JPH0213372A - Method for purifying superoxide-dismutase - Google Patents

Method for purifying superoxide-dismutase

Info

Publication number
JPH0213372A
JPH0213372A JP16286988A JP16286988A JPH0213372A JP H0213372 A JPH0213372 A JP H0213372A JP 16286988 A JP16286988 A JP 16286988A JP 16286988 A JP16286988 A JP 16286988A JP H0213372 A JPH0213372 A JP H0213372A
Authority
JP
Japan
Prior art keywords
sod
water
synthetic adsorbent
adsorbent
ammonium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16286988A
Other languages
Japanese (ja)
Inventor
Koichi Miyata
宮田 孝一
Shohei Nakamura
昌平 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP16286988A priority Critical patent/JPH0213372A/en
Publication of JPH0213372A publication Critical patent/JPH0213372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To readily separate and purify superoxide.dismutase(SOD) by bringing an SOD-containing solution into contact with a polyacrylic acid ester-based nonionic synthetic adsorbent, adsorbing the SOD on the afore-mentioned adsorbent and eluting the SOD. CONSTITUTION:Water-soluble salts, such as preferably ammonium sulfate, are added to an SOD-containing solution and the resultant solution is brought into contact with a polyacrylic acid ester-based synthetic adsorbent, preferably by a column method to adsorb the SOD on the afore-mentioned adsorbent. The SOD is then eluted with water, etc., to separate and purify the SOD from the SOD-containing solution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スーパーオキサイド・ジスムターゼ(以下S
ODと略す)の新規な分離精製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to superoxide dismutase (hereinafter referred to as S
This invention relates to a novel separation and purification method for OD (abbreviated as OD).

[従来の技術および課題] SODは広く生物界に存在し、酸素分子が一電子還元を
受けて生じるスーパーオキサイド・アニオンラジカル(
Ol)を消去する酵素で、近年、抗炎症剤として種々の
炎症、変形性関節症、リウマチ性関節炎、虚血性疾患、
放射線照射による副作用、およびある種の泌尿器疾患な
どの治療等に薬理効果が認められている。これまでSO
Dは加熱処理、硫酸アンモニウムによる塩析、有機溶媒
による分割、DEAE−セルロース[ジャーナル・オブ
・バイオロジカル・ケミストリー(J、Biol。
[Prior art and issues] SOD exists widely in the biological world, and is a superoxide anion radical (
In recent years, it has been used as an anti-inflammatory agent to treat various inflammations, osteoarthritis, rheumatoid arthritis, ischemic diseases,
It has been recognized to have pharmacological effects in the treatment of side effects caused by radiation irradiation and certain urinary disorders. Until now SO
D is heat treatment, salting out with ammonium sulfate, resolution with organic solvent, DEAE-cellulose [Journal of Biological Chemistry (J, Biol.

Chew、)、 244.6049(1969)]、]
DEAE−セファデックスジャーナル・オブ・バイオケ
ミストリー(J、Biochem、) 、85.139
7(1979)]、]CMCルーロースCM−セファデ
ックス[ジャーナル・オブ・バイオロジカル・ケミスト
リー(J、 Biol、 Chem。
Chew, ), 244.6049 (1969)], ]
DEAE-Sephadex Journal of Biochemistry (J, Biochem), 85.139
7 (1979)],] CMC Luulose CM-Sephadex [Journal of Biological Chemistry (J, Biol, Chem.

) 、248.35g2(1973)]等のイオン交換
樹脂やハイドロキシアパタイト[ジャーナル・オブ・バ
イオロジカル・ケミストリー(J、Biol、Chem
、) 、252゜6421(1977)]を用いて精製
する方法が知られているが、これらの方法では精製工程
中に脱塩操作を必要としたり、吸着や溶出に長時間を要
したりするなどの問題点がある。また、フェニル基やオ
クチル基の結合した架橋アガロースゲルを用いたSOD
の精製方法(特公昭60−12025号)およびブチル
基の結合したポリビニル系合成高分子ゲルを用いたSO
Dの精製方法(特開昭63−49078号)も知られて
いるが、これらはゲルの機械的強度が弱いために高流速
操作が難しい、ゲル粒子が不均一になりやすいために高
分離能が得にくい、高価である、等の問題点がある。さ
らに、銅または亜鉛キレート基を結合させた多孔質不溶
性担体によるSODの精製方法(特公昭60−1202
6号)も搗案されているが、これは担体使用毎に金属キ
レート基を担体に結合させなければならず、そのため操
作が煩雑である、クロマトグラフィーの再現性が得にく
い、等の問題点がある。従って、これら従来のSODの
精製方法は工業的にSODを大量精製するには不向きと
考えられる。本発明者らは、これら問題点を解決するた
め種々研究を重ねた結果、本発明を完成するに至った。
), 248.35g2 (1973)] and hydroxyapatite [Journal of Biological Chemistry (J, Biol, Chem.
, ), 252°6421 (1977)], but these methods require desalting operations during the purification process and require a long time for adsorption and elution. There are problems such as: In addition, SOD using cross-linked agarose gel bonded with phenyl groups and octyl groups
SO using a purification method (Japanese Patent Publication No. 60-12025) and a polyvinyl-based synthetic polymer gel bonded with butyl groups.
A purification method for D (Japanese Patent Application Laid-Open No. 63-49078) is also known, but these methods have difficulty operating at high flow rates due to the weak mechanical strength of the gel, and are difficult to achieve high resolution because the gel particles tend to be non-uniform. There are problems such as being difficult to obtain and expensive. Furthermore, a method for purifying SOD using a porous insoluble carrier bonded with copper or zinc chelate groups (Japanese Patent Publication No. 60-1202
No. 6) has also been proposed, but this requires a metal chelate group to be bonded to the carrier each time the carrier is used, which causes problems such as complicated operations and difficulty in achieving chromatographic reproducibility. There is. Therefore, these conventional SOD purification methods are considered unsuitable for industrially purifying SOD in large quantities. The present inventors have completed various studies to solve these problems, and as a result, have completed the present invention.

[課題を解決する手段] 本発明は、SODを含有する溶液をポリアクリル酸エス
テル系非イオン性合成吸着剤に接触させてSODを吸着
させ、次いで、吸着されたSODを分別溶出することを
特徴とするSODの精製方法を提供するものである。
[Means for Solving the Problems] The present invention is characterized in that a solution containing SOD is brought into contact with a polyacrylic acid ester nonionic synthetic adsorbent to adsorb SOD, and then the adsorbed SOD is fractionally eluted. The present invention provides a method for purifying SOD.

本発明で用いられるポリアクリル酸エステル系非イオン
性合成吸着剤としては、アクリル酸もしくはメタアクリ
ル酸等のアルキル置換アクリル酸のアルキルエステルの
重合物で巨大網状構造を有する多孔性の非イオン性合成
吸着剤が挙げられ、また、アルキルエステル部の一部に
スルホキサイド等が含まれていもよく、さらにエステル
結合のほかに一部アクリル酸アミド結合等を有している
もの、また、前記ポリアクリル酸エステル系の組成が約
50%以上であれば、たとえばアクリロニトリル等との
共重合物でもよい。
The polyacrylic acid ester nonionic synthetic adsorbent used in the present invention is a porous nonionic synthetic adsorbent having a giant network structure made of a polymer of an alkyl ester of alkyl-substituted acrylic acid such as acrylic acid or methacrylic acid. In addition, adsorbents may include a sulfoxide etc. in a part of the alkyl ester moiety, and furthermore, those having a part of acrylic acid amide bond etc. in addition to the ester bond, and the polyacrylic acid As long as the ester composition is about 50% or more, a copolymer with, for example, acrylonitrile or the like may be used.

また、これらの樹脂のうち、非極性のものよりは極性を
もったものがより好ましく使用できる。
Furthermore, among these resins, those with polarity can be used more preferably than those with non-polar ones.

ポリアクリル酸エステルのみからなる合成吸着剤として
は、例えば、商品名ダイヤイオンI(P−IMG、HP
−2MGSHP−3MG(三菱化成工業株式会社製)、
アンバーライトXAD−7、XAD−8(米国ロームア
ンドハース社製)等で市販される吸着剤がある。また、
ポリアクリル酸エステルのアルキルエステル部の一部に
スルホキサイドが含まれている合成吸着剤としては、例
えば、商品名アンバーライトXAD−9(米国ロームア
ンドハース社製)の吸着剤がある。
As a synthetic adsorbent consisting only of polyacrylic acid ester, for example, the product name Diaion I (P-IMG, HP
-2MGSHP-3MG (manufactured by Mitsubishi Chemical Corporation),
There are commercially available adsorbents such as Amberlite XAD-7 and XAD-8 (manufactured by Rohm and Haas, Inc., USA). Also,
An example of a synthetic adsorbent containing a sulfoxide in a part of the alkyl ester moiety of a polyacrylic ester is an adsorbent under the trade name Amberlite XAD-9 (manufactured by Rohm and Haas, Inc., USA).

本発明の対象とするSODとしては、例えば、哺乳動物
由来のSODや微生物由来のSOD等、生物界において
広い範囲で分布しているものを適宜使用でき、特に起源
を限定するものではないが、好ましくは微生物由来のS
ODを用いるとよい。
As the SOD targeted by the present invention, for example, SOD derived from mammals and SOD derived from microorganisms, which are distributed over a wide range in the biological world, can be used as appropriate, and the origin is not particularly limited. Preferably S derived from microorganisms
It is better to use OD.

本発明においてポリアクリル酸エステル系非イオン性合
成吸着剤に吸着させるSOD溶液はあらかじめ、2〜3
Mの塩類を加えてから使用する。
In the present invention, the SOD solution to be adsorbed onto the polyacrylic acid ester nonionic synthetic adsorbent is prepared in advance by 2 to 3
Add M salts before use.

ここで、用いられる塩類は、アンモニウムイオンあるい
は金属イオン等の陽イオンと各種無機酸あるいは有機酸
等の陰イオンよりなる比較的水溶性の高い塩類が挙げら
れ、陽イオンとしてはアンモニウムイオン、ナトリウム
、カリウム、リチウム等のアルカリ金属イオン、マグネ
シウム、カルシウム等のアルカリ土類金属イオンおよび
亜鉛、コノ(ルト等の金属イオンよりなる水溶性塩類が
より好ましい。また、陰イオンとしてはクロルイオン、
硫酸、リン酸、硝酸イオン等の無機酸イオンおよび酢酸
、酒石酸、クエン酸イオン等の有機酸イオンよりなる水
溶性塩類がより好ましく用いられる。
The salts used here include relatively highly water-soluble salts consisting of cations such as ammonium ions or metal ions and anions such as various inorganic acids or organic acids, and the cations include ammonium ions, sodium, Water-soluble salts consisting of alkali metal ions such as potassium and lithium, alkaline earth metal ions such as magnesium and calcium, and metal ions such as zinc and chloride are more preferable. Also, as anions, chloride ions,
Water-soluble salts consisting of inorganic acid ions such as sulfuric acid, phosphoric acid, and nitrate ions and organic acid ions such as acetic acid, tartaric acid, and citrate ions are more preferably used.

水溶性塩類の具体例としては、例えば、硫酸アンモニウ
ム、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム
、リン酸ナトリウム、リン酸カリウム、リン酸アンモニ
ウム、塩化ナトリウム、塩化カリウムおよび塩化アンモ
ニウム等がある。塩類の添加によりpHが5〜9の範囲
外になる場合には、水酸化ナトリウム、炭酸ナトリウム
、塩酸および硫酸等で調整する。
Specific examples of water-soluble salts include ammonium sulfate, sodium sulfate, magnesium sulfate, potassium sulfate, sodium phosphate, potassium phosphate, ammonium phosphate, sodium chloride, potassium chloride, and ammonium chloride. If the pH falls outside the range of 5 to 9 due to the addition of salts, it may be adjusted with sodium hydroxide, sodium carbonate, hydrochloric acid, sulfuric acid, or the like.

SODの該合成吸着剤への吸着は、合成吸着剤を充填し
たカラムを通液して吸着させるカラム法、あるいはSO
D溶液に合成吸着剤を入れ、攪拌しながら吸着させるバ
ッチ法等の方法によって行なわれるが、カラム法を用い
る方がより好ましい。
SOD can be adsorbed onto the synthetic adsorbent by a column method in which the liquid is passed through a column filled with a synthetic adsorbent, or by a column method in which SOD is adsorbed by passing the liquid through a column packed with a synthetic adsorbent, or by
This is carried out by a method such as a batch method in which a synthetic adsorbent is added to solution D and adsorbed while stirring, but it is more preferable to use a column method.

カラム法による吸着の流液の比速度(1時間当りの流量
/吸着剤量)は1以下が望ましい。
The specific velocity of the flowing liquid (flow rate per hour/adsorbent amount) for adsorption by the column method is preferably 1 or less.

吸着したSODの溶出は水あるいは水溶性塩類を含む水
溶液の塩類濃度を段階的に減少させることにより行なう
。また、水溶性の有機溶媒(例えば、メタノール、エタ
ノール、ブタノール、プロパツール、アセトン、酢酸メ
チル、ジオキサン等)あるいは水溶性の有機溶媒に水溶
性塩類を共存させたものでも溶出することができる。こ
こで用いる水溶性塩類は吸着時に共存させてもよい水溶
性塩類と同様のものが挙げられる。
The adsorbed SOD is eluted by stepwise decreasing the salt concentration of water or an aqueous solution containing water-soluble salts. Further, elution can be performed using a water-soluble organic solvent (for example, methanol, ethanol, butanol, propatool, acetone, methyl acetate, dioxane, etc.) or a water-soluble organic solvent in which a water-soluble salt is coexisting. The water-soluble salts used here include the same water-soluble salts that may be allowed to coexist during adsorption.

吸着および溶出操作は約0〜30℃の温度で、さらに好
ましくは約0〜lO℃で行なわれる。使用後の合成吸着
剤は水酸化ナトリウム洗浄、水洗浄をすることにより繰
り返し使用できる。また、本発明の精製法を従来の塩析
法、溶媒分画法、クロマトグラフィー法、さらには膜分
離法等と組み合わせて行なうことももちろん可能である
The adsorption and elution operations are carried out at temperatures of about 0-30°C, more preferably about 0-10°C. After use, the synthetic adsorbent can be used repeatedly by washing with sodium hydroxide and water. Furthermore, it is of course possible to perform the purification method of the present invention in combination with conventional salting-out methods, solvent fractionation methods, chromatography methods, and even membrane separation methods.

本発明の精製法の特徴的利点としては、(1)合成吸着
剤のSOD吸着能か高い。
Characteristic advantages of the purification method of the present invention include (1) the synthetic adsorbent has a high SOD adsorption capacity;

(2)高塩濃度で吸着させるため試料の脱塩や透析等の
前操作が必要でなく、精製工程がかなり短縮できる。
(2) Since the adsorption is carried out at a high salt concentration, pre-operations such as sample desalting and dialysis are not necessary, and the purification process can be considerably shortened.

(3)早い流速が得られ、大量精製することができる。(3) A high flow rate can be obtained and large-scale purification can be performed.

(4)分離能力が高く、SOD比活性を大幅に高めるた
めSODの精製が容易である。
(4) It has high separation ability and greatly increases SOD specific activity, making it easy to purify SOD.

(5)夾雑物の多い粗SOD溶液に直接応用できる。(5) Can be directly applied to crude SOD solutions containing many impurities.

等が挙げられ、本発明は工業的にSODの大量精製法と
して極めて有用である。
etc., and the present invention is extremely useful as a method for industrially mass-purifying SOD.

[実施例] 以下に実施例を示すが、本発明はこれらの実施例の範囲
に限定されるものではない。
[Examples] Examples are shown below, but the present invention is not limited to the scope of these examples.

SODの活性測定法はヒボキサンチンとキサンチンオキ
シダーゼとの反応により生じたスーパーオキサイド(0
?)によるネオテトラゾリウムの還元をSODが阻害す
ることを利用した石黒らの方法[ケミカル・アンド・フ
ァーマシューティカル・ブレティン(Chew、 Ph
arn、 Bull、) 、22.2935(1974
)]に基づいて行なった。蛋白質は280nmにおける
吸光度で表わした。
The SOD activity measurement method uses superoxide (0
? Ishiguro et al.'s method utilizes SOD's inhibition of the reduction of neotetrazolium by ) [Chemical and Pharmaceutical Bulletin (Chew, Ph.
arn, Bull, ), 22.2935 (1974
)]. Protein was expressed as absorbance at 280 nm.

実施例1 セラチア・マルセッセンス(serratiamarc
escens ATCC21074)をアグリカルチュ
ラル・アンド・バイオロジカル・ケミストリー[Agr
ic。
Example 1 Serratia marcescens (serratiamarc)
essens ATCC21074) in Agricultural and Biological Chemistry [Agr.
ic.

Biol、 Chem、、 34.310(1970)
コに記載の方法に従って培養して得られた培養液から遠
心分離法で菌体を集めた。この菌体を水に懸濁し、ダイ
ノミル(スイス、ウィリー・工・バッコーフェン社製)
装置で菌体を破砕した。この破砕液に硫酸アンモニウム
を30%(w/V)i11度に加え溶解後、遠心分離法
でSODを含む透明な上清液を得た。この上清液121
2をあらかじめ30%(W/V)硫酸アンモニウム水(
水酸化ナトリウムでpH7,5に修正)で平衡化したア
ンバーライトXAD−8カラム(直径6C1、長さ36
cz、充填m 112)に500xC/時間の流速で通
過させSODを吸着させた。次いで、カラムを前記30
%(W/V)硫酸アンモニウム水で洗浄した後、水で5
00 m12/時間の流速で溶出しSOD活性のあるフ
ラクションを集めた。この溶出パターンを第1図に示す
。この操作で溶出液の比活性は405(U/A280)
となり、上清液から18.4倍上昇していた。また、活
性収率は96%であった。
Biol, Chem, 34.310 (1970)
Bacterial cells were collected by centrifugation from the culture solution obtained by culturing according to the method described in . The bacterial cells were suspended in water and Dynomil (manufactured by Wiley-Ko. Bachofen, Switzerland) was used.
The bacterial cells were crushed using a device. Ammonium sulfate was added to the disrupted solution at 30% (w/v) i11 degrees to dissolve it, and a clear supernatant containing SOD was obtained by centrifugation. This supernatant liquid 121
2 in advance with 30% (W/V) ammonium sulfate water (
Amberlite XAD-8 column (6C1 diameter, 36mm length) equilibrated with pH 7.5 with sodium hydroxide
cz, packed m 112) at a flow rate of 500xC/hour to adsorb SOD. Then, the column was
% (W/V) After washing with ammonium sulfate water,
It was eluted at a flow rate of 0.00 m12/hr and the fractions with SOD activity were collected. This elution pattern is shown in FIG. With this operation, the specific activity of the eluate was 405 (U/A280)
The concentration was 18.4 times higher than that of the supernatant. Moreover, the activity yield was 96%.

実施例2 実施例1で用いたと同じSODを含む上清液12&をあ
らかじめ30%(W/ V)硫酸アンモニウム水(水酸
化ナトリウムでl)87 、5に修正)で平衡化したア
ンバーライトXAD−8カラム(直径6cm、長さ36
cm、充填量1(2)に5003112/時間の流速で
通過させSODを吸着させた。次いで、カラムを前記3
0%(W/V)硫酸アンモニウム水で洗浄した後、20
%(W/V)硫酸アンモニウム水で500 yQ/時間
の流速で溶出しSOD活性のあるフラクションを集めた
。この溶出パターンを第2図に示す。この溶出液の比活
性は+270(U/A280)で上清液のそれに比べ5
7.7倍上昇していた。この操作における活性収率は8
7%であった。
Example 2 Amberlite XAD-8 in which supernatant liquid 12& containing the same SOD as used in Example 1 was equilibrated in advance with 30% (W/V) ammonium sulfate water (corrected to 87.5 l with sodium hydroxide). Column (diameter 6cm, length 36cm)
cm, filling volume 1 (2) at a flow rate of 5003112/hour to adsorb SOD. Then, the column was
After washing with 0% (W/V) ammonium sulfate water,
% (W/V) ammonium sulfate water at a flow rate of 500 yQ/hour, and a fraction with SOD activity was collected. This elution pattern is shown in FIG. The specific activity of this eluate was +270 (U/A280), which was 5% compared to that of the supernatant.
It had increased 7.7 times. The activity yield in this operation is 8
It was 7%.

実施例3 実施例1で得られたと同じ上清液30f2をあらかじめ
30%(W/V)硫酸アンモニウム水(水酸化ナトリウ
ムでpH7、5に修正)で平衡化したアンバーライトX
AD−8カラム(直径10cm、長さ40c肩、充填量
3g)に1.512/時間の流速で通過させSODを吸
着させた。次いで、カラムを前記30%(W/V)硫酸
アンモニウム水で洗浄した後、20%(w/v)硫酸ア
ンモニウム水で1 、5 Q/待時間流速で溶出しSO
D活性のあるフラクシフンを集めた。この操作における
活性収率は85%で、溶出液の比活性は1400(U/
A280)となり上清液から63.6倍上昇していた。
Example 3 Amberlite
SOD was adsorbed by passing through an AD-8 column (diameter 10 cm, length 40 cm shoulder, packing amount 3 g) at a flow rate of 1.512/hour. Next, the column was washed with the above 30% (w/v) ammonium sulfate water, and then eluted with 20% (w/v) ammonium sulfate water at a flow rate of 1,5 Q/wait time and SO
Fraxifun with D activity was collected. The activity yield in this operation was 85%, and the specific activity of the eluate was 1400 (U/
A280), which was 63.6 times higher than the supernatant.

さらにこの溶出液を限外濾過装置(米国アミコン社製、
濾過膜YM−5、万両分子fi5000)で濃縮および
加水の操作を5回繰り返すことによりその比活性は27
50 (U/A280)となり、上清液から125倍上
昇していた。
Furthermore, this eluate was filtered through an ultrafiltration device (manufactured by Amicon, USA;
By repeating the operation of concentration and adding water 5 times using the filtration membrane YM-5 and Manryo Molecule fi5000), its specific activity was 27.
50 (U/A280), which was 125 times higher than the supernatant.

実施例4 アンバーライトXAD−8の代わりにダイヤイオンHP
−2MGを使用するほかは実施例1と同様の操作を行な
った。この操作で溶出液の比活性は390(U/A 2
80)となり、上清液から17.7倍上昇し、活性収率
は92%であった。
Example 4 Diamond ion HP instead of Amberlight XAD-8
The same operation as in Example 1 was performed except that -2MG was used. With this operation, the specific activity of the eluate was 390 (U/A 2
80), a 17.7-fold increase from the supernatant, and the activity yield was 92%.

実施例5 溶出剤とし“C水の代わりに5%(w/ v)硫酸アン
モニウムを含む40%(v/ v)エタノール水で溶出
するほかは実施例1と同様の操作を行なった。この操作
で溶出液の比活性は365(U/A280)となり上清
液から16.6倍上昇し、活性収率は90%であった。
Example 5 The same procedure as in Example 1 was carried out except that the eluent was 40% (v/v) ethanol water containing 5% (w/v) ammonium sulfate instead of "C" water. The specific activity of the eluate was 365 (U/A280), 16.6 times higher than the supernatant, and the activity yield was 90%.

[発明の効果] 本発明によれば、工業的なSODの大量精製に適した精
製法が提供出来る。
[Effects of the Invention] According to the present invention, a purification method suitable for industrial large-scale purification of SOD can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における水による溶出パター
ンを示す図面、第2図は実施例2における20%(W/
V)硫酸アンモニウム水による溶出パターンを示す図面
である。
FIG. 1 is a diagram showing the elution pattern by water in Example 1 of the present invention, and FIG. 2 is a drawing showing the elution pattern by water in Example 2.
V) It is a drawing showing the elution pattern by ammonium sulfate water.

Claims (1)

【特許請求の範囲】[Claims] (1)スーパーオキサイド・ジスムターゼを含有する溶
液をポリアクリル酸エステル系非イオン性合成吸着剤に
接触させてスーパーオキサイド・ジスムターゼを吸着さ
せ、次いで、吸着されたスーパーオキサイド・ジスムタ
ーゼを分別溶出することを特徴とするスーパーオキサイ
ド・ジスムターゼの精製法。
(1) A solution containing superoxide dismutase is brought into contact with a polyacrylate-based nonionic synthetic adsorbent to adsorb superoxide dismutase, and then the adsorbed superoxide dismutase is fractionally eluted. Characteristic method for purifying superoxide dismutase.
JP16286988A 1988-06-30 1988-06-30 Method for purifying superoxide-dismutase Pending JPH0213372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16286988A JPH0213372A (en) 1988-06-30 1988-06-30 Method for purifying superoxide-dismutase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16286988A JPH0213372A (en) 1988-06-30 1988-06-30 Method for purifying superoxide-dismutase

Publications (1)

Publication Number Publication Date
JPH0213372A true JPH0213372A (en) 1990-01-17

Family

ID=15762811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16286988A Pending JPH0213372A (en) 1988-06-30 1988-06-30 Method for purifying superoxide-dismutase

Country Status (1)

Country Link
JP (1) JPH0213372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664526B2 (en) 2000-11-15 2003-12-16 Ricoh Company, Ltd. Optical information recording employing improved recording power control scheme

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664526B2 (en) 2000-11-15 2003-12-16 Ricoh Company, Ltd. Optical information recording employing improved recording power control scheme
US6781105B2 (en) 2000-11-15 2004-08-24 Ricoh Company, Ltd. Optical information recording employing improved recording power control scheme
US7019273B2 (en) 2000-11-15 2006-03-28 Ricoh Company, Ltd. Optical information recording employing improved recording power control scheme

Similar Documents

Publication Publication Date Title
CA2170604A1 (en) Nucleic acid purification compositions and methods
JP3438735B2 (en) Method for isolating human albumin from supernatant IV, especially IV-4 or corn fraction V or a similar supernatant or fraction
Chaga et al. Isolation and characterization of catalase from Penicillium chrysogenum
JPH0213372A (en) Method for purifying superoxide-dismutase
US6649755B1 (en) Process for preparing acarbose with high purity
US5463035A (en) Process for purifying pentostatin
JPS62246575A (en) Method for purifying pyrroloquinolinequinone
JPS6119485A (en) Adsorbent for protease
EP0059182B1 (en) A process for isolating aminoacylase enzyme from a mammal kidney extract
JPH0147997B2 (en)
JPS61215330A (en) Purification of serrapeptase
JPS61224996A (en) Method of purifying mouse interferon
JPS5929200B2 (en) Manufacturing method for water-insoluble tannin preparations
JPS6120268B2 (en)
JPS5838151B2 (en) Kallikrein purification method
JPS604168A (en) Crystallization of tryptophan
JPH0260316B2 (en)
JPS6127999A (en) Method for purifying glutathione
Miake et al. Affinity Chromatography of NADP-Specific Isocitrate Dehydrogenase from the Pupa of Bombyx mori
JPS6023646B2 (en) Purification method of high purity kallikrein
JP3071029B2 (en) Lysozyme purification and recovery method
JPS5838150B2 (en) Kallikrein purification method
JPS59144799A (en) Purification of coenzyme a
JPS61234792A (en) Purification of mouse interferon
JPH06245786A (en) Method for purifying colominic acid