
Further, the ultrasonic Doppler method, of which blood flow imaging is a typical example, is a method of obtaining functional information based on the movement of a moving object within a living body and visualizing it, and this will be explained in detail below. This ultrasonic Doppler method utilizes the ultrasonic Doppler effect in which when an ultrasonic wave is reflected by a moving object, the frequency of the reflected wave shifts in proportion to the moving speed of the moving object. Specifically, when an ultrasonic rate pulse (or continuous pulse) is transmitted into a living body and the phase change of the reflected wave echo causes a frequency shift due to the Doppler effect, the movement at the depth position where the echo was obtained It is possible to obtain information on the movement of objects.

この超音波ドプラ法によれば、生体内における一定位置
での血流の向き、乱れているが整っているかの流れの状
態、流れのパターン、速度の値等の血流の状態を知るこ
とができる。
According to this ultrasound Doppler method, it is possible to know the state of blood flow at a certain position in the living body, such as the direction of blood flow, whether the flow is turbulent or regular, the flow pattern, and the velocity value. can.

次に前記超音波ドプラ法を適用した装置について説明す
る。第6図は従来の超音波診断装置を示すブロック図で
ある。第7図は超音波送受信信号を示す図で、(a)は
送信信号h (t)を示す図、(b)は受信信号rl 
 (t)を示す図、(C)は受信信号r2  (t)を
示す図、(d)は受信信号rl  (t)を位相検波し
た信号r3  (t)を示す図、(e)は受信信号r2
  (t)を位相検波した信号r4  (t)を示す図
、(f)はあるピクセル深さにおける時間的動きr5 
 (t)を示す図、(g)は他のピクセル深さにおける
時間的動きr6  (t)を示す図である。まず、超音
波受信信号rl  (t)、r2  (t)から血流情
報を得るためには、超音波探触子lおよび送受信回路2
を駆動しである方向に超音波送信信号h (t)を所定
回数繰返し送波し、受波された超音波受信信号rl  
(t)、r2  (t)を直交位相検波回路3により検
波して位相検波信号r3  (t)、r4  Ct)つ
まり血球によるドプラ偏移信号とクラッタ成分とからな
る信号を得、これにより各ピクセル深さにおける時間的
な動きを示す信号r5  (t)r8  (t)を得る
。この信号をA/D変換回路4にてディジタル信号化し
、フィルタによりクラッタ成分を除き、血球によるドプ
ラ偏移成分信号は、例えばリアルタイムでカラードプラ
像を得るために高速の周波数分析回路5により周波数分
析し、ドプラ偏移の平均値、ドプラ偏移の分散値、ドプ
ラ偏移の平均強度等を得る。また周波数分析回路5に内
蔵された自己相関器等により血流の速度カラーフローマ
ツピング像を得、TVモニタ6に表示する。
Next, an apparatus to which the ultrasonic Doppler method is applied will be explained. FIG. 6 is a block diagram showing a conventional ultrasonic diagnostic apparatus. FIG. 7 is a diagram showing ultrasonic transmission and reception signals, (a) is a diagram showing the transmission signal h (t), and (b) is a diagram showing the reception signal rl.
(t), (C) is a diagram showing the received signal r2 (t), (d) is a diagram showing the signal r3 (t) obtained by phase detection of the received signal rl (t), (e) is the received signal r2
A diagram showing the signal r4 (t) obtained by phase detection of (t), (f) is the temporal movement r5 at a certain pixel depth.
(t), and (g) a diagram showing the temporal movement r6 (t) at other pixel depths. First, in order to obtain blood flow information from the ultrasonic reception signals rl (t) and r2 (t), the ultrasonic probe l and the transmitting/receiving circuit 2 are
The ultrasonic transmission signal h (t) is repeatedly transmitted a predetermined number of times in a certain direction, and the received ultrasonic reception signal rl is
(t), r2 (t) are detected by the quadrature phase detection circuit 3 to obtain a phase detection signal r3 (t), r4 Ct), that is, a signal consisting of a Doppler shift signal due to blood cells and a clutter component. We obtain signals r5 (t) r8 (t) indicating temporal movement in depth. This signal is converted into a digital signal by an A/D conversion circuit 4, clutter components are removed by a filter, and the Doppler shift component signal due to blood cells is subjected to frequency analysis by a high-speed frequency analysis circuit 5 in order to obtain a color Doppler image in real time, for example. Then, the average value of the Doppler shift, the variance value of the Doppler shift, the average intensity of the Doppler shift, etc. are obtained. Further, an autocorrelator or the like built in the frequency analysis circuit 5 obtains a blood flow velocity color flow mapping image and displays it on the TV monitor 6.

(発明が解決しようとする課題) 然し乍ら、従来の超音波診断装置にあっては、生体内の
血球から散乱された信号を受信した受1゛7ζ信号rl
  (t)、r2  (t)はかなり減衰を受けており
、微弱な信号になっている。さらにこの受倍信号rl 
 (t)、r2  (t)は、直交位相検波回路3内の
増幅器により増幅されているが、増幅器の内部雑音も増
幅出力されてしまい、結果的に画像のS/Nが充分に確
保できないという問題があった。
(Problem to be Solved by the Invention) However, in the conventional ultrasonic diagnostic apparatus, the reception 1゛7ζ signal rl which receives the signals scattered from the blood cells in the living body.
(t) and r2 (t) are considerably attenuated and become weak signals. Furthermore, this multiplier signal rl
(t) and r2 (t) are amplified by the amplifier in the quadrature phase detection circuit 3, but the internal noise of the amplifier is also amplified and output, resulting in an insufficient S/N ratio of the image. There was a problem.

そこで本発明の目的は、受信信号が微弱な信号で且つ位
相検波信号にノイズを含んでいても、画像のS/Nを充
分に確保でき、良好な画像を確保し得る超音波診断装置
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an ultrasonic diagnostic apparatus that can ensure a sufficient image S/N and a good image even if the received signal is weak and the phase detection signal contains noise. It's about doing.

[発明の構成コ (課題を解決する為の手段) 本発明は上記の課題を解決し目的を達成する為に次のよ
うな手段を講じた。本発明は、生体内循環器組織中の血
流に対して超音波探触子から超音波送信信号を送信し、
前記血流から散乱された散乱超音波を受波回路により受
波して位相検波回路によりドプラ偏移成分を検出し、周
波数分析回路により周波数分析して血流情報を表示する
超音波診断装置において、前記受波回路と周波数分析回
路との間に前記受波回路から入力する超音波受信信号と
前記超音波探触子から入力する超音波送信信号とを乗算
することにより前記超音波受信信号に含まれるノイズ成
分を減少させるように相関出力する相関手段を設けたも
のである。
[Configuration of the Invention (Means for Solving the Problems) The present invention has taken the following measures in order to solve the above problems and achieve the objectives. The present invention transmits an ultrasound transmission signal from an ultrasound probe to blood flow in a circulatory tissue in a living body,
In an ultrasound diagnostic apparatus, the scattered ultrasound scattered from the blood flow is received by a wave receiving circuit, a Doppler shift component is detected by a phase detection circuit, and the frequency is analyzed by a frequency analysis circuit to display blood flow information. , by multiplying the ultrasonic reception signal input from the wave reception circuit and the ultrasonic transmission signal input from the ultrasonic probe between the wave reception circuit and the frequency analysis circuit, the ultrasonic reception signal is A correlation means is provided for outputting correlation so as to reduce noise components included.

(作用) このような手段を講じたことにより、次のような作用を
呈する。超音波受信信号と超音波送波信号とが相関手段
により乗算されると、超音波受信信号と超音波送波信号
との信号成分帯域近傍のみが増倍出力される。すなわち
、超音波受信信号に含まれるノイズは、帯域の比較的広
いホワイトノイズであるので、前記信号成分帯域以外の
帯域におけるノイズは、乗算により大幅に低減される。
(Effects) By taking such measures, the following effects are achieved. When the ultrasonic reception signal and the ultrasonic transmission signal are multiplied by the correlation means, only the vicinity of the signal component band of the ultrasonic reception signal and the ultrasonic transmission signal is multiplied and output. That is, since the noise contained in the ultrasonic reception signal is white noise with a relatively wide band, noise in bands other than the signal component band is significantly reduced by multiplication.

したがって、相関手段により出力されるノイズは大幅に
低減するので、カラーフローマツピング像のS/N比を
向上でき、良好な2次元像が得られる。
Therefore, since the noise output by the correlation means is significantly reduced, the S/N ratio of the color flow mapping image can be improved, and a good two-dimensional image can be obtained.

(実施例) 第1図は本発明に係る超音波診断装置の一実施例を示す
概略ブロック図である。なお第6図において説明した部
分については同一符号を付し詳細な説明は省略する。第
1図において、相関手段7は、A/D変換器4と周波数
分析回路5との間に設けられ、超音波プローブ1からの
超音波送信信号h (t)と、受波された受信信号を直
交位t0検波回路3により位相検波した位相検波信号r
 (t)と、を入力してこれらの信号h(t)。
(Embodiment) FIG. 1 is a schematic block diagram showing an embodiment of an ultrasonic diagnostic apparatus according to the present invention. Note that the parts explained in FIG. 6 are designated by the same reference numerals and detailed explanations will be omitted. In FIG. 1, the correlation means 7 is provided between the A/D converter 4 and the frequency analysis circuit 5, and the correlation means 7 is provided between the A/D converter 4 and the frequency analysis circuit 5, and is connected to The phase detection signal r whose phase is detected by the orthogonal t0 detection circuit 3
(t) and these signals h(t).

r (t)の相関関係を算出するものである。This is to calculate the correlation of r(t).

第2図は前記相関手段7の動作を示す図で、(a)は送
信信号h (t)を示す図、(b)は送信信号h (t
)に対しτだけ遅延した位相検波信号r (t)を示す
図、(C)は相関すべき前記信号h (t)、  r 
(t+τ)および位相検波信号r (t)に含まれるノ
イズNを示す図である。この相関手段7は送信信号h(
t)、位相検波信号「(t)に基き相関関数C(τ) C(r)=f r (t)Xh (t+r)dtを算出
するものである。
FIG. 2 is a diagram showing the operation of the correlation means 7, in which (a) shows the transmitted signal h (t), and (b) shows the transmitted signal h (t
), (C) is a diagram showing the phase detection signal r (t) delayed by τ with respect to the signal h (t), r to be correlated.
(t+τ) and noise N included in the phase detection signal r (t). This correlation means 7 uses the transmitted signal h(
t), the correlation function C(τ) C(r)=f r (t)Xh (t+r) dt is calculated based on the phase detection signal "(t).

第3図は前記相関手段7により得られた信号を示す図で
、(a)はノイズが低減された位相検波信号CI  (
τ)を示す図、(b)はあるピクセル深さにおける位相
検波信号C2(τ)を示す図、(C)は他のピクセル深
さにおける位相検波信号C3(τ)を示す図である。
FIG. 3 is a diagram showing the signal obtained by the correlation means 7, where (a) is the phase detection signal CI (
(b) is a diagram showing the phase detection signal C2 (τ) at a certain pixel depth, and (C) is a diagram showing the phase detection signal C3 (τ) at another pixel depth.

第4図は前記相関手段7の詳細を示すブロック図である
。相関手段7は超音波送信信号h(1)を記憶するシス
テム応答用メモリ11(lla〜llj ) 、入力し
た前記位相検波信号r (t)をシフトする位相検波信
号用シフトレジスタ12(12a〜12j ) 、  
システム応答用メモリ11および位相検波信号用シフト
レジスタ12のそれぞれの対応する信号を読出して乗算
する乗算器13(13a・・・13j ’) 、前の乗
算器13の乗算出力と次の乗算器13の乗算出力とを加
算する加算器14(14a・・・14h)で構成されて
いる。
FIG. 4 is a block diagram showing details of the correlation means 7. The correlation means 7 includes a system response memory 11 (lla to llj) for storing the ultrasonic transmission signal h(1), and a phase detection signal shift register 12 (12a to 12j) for shifting the inputted phase detection signal r(t). ),
A multiplier 13 (13a...13j') that reads and multiplies the corresponding signals of the system response memory 11 and phase detection signal shift register 12, and the multiplication output of the previous multiplier 13 and the next multiplier 13. It is comprised of an adder 14 (14a...14h) that adds the multiplication output of .

第5図は前記周波数分析回路5の詳細を示すブロック図
である。周波数分析回路5は前記相関手段7から入力す
る信号をフーリエ変換するフーリエ変換器21.このフ
ーリエ変換器21の出力により平均周波数f〔および分
散s2を計算出力する平均周波数・分散計算回路22で
構成されている。
FIG. 5 is a block diagram showing details of the frequency analysis circuit 5. As shown in FIG. The frequency analysis circuit 5 includes a Fourier transformer 21 that Fourier transforms the signal input from the correlation means 7. It is comprised of an average frequency/variance calculation circuit 22 that calculates and outputs the average frequency f and variance s2 based on the output of the Fourier transformer 21.

次にこのように構成された実施例の作用を図面を参照し
て説明する。第1図および第2図において、超音波プロ
ーブ1は送信受信回路2で発生した超音波送信信号f 
(t)を用いて図示しない被検体に対しパルス状にすな
わちインパルス関数hT  (t)により超音波パルス
f(t)XhT(1)を発射する(ここで*はたたみ込
み積分を表わす)。この場合、超音波パルスは同一方向
に3〜8レート分発射し、被検体で散乱されたドプラ偏
移を受けた超音波パルスf (t)XhT  (t)X
A i ejθiおよびホワイトノイズn (t)は、
再び送受信回路2にパルス状のインパルス関数hR(t
)により受波される。さらにこれらの信号は、直交位相
検波回路3により直交位相検波される。この直交位相検
波回路3の出力信号は、被検体の種々のビクセル深さに
おけるドツプラ偏移成分を含んだ成分である。このドツ
プラ偏移成分を含んだ信号は、A/D変換器4によりA
/D変換された後、相関手段7に送出される。
Next, the operation of the embodiment configured as described above will be explained with reference to the drawings. 1 and 2, an ultrasonic probe 1 receives an ultrasonic transmission signal f generated by a transmitter/receiver circuit 2.
(t), an ultrasonic pulse f(t)XhT(1) is emitted to a subject (not shown) in a pulse form, that is, according to an impulse function hT(t) (here, * represents a convolution integral). In this case, ultrasonic pulses are emitted at 3 to 8 rates in the same direction, and the ultrasonic pulses f (t)XhT (t)X are scattered by the object and subjected to Doppler shift.
A i ejθi and white noise n (t) are
A pulse-like impulse function hR(t
) is received by. Further, these signals are subjected to quadrature phase detection by a quadrature phase detection circuit 3. The output signal of the quadrature phase detection circuit 3 is a component containing Doppler shift components at various pixel depths of the subject. This signal containing the Doppler shift component is converted into an A/D converter 4.
After being subjected to /D conversion, it is sent to correlation means 7.

そしてこの相関手段7に[n (L) +fT  (t
)、 jθ1 XhT   (t)     +  Σ  Ase  
    l  コ XhR(t)−r (t)なる信号
が入力される。そうすると、まず第2図(a)に示す超
音波送信パルスに対する応答h (B■fT  (t)
XhT  (t)xhR(1)と第2図(b)に示す受
信された位相検波信号r (t)とに基き、相関手段7
により超音波送信パルスh (t)に対しててだけ時間
的に進んだ送信パルスh(t+τ)とr (t)とから
相関出力C(τ) C(r) ’=f r (t) xh (t +r) 
d t−(1)が算出される。
Then, to this correlation means 7, [n (L) +fT (t
), jθ1 XhT (t) + Σ Ase
The signal XhR(t)-r(t) is input. Then, first, the response h (B fT (t)
Based on XhT(t)xhR(1) and the received phase detection signal r(t) shown in FIG. 2(b), the correlation means 7
From the transmitted pulse h(t+τ) and r(t) which are temporally advanced only with respect to the ultrasonic transmitted pulse h(t), the correlation output C(τ) C(r)'=f r (t) xh (t+r)
dt-(1) is calculated.

すなわち具体的には前記相関手段7において、(1)式
をディジタル系で実現するために超音波送信信号h(i
xΔt)と位相検波信号r ((n+i)×Δt)とか
ら相関出力c (nΔt)を算出するような離散的相関
計算が と ・・・ (2) により行われる(ここでNはシステム応答の長さを表わ
す)。すなわち位相検波信号r (t)はシフトレジス
タ12に次々と入力され、位相検波信号が入力される毎
に前記シフトレジスタ12内で右側へとシフI・される
。今、位相検波信号r口+4−r  i(n+4)Xh
T)が入力された時には、図示の如く が計算出力される(k−−N/2〜N/2−1である)
。また平均周波数・分散計算回路22により平均周波数
f+n が計算され、また分散82 が相関手段7から出方される。次に位相検波信号rl+
5が入力される時には、相関手段7がらcl(n+1)
Δt)が出力される。
Specifically, in the correlation means 7, in order to realize equation (1) in a digital system, the ultrasonic transmission signal h(i
A discrete correlation calculation that calculates the correlation output c (nΔt) from the phase detection signal r ((n+i)×Δt) is performed by (2) (where N is the system response (represents length). That is, the phase detection signal r (t) is input into the shift register 12 one after another, and is shifted to the right within the shift register 12 each time a phase detection signal is input. Now, the phase detection signal r mouth + 4 - r i (n + 4) Xh
When T) is input, the calculation is output as shown (k--N/2 to N/2-1)
. Further, the average frequency/variance calculation circuit 22 calculates the average frequency f+n, and the correlation means 7 outputs the variance 82. Next, the phase detection signal rl+
5 is input, the correlation means 7 inputs cl(n+1)
Δt) is output.

このようにして相関出力が第5図に示す周波数分析回路
5内に入力されると、フーリエ変換器21により eXl)  (j2 π ・ nek/N)が計算され
、TVモニタ6に出力される。
When the correlation output is thus input into the frequency analysis circuit 5 shown in FIG.

このように本実施例によれば、相関手段7において、h
 Ct>とr(を十τ)は時間的に同期し且つ波形が類
似しているので、スペクトラム上ではスペクトラム分布
がほぼ同様となり、信号画像血流情報を表示する帯域が
強調される如く計算され、この帯域以外の帯域すなわち
比較的帯域の広いホワイトノイズn (t)の大半が「
(t)とh(t+τ)との積和により除去される。
As described above, according to this embodiment, in the correlation means 7, h
Since Ct> and r (with 10τ) are temporally synchronized and have similar waveforms, their spectral distributions on the spectrum are almost the same, and they are calculated so that the band that displays the signal image blood flow information is emphasized. , most of the white noise n(t) in a band other than this band, that is, a relatively wide band, is ``
It is removed by the sum of products of (t) and h(t+τ).

したがって、位相検波信号r (t)に含まれるノイズ
n (t)は大幅に低減するので、カラーフローマツピ
ング画像のS/N比を向上でき、第3図に示すようにノ
イズのない良好な画像が得られる。
Therefore, the noise n (t) contained in the phase detection signal r (t) is significantly reduced, so the S/N ratio of the color flow mapping image can be improved, and as shown in Fig. 3, a good noise-free image can be obtained. An image is obtained.

なお本発明は上述した実施例に限定されるものではない
。上述した実施例において、カラーフロマツピング像に
ついて説明したが、パルスドツプラ装置についても適用
できるのは勿論である。
Note that the present invention is not limited to the embodiments described above. In the above-mentioned embodiments, a color flow mapping image has been described, but it goes without saying that the present invention can also be applied to a pulsed Doppler apparatus.

また相関手段7の他の一例としては、送信信号のバース
ト長さに応じて信号を積分する方法やディジタルフィル
タ等で実現する方法(フィルタのインパルス応答をシス
テム関数と一致させる)もある。また上述した実施例に
おいては、相関手段7を位相検波回路3の後段に設ける
ようにしたが、例えば相関手段7を位相検波回路3の前
段に設け、位相検波回路3の検波前の超音波受信信号(
高周波信号)に対して相関を行なうようにしても良い。
Other examples of the correlation means 7 include a method of integrating the signal according to the burst length of the transmitted signal, and a method of implementing it using a digital filter (making the impulse response of the filter match the system function). Further, in the above-described embodiment, the correlation means 7 is provided at the rear stage of the phase detection circuit 3, but for example, the correlation means 7 is provided at the front stage of the phase detection circuit 3, and ultrasonic wave reception before detection by the phase detection circuit 3 is performed. signal(
Correlation may also be performed for high frequency signals).

このほか本発明の要旨を逸脱しない範囲で種々変形実施
可能であるのは勿論である。
It goes without saying that various other modifications can be made without departing from the gist of the present invention.

f発明の効果〕 本発明によれば、生体内循環器組織中の血流に対して超
音波探触子から超音波送信信号を送信し、前記血流から
散乱された散乱超音波を受波回路により受波して位相検
波回路によりドプラ偏移成分を検出し、周波数分析回路
により周波数分析して血流情報を表示する超音波診断装
置において、前記受波回路と周波数分析回路との間に前
記受波回路から入力する超音波受信信号と前記超音波探
触子から入力する超音波送信信号とを乗算することによ
り前記超音波受信信号に含まれるノイズ成分を減少させ
るように相関出力する相関手段ので、超音波受信信号に
含まれるノイズは、帯域の比較的広いホワイトノイズで
あるので、前記信号成分帯域以外の帯域におけるノイズ
は、乗算により大幅に低減される。したがって、相関手
段により出力されるノイズは大幅に低減するので、カラ
ーフローマツピング像のS/N比を向上でき、良好な2
次元像が得られる超音波診断装置を提供することができ
る。
[Effects of the Invention] According to the present invention, an ultrasonic transmission signal is transmitted from an ultrasonic probe to a blood flow in a circulatory tissue in a living body, and scattered ultrasound waves scattered from the blood flow are received. In an ultrasonic diagnostic apparatus that receives waves by a circuit, detects Doppler shift components by a phase detection circuit, performs frequency analysis by a frequency analysis circuit, and displays blood flow information, there is a Correlation that outputs a correlation so as to reduce noise components included in the ultrasound reception signal by multiplying the ultrasound reception signal input from the reception circuit and the ultrasound transmission signal input from the ultrasound probe. Therefore, since the noise contained in the ultrasonic reception signal is white noise with a relatively wide band, noise in bands other than the signal component band is significantly reduced by multiplication. Therefore, since the noise output by the correlation means is significantly reduced, the S/N ratio of the color flow mapping image can be improved, and a good two-dimensional image can be obtained.
An ultrasonic diagnostic device that can obtain dimensional images can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超音波診断装置の一実施例を示す
概略ブロック図、第2図は相関手段の動作を示す図、第
3図は相関手段により得られた信号を示す図、第4図は
相関手段の詳細を示す図、第5図は周波数分析回路の詳
細を示す図、第6図は従来の超音波診断装置を示すブロ
ック図、第7図は超音波送受信信号を示す図である。 ■ ・・超音波探触子(プローブ)、2・・送受信回路
、3 ・・直交位F0検波回路、4・・・A/D変換回
路、5・・・周波数分析回路、6・・・TVモニタ、7
・・・相関手段、11・・・システム応答用メモリ、1
2・・・シフトレジスタ、13・・乗算器、14・・・
加算器、21・・・フーリエ変換器、22・・・平均周
波数・分散計算回路。 第6図 出願人代理人 弁理士 鈴江武彦 第7図 (g)  (f)
FIG. 1 is a schematic block diagram showing an embodiment of the ultrasonic diagnostic apparatus according to the present invention, FIG. 2 is a diagram showing the operation of the correlation means, FIG. 3 is a diagram showing signals obtained by the correlation means, and FIG. FIG. 4 is a diagram showing details of the correlation means, FIG. 5 is a diagram showing details of the frequency analysis circuit, FIG. 6 is a block diagram showing a conventional ultrasonic diagnostic device, and FIG. 7 is a diagram showing ultrasonic transmission/reception signals. It is. ■...Ultrasonic probe (probe), 2...Transmission/reception circuit, 3...Quadrature F0 detection circuit, 4...A/D conversion circuit, 5...Frequency analysis circuit, 6...TV monitor, 7
... Correlation means, 11 ... System response memory, 1
2... Shift register, 13... Multiplier, 14...
Adder, 21... Fourier transformer, 22... Average frequency/variance calculation circuit. Figure 6 Applicant's agent Patent attorney Takehiko Suzue Figure 7 (g) (f)

Claims (1)

【特許請求の範囲】[Claims] 生体内循環器組織中の血流に対して超音波探触子から超
音波送信信号を送信し、前記血流から散乱された散乱超
音波を受波回路により受波して位相検波回路によりドプ
ラ偏移成分を検出し、周波数分析回路により周波数分析
して血流情報を表示する超音波診断装置において、前記
受波回路と周波数分析回路との間に前記受波回路から入
力する超音波受信信号と前記超音波探触子から入力する
超音波送信信号とを乗算することにより前記超音波受信
信号に含まれるノイズ成分を減少させるように相関出力
する相関手段を設けたことを特徴とする超音波診断装置
An ultrasonic transmission signal is transmitted from an ultrasound probe to the blood flow in the circulatory tissue of a living body, and the scattered ultrasound waves scattered from the blood flow are received by a wave receiving circuit and Doppler is detected by a phase detection circuit. In an ultrasonic diagnostic apparatus that detects a deviation component, performs frequency analysis using a frequency analysis circuit, and displays blood flow information, an ultrasonic reception signal is input from the reception circuit between the reception circuit and the frequency analysis circuit. and an ultrasonic transmission signal inputted from the ultrasonic probe to thereby reduce a noise component included in the ultrasonic reception signal. Diagnostic equipment.
JP28925288A 1988-11-16 1988-11-16 Ultrasonic diagnostic equipment Expired - Lifetime JPH0712358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28925288A JPH0712358B2 (en) 1988-11-16 1988-11-16 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28925288A JPH0712358B2 (en) 1988-11-16 1988-11-16 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH02134145A true JPH02134145A (en) 1990-05-23
JPH0712358B2 JPH0712358B2 (en) 1995-02-15

Family

ID=17740747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28925288A Expired - Lifetime JPH0712358B2 (en) 1988-11-16 1988-11-16 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JPH0712358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508168A (en) * 2017-02-24 2020-03-19 サニーブルック リサーチ インスティチュート System and method for reducing noise in imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508168A (en) * 2017-02-24 2020-03-19 サニーブルック リサーチ インスティチュート System and method for reducing noise in imaging
JP2022172285A (en) * 2017-02-24 2022-11-15 サニーブルック リサーチ インスティチュート Systems and methods for noise reduction in imaging

Also Published As

Publication number Publication date
JPH0712358B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
EP1501419B1 (en) Contrast-agent enhanced color-flow imaging
KR100742466B1 (en) Method and apparatus for visualization of motion in ultrasound flow imaging using continuous data acquisition
JPH043222B2 (en)
JPH0347A (en) Ultrasonic diagnosing device
KR100352054B1 (en) Ultrasonic imaging method and apparatus
US6599248B1 (en) Method and apparatus for ultrasound diagnostic imaging
JP2004329609A (en) Ultrasonic diagnostic apparatus
JP3281435B2 (en) Ultrasound Doppler diagnostic equipment
JPH02134145A (en) Ultrasonic diagnosis device
JP2823252B2 (en) Ultrasound diagnostic equipment
JP4537754B2 (en) Ultrasonic diagnostic apparatus and pulse Doppler measurement apparatus
JP3352211B2 (en) Ultrasound Doppler diagnostic equipment
JP7118280B2 (en) ULTRASOUND DIAGNOSTIC SYSTEM AND CONTROL METHOD OF ULTRASOUND DIAGNOSTIC SYSTEM
JP2002301071A (en) Ultrasonic imaging method and apparatus
JPH03272751A (en) Ultrasonic diagnostic device
JPH0217044A (en) Ultrasonic doppler blood flowmeter
JPH04276244A (en) Ultrasonic diagnostic apparatus
JP3353512B2 (en) Ultrasound diagnostic equipment
JP4060412B2 (en) Ultrasonic diagnostic equipment
JP3332090B2 (en) Ultrasound diagnostic equipment
JPH07286999A (en) Ultrasonic wave diagnosis device
JP3406096B2 (en) Ultrasound diagnostic equipment
JPH02195948A (en) Ultrasonic doppler diagnostic device
JPH03277351A (en) Ultrasonic diagnostic device
JPS63317142A (en) Ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14