JPH02133516A - Method for annealing thin amorphous alloy strip - Google Patents

Method for annealing thin amorphous alloy strip

Info

Publication number
JPH02133516A
JPH02133516A JP28582888A JP28582888A JPH02133516A JP H02133516 A JPH02133516 A JP H02133516A JP 28582888 A JP28582888 A JP 28582888A JP 28582888 A JP28582888 A JP 28582888A JP H02133516 A JPH02133516 A JP H02133516A
Authority
JP
Japan
Prior art keywords
amorphous alloy
annealing
alloy ribbon
boron
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28582888A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morito
森戸 延行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28582888A priority Critical patent/JPH02133516A/en
Publication of JPH02133516A publication Critical patent/JPH02133516A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Abstract

PURPOSE:To effectively prevent the deterioration of magnetic characteristics at the time of annealing by annealing the boron-contained iron-based thin amorphous alloy strip having an insulating film consisting of an oxide system on the surface while using a reduced-pressure inert gaseous atmosphere. CONSTITUTION:The boron-contained iron-based thin amorphous alloy strip having the insulating film consisting of an oxide system formed by an anodic oxidation on the surface is annealed to relieve stresses. The reduced-pressure inert gaseous atmosphere is used as the annealing environment at this time. The above-mentioned pressure reduction is preferably executed under 10<-4> to 100Torr. The deterioration in magnetic characteristics, such as iron loss, at the time of annealing is prevented in this way. An alloy contg. 7 to 16atomic% B, 4 to 14% Si, contg. further <=2% C at need, and consisting of the balance substantially Fe or an alloy contg. 7 to 16% B, 4 to 14% Si, 0.5 to 10% Mn or Ni, and further consisting of <=2% C and 65 to 85% Fe at need is adequate as the boron-contained iron-based alloy mentioned above.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、電力用変圧器や回転機等の電気機器に使用
される鉄心のような磁性材料に用いて好適な、表面被膜
を有する非晶質合金薄帯の焼鈍方法に関し、特にかかる
焼鈍のさいに懸念された鉄損特性の劣化を有利に防止し
ようとするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a non-woven fabric having a surface coating suitable for use in magnetic materials such as iron cores used in electrical equipment such as power transformers and rotating machines. The present invention relates to a method of annealing a crystalline alloy ribbon, and is intended to advantageously prevent deterioration of core loss characteristics, which is particularly a concern during such annealing.

(従来の技術) 変圧器や回転機等の電気機器に使用される鉄心材料には
、優れた励磁特性及び鉄損特性が必要とされる。
(Prior Art) Iron core materials used in electrical equipment such as transformers and rotating machines are required to have excellent excitation characteristics and iron loss characteristics.

このため、従来かような特性を満足する素材として、け
い素鋼板、殊に方向性けい素鋼板が多用されてきた。
For this reason, silicon steel sheets, especially grain-oriented silicon steel sheets, have been frequently used as materials satisfying these characteristics.

一方、含ボロンFe基非晶質合金薄帯は、鉄損が低くま
た励磁特性に優れているばかりでなく、飽和磁束密度も
比較的高いことから鉄心材料として必要な特性を満足し
ていることが知られている。
On the other hand, the boron-containing Fe-based amorphous alloy ribbon not only has low iron loss and excellent excitation characteristics, but also has a relatively high saturation magnetic flux density, so it satisfies the characteristics required as an iron core material. It has been known.

さらに結晶化温度も500°C以上であるから、耐熱性
の面からも問題がなく、このことは長期間の実トランス
を用いた実証テストでも確認されている。
Furthermore, since the crystallization temperature is 500°C or higher, there is no problem in terms of heat resistance, and this has been confirmed in long-term demonstration tests using actual transformers.

非晶質合金薄帯の一般的な製造方法である液体急冷法に
おいては、凝固速度を大きくする必要があることから得
られる非晶質合金薄帯の板厚は極めて薄く、通常は50
μm以下である。したがって変圧器などに用いる鉄心を
作製する際には、けい素鋼板以上に多数回の巻き加工や
積み加工が必要となる。
In the liquid quenching method, which is a common manufacturing method for amorphous alloy ribbons, it is necessary to increase the solidification rate, so the thickness of the amorphous alloy ribbons obtained is extremely thin, usually 50 mm.
It is less than μm. Therefore, when producing an iron core for use in transformers, etc., it is necessary to wind and stack the iron core more times than silicon steel sheets.

巻き加工や積み加工の結果、積層鋼板に生じた層間絶縁
抵抗が小さいと、渦電流が生じて鉄損増大の原因となる
。この渦電流損を減少させるために、けい素鋼板では表
面絶縁被膜の存在が不可欠となっている。
If the interlayer insulation resistance generated in the laminated steel sheet is low as a result of winding or stacking, eddy currents will occur, causing increased iron loss. In order to reduce this eddy current loss, it is essential for silicon steel sheets to have a surface insulation coating.

この点、非晶質合金薄帯の場合には、合金自体の電気抵
抗が高く、また適度の表面凹凸のために、ある程度の層
間抵抗が得られることから、鉄心材料として用いる際に
も絶縁被膜は必要ないと考えられたこともあった。
In this regard, in the case of amorphous alloy ribbons, the electrical resistance of the alloy itself is high, and due to the moderate surface roughness, a certain degree of interlayer resistance can be obtained. It was sometimes thought that it was not necessary.

しかしながら非晶質合金」帯の製造技術が向上し、表面
が著しく平滑になったこともあり、広幅非晶質合金薄帯
の場合には表面絶縁被膜の必要性がa、T、 9される
ようになった。さらに変圧器の鉄心材料用非晶質合金と
してはFe−B−Si系及びFe−B51−C系合金が
通しているが、これら合金の耐食性はあまり良好でなく
、室内で放置するだけで発錆するという欠点があった。
However, as the manufacturing technology for amorphous alloy strips has improved and the surface has become significantly smoother, the need for a surface insulating coating is reduced in the case of wide amorphous alloy strips. It became so. In addition, Fe-B-Si and Fe-B51-C alloys are used as amorphous alloys for transformer core materials, but these alloys do not have very good corrosion resistance, and can cause corrosion if left indoors. It had the disadvantage of rusting.

この耐食性を付与する意味からも表面被膜は必要と考え
られる。
The surface coating is also considered necessary for imparting corrosion resistance.

ぞこで特開昭61−227194号及び同63−8(3
889号各公ルーおいては、If品質合金薄帯の表面上
に、陽極処理によってA1□03 、ZrO□、TaO
□等の酸化物系絶縁被膜を施す方法を提案している。殊
にアルミン酸ソーダを含む電解液中での陽極処理により
、非晶質合金薄帯の表面に均一な膜厚で A!、0.を
形成させることが磁気特性および耐食性の点から好まし
いとされている。
Zokode JP-A-61-227194 and JP-A No. 63-8 (3
In No. 889, A1□03, ZrO□, and TaO were applied to the surface of the If quality alloy ribbon by anodizing.
We are proposing a method of applying an oxide-based insulating film such as □. In particular, by anodizing in an electrolyte containing sodium aluminate, a uniform film thickness can be achieved on the surface of the amorphous alloy ribbon.A! , 0. It is said that it is preferable to form this from the viewpoint of magnetic properties and corrosion resistance.

しかしながら、単にアルミン酸ソーダを含む電解液中で
非晶質合金薄帯に電解処理を施しても、被膜形成速度は
極めて遅く、工業的通板速度を確保できなかった。
However, even if an amorphous alloy ribbon is simply electrolytically treated in an electrolytic solution containing sodium aluminate, the film formation rate is extremely slow, and an industrial threading rate cannot be ensured.

一方特開昭63−109194号及び同63−1030
98ルー公報にて提案された、アルミン酸ソーダ及び酒
石酸を含む電解液中での多段陽極処理によれば、被膜形
成速度は高くなり、容易に酸化物表面被膜が得られた。
On the other hand, JP-A-63-109194 and JP-A-63-1030
According to the multi-stage anodization in an electrolytic solution containing sodium aluminate and tartaric acid, which was proposed in the 98-Ru publication, the film formation rate was increased and an oxide surface film was easily obtained.

(発明が解決しようとする課題) 上記のように陽極処理を行って得られた被膜付き非晶質
合金薄帯は、不活性ガス雰囲気中で焼鈍した場合、鉄損
などの磁気特性が不安定となり、時には無処理材に比較
しても悪くなることが判明した。
(Problem to be solved by the invention) When the coated amorphous alloy ribbon obtained by anodizing as described above is annealed in an inert gas atmosphere, magnetic properties such as iron loss become unstable. It was found that the material was sometimes even worse than untreated material.

すなわち非晶質合金薄帯を変圧器用鉄心として使用する
場合、通常巻鉄心又は積鉄心に組み立てた後、磁場焼鈍
を施すことによって内部応力の緩和と磁区の制御とを図
ることが必要なわけであるが、かような焼鈍処理によっ
て磁気特性の著しい劣化が生じたのである。
In other words, when an amorphous alloy ribbon is used as a transformer core, it is necessary to assemble it into a normal wound core or a laminated core and then apply magnetic field annealing to relieve internal stress and control magnetic domains. However, such annealing treatment caused significant deterioration of magnetic properties.

なおこのような磁場焼鈍条件としては、通常Nz又はA
rのような不活性雰囲気で、非晶質合金薄帯が結晶化し
ない範囲の焼鈍温度及び焼鈍時間が採用される。N、ガ
スは、非晶質合金薄帯の焼鈍環境下ではその活性が低い
ことがら静ガス等と同様に用いることができ、以下まと
めて不活性ガスと呼ぶ。
Note that such magnetic field annealing conditions are usually Nz or A
An annealing temperature and annealing time are used in an inert atmosphere such as R and within a range in which the amorphous alloy ribbon does not crystallize. Since N gas has low activity in an environment for annealing an amorphous alloy ribbon, it can be used in the same manner as a static gas, and will hereinafter be collectively referred to as an inert gas.

この発明の目的は、陽極処理によって絶縁被膜を施した
非晶質合金薄帯に焼鈍、特にひずみ取り焼鈍を施しても
、磁気特性の劣化を招くことがない有利な焼鈍方法を提
案することにある。
The purpose of this invention is to propose an advantageous annealing method that does not cause deterioration of magnetic properties even when an amorphous alloy ribbon that has been anodized with an insulating film is subjected to annealing, especially strain relief annealing. be.

(課題を解決するだめの手段) この発明においては、非晶質合金薄帯表面に均一な膜厚
の被膜を形成させる表面被膜処理方法とじて陽)嘔処理
法を採用し、例えばアルミン酸ソーダ及び;酉石酸を含
む電解液中での陽極処理によってAhO:l被膜を形成
させた。
(Means for Solving the Problem) In this invention, a surface coating treatment method is adopted as a surface coating treatment method for forming a coating with a uniform thickness on the surface of an amorphous alloy ribbon. and; An AhO:l film was formed by anodization in an electrolyte containing roolitic acid.

ところがこのようなAlzOi被膜を有するFe−B5
1系非晶質合金薄帯をドライネ活性(N2)ガス雰囲気
中において400″Cで焼鈍したところ、鉄を員特性が
劣化し、同時に薄帯表面にはα−Feの結晶化が生じて
いることが見出された。さらにこのα−Feの結晶は非
晶質合金薄帯の最表面に形成されていること、そしてこ
の表面結晶層の除去によって鉄損特性は回復することが
判明した。
However, Fe-B5 with such an AlzOi coating
When a 1-series amorphous alloy ribbon was annealed at 400"C in a dry-activated (N2) gas atmosphere, the iron properties deteriorated, and at the same time α-Fe crystallization occurred on the ribbon surface. Furthermore, it was found that the α-Fe crystals were formed on the outermost surface of the amorphous alloy ribbon, and that the core loss characteristics were recovered by removing this surface crystal layer.

発明廿らは、かかる陽極処理被膜を有する非晶質合金薄
帯の焼鈍による鉄損劣化の原因について鋭意検討を加え
た結果、次のような新たな知見を得た。
The inventors conducted extensive studies on the cause of core loss deterioration due to annealing of an amorphous alloy ribbon having such an anodized coating, and as a result, they obtained the following new knowledge.

まず陽極処理によって非晶質合金薄帯表面に形成された
Al2O3被膜は、水和酸化物であって、含水量は極め
て多いことがわかった。このため表面被膜中に多量の水
分が含まれていると、焼鈍過程で脱水することに伴い焼
鈍雰囲気中の水蒸気量が増大すると考えられる。
First, it was found that the Al2O3 film formed on the surface of the amorphous alloy ribbon by anodization is a hydrated oxide and has an extremely high water content. Therefore, if a large amount of water is contained in the surface coating, it is thought that the amount of water vapor in the annealing atmosphere will increase due to dehydration during the annealing process.

含ボロン鉄基非晶質合金薄帯は、このように雰囲気中に
水分があると、焼鈍過程において合金中のボロンが選択
的に酸化されて合金表面近傍のボロン量が減少する。そ
の結果、薄帯表面近傍の結晶化温度は顕著に低下するか
ら焼鈍によって表面結晶化が進行し、鉄損は劣化するこ
とになると考えられる。
In the boron-containing iron-based amorphous alloy ribbon, when there is moisture in the atmosphere, boron in the alloy is selectively oxidized during the annealing process, and the amount of boron near the alloy surface is reduced. As a result, the crystallization temperature near the surface of the ribbon decreases markedly, so it is thought that surface crystallization progresses due to annealing, and the iron loss deteriorates.

第1図に、陽極処理によって非晶質合金3帯の表面上に
形成されたAl2O:l被膜の赤外反射スペクトルを示
す。同図から明らかなように、表面被膜には、多量の結
合水合金んでいる。このような表面被膜を有する非晶質
合金薄帯に加熱処理をJJllえながら、赤外反ロ、■
スペクトルの変化を調べたところ、250〜400 ’
Cの温度71′rU域で水分の放出が行われろことが判
明しまた。
FIG. 1 shows the infrared reflection spectrum of the Al2O:l coating formed on the surface of three amorphous alloy bands by anodization. As is clear from the figure, the surface coating contains a large amount of bound water alloy. While heat-treating the amorphous alloy ribbon having such a surface coating, infrared irradiation, ■
When I investigated the change in the spectrum, I found that it was 250-400'
It has also been found that moisture is released in the temperature range of 71'rU.

この温度領域は、Fe−B−3i系非晶質合金の鉄I員
を低下させるために行・う磁場焼鈍の温度域と1.王と
んど重複している。したがってアルミナ陽極処理被膜を
有する非晶質合金薄帯にドライネ活性雰囲気で焼鈍を施
すと、薄帯表面1!水分を多量に含んだ雰囲気にさらさ
れることになる。このことが陽極処理被膜を施されたF
e−B−Si系非晶質合金薄帯にドライN2雰囲気中で
の焼鈍を施した際に生じるα−Fc表面結晶化の原因で
あると考えられる。
This temperature range is the same as the temperature range of magnetic field annealing performed to lower the iron I member of the Fe-B-3i amorphous alloy. King is almost always duplicated. Therefore, when an amorphous alloy ribbon with an alumina anodized coating is annealed in a dryene active atmosphere, the ribbon surface 1! You will be exposed to an atmosphere containing a large amount of moisture. This means that F
This is thought to be the cause of α-Fc surface crystallization that occurs when an e-B-Si-based amorphous alloy ribbon is annealed in a dry N2 atmosphere.

ぞこでこの発明では、このような加熱処理過程で絶縁被
膜から放出される水分によって合金表面層でボロンが選
択酸化され、表面結晶化が生起するのを抑制するために
、焼鈍処理を減圧不活性ガス雰囲気で行うことによって
、放出される水分をVl鈍零罪気がら積欅的に排除する
ことにしたのである。すなわち絶縁被膜中に含有されて
いる水分が加熱過程で放出された場合でも、系外に排出
されてし・まうから、ボロンの選択酸化は生じなくなる
。したがって低ボロン領域は形成されないから、α−1
?c表面結晶化は起こらず、鉄損の劣化もないのである
Therefore, in this invention, in order to prevent boron from being selectively oxidized in the alloy surface layer due to moisture released from the insulating coating during the heat treatment process, and surface crystallization occurs, the annealing treatment is carried out under reduced pressure. By carrying out the process in an active gas atmosphere, it was decided that the released water would be eliminated from the Vl sludge. In other words, even if moisture contained in the insulating film is released during the heating process, it will be discharged outside the system, so that selective oxidation of boron will not occur. Therefore, since a low boron region is not formed, α-1
? c Surface crystallization does not occur and there is no deterioration in iron loss.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、表面に陽極処理によって形成され
た酸化物系絶縁被膜を有Jろ含ボロン鉄基非晶質合金薄
帯の焼鈍に際し、 焼鈍環境として゛式圧不活性ガス雰囲気を用いることを
特徴とする非晶質合金薄帯の焼鈍方法である。
That is, the present invention proposes to use a high-pressure inert gas atmosphere as an annealing environment when annealing a J-containing boron-iron-based amorphous alloy ribbon having an oxide-based insulating film formed on the surface by anodizing. This is a characteristic method for annealing amorphous alloy ribbon.

この発明を適用して好適な含ボロン鉄基非晶質合金とし
ては、Fe−B−Si系の他、Fe−B−3i−C系、
Fe−(Mn、Ni) −B−3i系、Be−(Mri
、Niの−B−3i−C系などがある。
Boron-containing iron-based amorphous alloys to which this invention is applied include Fe-B-Si, Fe-B-3i-C,
Fe-(Mn, Ni)-B-3i system, Be-(Mri
, -B-3i-C system of Ni, etc.

(作 用) 以下この発明の基礎となった実験について説明する。(for production) The experiments that formed the basis of this invention will be explained below.

Feeo B + zSie組成(原子%)の溶融合金
をスリット状の注湯ノズルから、高速回転する温合金製
の冷却用ロール直上に射出して象、速凝固させ、50m
m幅の非晶質合金薄帯を作製した。
The molten alloy with Feeo B + zSie composition (atomic %) was injected from a slit-shaped pouring nozzle directly onto a cooling roll made of a warm alloy that rotates at high speed, and was rapidly solidified.
An amorphous alloy ribbon with a width of m was produced.

次いで3wt%のアルミン酸ナトリウムと1wt%の酒
石酸を含む水溶液を電解液として、液温40°C1電流
密度10 A/dm”で非晶質合金薄帯側を陽極にして
電解処理を施し7たところ、2秒間の電解後には平均膜
7約0708μmのアルミナ被膜が形成された。
Next, an electrolytic treatment was performed using an aqueous solution containing 3 wt% sodium aluminate and 1 wt% tartaric acid as an electrolyte at a liquid temperature of 40° C. and a current density of 10 A/dm with the amorphous alloy ribbon side as the anode. However, after 2 seconds of electrolysis, an alumina film with an average thickness of about 70,708 μm was formed.

このようにして表面被膜を施した非晶質合金薄帯に対し
て、約10” ”Torrの真空中で380°C11時
間の磁場焼鈍を行い、磁気特性を測定したところ、50
 Hz、1.3Tでの鉄1員は0.09W/kgであり
、また100Δ/mでの磁束密度は1.42 Tであっ
た。この焼鈍後の薄帯表面について薄膜X線回折で調べ
たが、ハローパターンのみが観察され、表面結晶化は生
じていなかった。
The amorphous alloy ribbon with the surface coating coated in this way was subjected to magnetic field annealing at 380°C for 11 hours in a vacuum of approximately 10" Torr, and its magnetic properties were measured.
The iron 1 member at Hz and 1.3 T was 0.09 W/kg, and the magnetic flux density at 100 Δ/m was 1.42 T. The surface of this annealed ribbon was examined by thin film X-ray diffraction, but only a halo pattern was observed, and no surface crystallization occurred.

このように、300〜450°Cでの焼鈍を減圧不活性
ガス雰囲気中でおこなうことによって、アルミナ陽極酸
化膜を処理したFe−B−Si系非晶質合金薄帯の鉄損
を劣化させることなく、薄帯の焼鈍を行うことができる
In this way, by performing annealing at 300 to 450°C in a reduced pressure inert gas atmosphere, the iron loss of the Fe-B-Si amorphous alloy ribbon treated with the alumina anodic oxide film can be degraded. The ribbon can be annealed without the need for annealing.

ここに焼鈍雰囲気中の減圧程度は、100 Torr以
下であれば、絶縁被膜からの放出水による悪影づを除く
ことができる。この意味では、10− ’Torr以下
にするのは難しいので、10−4ないし100 Tor
rの範囲が実際的である。
Here, if the degree of pressure reduction in the annealing atmosphere is 100 Torr or less, it is possible to eliminate the negative effects caused by water released from the insulating coating. In this sense, it is difficult to reduce the pressure below 10-' Torr, so the
A range of r is practical.

またFe−B−Si系、Fe−B−Si−C系、Fe−
(Mn、 NiのB−Si系、及びFe−(Mn、Ni
の−B −Si−C系の含ボロン鉄基非晶質合金は、結
晶化温度を高め、鉄損を減少させるためにB、Siをそ
れぞれ7〜16原子%、4〜14原子%含有させること
が好ましく、また磁束密度の低下を抑え、鉄損を減少さ
せるためにMnNiを1種又は2種の合計で0.5〜1
0原子%含有させることが好ましい。Mn、 Niを含
有させる場合にはFeを65〜85原子%の範囲とする
ことが望ましい。
Also, Fe-B-Si system, Fe-B-Si-C system, Fe-
(Mn, Ni B-Si system, and Fe-(Mn, Ni
The -B-Si-C based boron-containing iron-based amorphous alloy contains 7 to 16 at% and 4 to 14 at% of B and Si, respectively, in order to increase the crystallization temperature and reduce iron loss. It is preferable that MnNi be contained in one type or in total of 0.5 to 1 in order to suppress a decrease in magnetic flux density and reduce iron loss.
It is preferable to contain 0 atomic %. When Mn and Ni are contained, it is desirable that Fe be in the range of 65 to 85 at %.

CSよ通常、工業的に利用できる鉄中には、−船釣に含
有されている元素であるが、本発明の対象とする(d性
材料とし−C使用されるFe基非晶實合金中に含有され
る場合は2原子%以下であることが望ましい。2原子%
を超えると、鉄1nが劣化し、また、非晶質形成能も低
下するからである。
CS is an element that is normally contained in iron that can be used industrially, but it is the object of the present invention (as a d-type material, it is an element contained in Fe-based amorphous alloys used in -C). It is desirable that the content is 2 at% or less.
This is because, if it exceeds, iron 1n deteriorates and the ability to form an amorphous state also decreases.

(実施例) 実−施−例−1− FetaB 1osi+zm成(原子%)になる幅5c
m、板厚28μmの非晶質形成能):)・を陽極とし、
34%のアルミン酸ナトリウムと1wt%の酒石酸とを
含む水溶液中において電解処理を施し7た。この際、電
解:夜の7夜温を40°C,電ン禿密度を10^/ d
 m 2としたところ、2秒間の電解後には平均膜]T
7杓0.0871mのアルミナ被膜が形成された。
(Example) Implementation-Example-1- FetaB Width 5c resulting in 1osi+zm composition (atomic %)
m, amorphous formation ability with a plate thickness of 28 μm):) is used as an anode,
Electrolytic treatment was performed in an aqueous solution containing 34% sodium aluminate and 1 wt% tartaric acid. At this time, electrolysis: 7 nights, the temperature was 40°C, and the electric density was 10^/d.
m 2, after 2 seconds of electrolysis the average film]T
An alumina coating of 0.0871 m thick was formed.

次に1ないし3 Torrの減圧下で370°C11時
間の磁場焼鈍を行い、そのま言:冷却した。このように
してjz¥られた絶縁被膜付き非晶質合金薄帯の鉄1、
tlW+:+zs。は0.11W/kgであった。なお
表面層を薄膜X線回折で調べたが、結晶質物質は検出さ
れなかっ1こ。
Next, magnetic field annealing was performed at 370° C. for 11 hours under a reduced pressure of 1 to 3 Torr, followed by cooling. Iron 1, an amorphous alloy ribbon with an insulating coating prepared in this way,
tlW+:+zs. was 0.11 W/kg. The surface layer was examined by thin film X-ray diffraction, but no crystalline material was detected.

災−梅干J2 合金組成をFetJnl B +zSi+oとする他は
、実施例1と同様に処理した。得られた絶縁被膜付き非
晶質合金薄帯の(H場中焼鈍後の鉄出凱3/Soは0.
10組/kgであった。なお薄膜X線回折でも表面層に
結晶質物質は検出されなかった。
Disaster - Umeboshi J2 Processing was carried out in the same manner as in Example 1, except that the alloy composition was changed to FetJnlB +zSi+o. The resulting amorphous alloy ribbon with an insulating coating had an iron yield 3/So of 0.
It was 10 pairs/kg. Furthermore, no crystalline substance was detected in the surface layer by thin film X-ray diffraction.

二U首インリ−よ 合金、組成をFe7sMnzSizB +zSioとす
る他は、実Jia例1と同様に処理した。得られた絶縁
被膜付き非晶質合金薄帯の磁場中焼鈍後の快打1W1i
/s。は0.12←/′kgであった。なお薄膜X線回
折でも表面層に結晶質物質は検出されなかった。
The process was carried out in the same manner as in Example 1, except that the two U-neck inlay alloys had a composition of Fe7sMnzSizB +zSio. The resultant amorphous alloy ribbon with an insulating coating was easily beaten 1W1i after annealing in a magnetic field.
/s. was 0.12←/'kg. Furthermore, no crystalline substance was detected in the surface layer by thin film X-ray diffraction.

実施−1肛 合金組成をFe、tMn+B+zSiqC+ とする他
は実施例1と同様に処理して、坐t′A被膜付き非晶質
合金薄:1シを作った。
Example 1 An amorphous alloy thin film with a t'A coating was prepared in the same manner as in Example 1 except that the alloy composition was changed to Fe, tMn+B+zSiqC+.

次に空気気;克中で380°C21時間の磁場焼1・L
をAi!iしたとごろ1iJnW+:+/soは0.0
9W/kg−であった。なお薄膜X線回折でも表面層に
結晶物質は検出されなかった。
Next, air: Magnetic field baking at 380°C for 21 hours in a 1.L
Ai! Around the time of i, 1iJnW+:+/so is 0.0
It was 9W/kg-. Furthermore, no crystalline substance was detected in the surface layer by thin film X-ray diffraction.

几較朋上 実施例2と同じ合金組成になる非晶質合金薄帯を実施例
1と同様に電j17処理し、得られた絶縁被膜付き非晶
質合金薄帯にドライArガス気流中で磁場中焼鈍(37
0’C11時間、200〇八/m)を施したところ、鉄
1員W + 3 / S。は0.29W/kgまで劣化
した。また藩膜X綿回折により薄帯表面を調べたところ
、α−Feの表面結晶化が611 L’2された。
For comparison, an amorphous alloy ribbon having the same alloy composition as in Example 2 was subjected to electric treatment in the same manner as in Example 1, and the obtained amorphous alloy ribbon with an insulating coating was treated in a dry Ar gas stream. Magnetic field annealing (37
0'C 11 hours, 20008/m), the steel was 1 member W + 3/S. deteriorated to 0.29W/kg. In addition, when the surface of the ribbon was examined by X-ray diffraction, surface crystallization of α-Fe was found to be 611 L'2.

(発明の効果) この発明によれば、陽極処理によって絶縁被膜を施した
非晶質合金薄帯を、鉄損特性の劣化を招くことなく焼鈍
することができる。
(Effects of the Invention) According to the present invention, an amorphous alloy ribbon coated with an insulating film by anodization can be annealed without causing deterioration of core loss characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、陽極処理によって非晶質合金薄帯の表面上に
形成されたA12011被膜の赤外反射スペクトルを示
すグラフである。 第1図
FIG. 1 is a graph showing the infrared reflection spectrum of an A12011 coating formed on the surface of an amorphous alloy ribbon by anodization. Figure 1

Claims (1)

【特許請求の範囲】 1、表面に陽極処理によって形成された酸化物系絶縁被
膜を有する含ボロン鉄基非晶質合金薄帯の焼鈍に際し、 焼鈍環境として減圧不活性ガス雰囲気を用いることを特
徴とする非晶質合金薄帯の焼鈍方法。 2、減圧不活性ガス雰囲気が、10^−^4ないし10
0Torrである請求項1記載の非晶質合金薄帯の焼鈍
方法。 3、含ボロン鉄基非晶質合金が、 B:7〜16原子%、 Si:4〜14原子% を含有し、残部は実質的にFeの組成になるFe−B−
Si系合金である請求項1又は2記載の非晶質合金薄帯
の焼鈍方法。 4、含ボロン鉄基非晶質合金が、 B:7〜16原子%、 Si:4〜14原子%及び C:2原子%以下 を含有し、残部は実質的にFeの組成になるFe−B−
Si−C系合金である請求項1又は2記載の非晶質合金
薄帯の焼鈍方法。 5、含ボロン鉄基非晶質合金が、 B:7〜16原子%、 Si:4〜14原子%、 Mn、Niの1種又は2種の合計:0.5〜10原子%
及び Fe:65〜85原子% からなるFe−(Mn,Ni)−B−Si系合金である
請求項1又は2記載の非晶質合金薄帯の焼鈍方法。 6、含ボロン鉄基非晶質合金が、 B:7〜16原子%、 Si:4〜14原子% C:2原子%以下、 Mn、Niの1種又は2種の合計:0.5〜10原子%
及び Fe:65〜85原子% からなるFe−(Mn,Ni)−B−Si−C系合金で
ある請求項1又は2記載の非晶質合金薄帯の焼鈍方法。
[Claims] 1. A reduced pressure inert gas atmosphere is used as the annealing environment when annealing the boron-containing iron-based amorphous alloy ribbon having an oxide insulating film formed on the surface by anodizing. Annealing method for amorphous alloy ribbon. 2. Reduced pressure inert gas atmosphere is 10^-^4 to 10
The method of annealing an amorphous alloy ribbon according to claim 1, wherein the annealing temperature is 0 Torr. 3. The boron-containing iron-based amorphous alloy contains B: 7 to 16 atom%, Si: 4 to 14 atom%, and the balance is substantially Fe-B-
A method for annealing an amorphous alloy ribbon according to claim 1 or 2, wherein the amorphous alloy ribbon is a Si-based alloy. 4. The boron-containing iron-based amorphous alloy contains: B: 7 to 16 atomic %, Si: 4 to 14 atomic %, and C: 2 atomic % or less, and the remainder is Fe- B-
A method for annealing an amorphous alloy ribbon according to claim 1 or 2, wherein the amorphous alloy ribbon is a Si-C alloy. 5. The boron-containing iron-based amorphous alloy contains: B: 7 to 16 at%, Si: 4 to 14 at%, total of one or two of Mn and Ni: 0.5 to 10 at%
The method of annealing an amorphous alloy ribbon according to claim 1 or 2, wherein the amorphous alloy ribbon is an Fe-(Mn, Ni)-B-Si alloy consisting of 65 to 85 at% of Fe. 6. The boron-containing iron-based amorphous alloy has the following characteristics: B: 7 to 16 atomic %, Si: 4 to 14 atomic %, C: 2 atomic % or less, total of one or two of Mn and Ni: 0.5 to 16 atomic %. 10 atomic%
The method of annealing an amorphous alloy ribbon according to claim 1 or 2, wherein the amorphous alloy ribbon is an Fe-(Mn, Ni)-B-Si-C alloy consisting of 65 to 85 atomic % of Fe.
JP28582888A 1988-11-14 1988-11-14 Method for annealing thin amorphous alloy strip Pending JPH02133516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28582888A JPH02133516A (en) 1988-11-14 1988-11-14 Method for annealing thin amorphous alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28582888A JPH02133516A (en) 1988-11-14 1988-11-14 Method for annealing thin amorphous alloy strip

Publications (1)

Publication Number Publication Date
JPH02133516A true JPH02133516A (en) 1990-05-22

Family

ID=17696608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28582888A Pending JPH02133516A (en) 1988-11-14 1988-11-14 Method for annealing thin amorphous alloy strip

Country Status (1)

Country Link
JP (1) JPH02133516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182678A (en) * 2018-11-17 2019-01-11 临沂正上电子科技有限公司 A kind of improved high-power nanometer crystal alloy magnetic core heat treatment process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182678A (en) * 2018-11-17 2019-01-11 临沂正上电子科技有限公司 A kind of improved high-power nanometer crystal alloy magnetic core heat treatment process

Similar Documents

Publication Publication Date Title
JP2698369B2 (en) Low frequency transformer alloy and low frequency transformer using the same
BRPI0520381B1 (en) non-chromium grain oriented electrical steel sheet insulating film agent.
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP3220362B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP2006045660A (en) Fe-BASED AMORPHOUS ALLOY THIN STRIP AND MAGNETIC CORE
JPH02133517A (en) Method for annealing thin amorphous alloy strip
JPH02133516A (en) Method for annealing thin amorphous alloy strip
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JPS62192560A (en) Amorphous alloy foil for magnetic core excellent in space factor and its production
JP2000104143A (en) Low iron loss grain oriented silicon steel sheet low in coercive force and its production
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JPS627261B2 (en)
JPS6256202B2 (en)
JPH0680168B2 (en) Annealing method for iron-based amorphous alloy ribbon
JPS6387716A (en) Surface treatment of amorphous alloy material
JPH03130321A (en) Production of wound core reduced in core loss
JPH024913A (en) Method for annealing thin band iron-based amorphous alloy
JPH09194948A (en) Production of grain-oriented silicon steel sheet good in insulated coating adhesion
JPH01104746A (en) Iron-base amorphous alloy foil and annealing method therefor
EP4273277A1 (en) Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet
JPH0582373A (en) Manufacture of magnetic core
JPS646250B2 (en)
JPS5873720A (en) Manufacture of high-silicon steel thin band having nonorientation in(100)face
JPS6086242A (en) Single surface coated one directional silicon steel plate and preparation thereof