JPH02133402A - Apparatus for polymerization of thin organic film - Google Patents

Apparatus for polymerization of thin organic film

Info

Publication number
JPH02133402A
JPH02133402A JP28577788A JP28577788A JPH02133402A JP H02133402 A JPH02133402 A JP H02133402A JP 28577788 A JP28577788 A JP 28577788A JP 28577788 A JP28577788 A JP 28577788A JP H02133402 A JPH02133402 A JP H02133402A
Authority
JP
Japan
Prior art keywords
light
lens
substrate
organic material
organic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28577788A
Other languages
Japanese (ja)
Inventor
Noritake Shimanoe
憲剛 島ノ江
Masao Sakashita
坂下 雅雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28577788A priority Critical patent/JPH02133402A/en
Publication of JPH02133402A publication Critical patent/JPH02133402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To improve the crystallinity, orientation, etc., of a thin organic film by providing a light radiating apparatus wherein glass fibers for introducing light and a condenser lens are integrated above a watery layer so as to make it possible to irradiate only a restricted part with light. CONSTITUTION:A water-insoluble organic material (e.g., heptacosa-10,12-diynoic acid is spread on the water surface in a water tank 1 and a bar is moved to adjust the surface tension. Then ultraviolet light is radiated in the vicinity of a substrate 9 through lens-integrated optical fibers 5 which is a light radiating apparatus wherein glass fibers for introducing light and a condenser lens are integrated, thereby polymerizing the organic material to obtain a thin organic film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水面上に展開した有機材料を重合する有機薄膜
重合装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an organic thin film polymerization apparatus for polymerizing organic materials spread on the surface of water.

従来の技術 近年、水面展開膜やこれらを基板に移し取るラングミュ
ア−やプロジェット膜を用いた各種の電子デバイス等が
盛んに研究されている。この中で有機薄膜を絶縁膜や保
護膜等として用いる場合。
BACKGROUND OF THE INVENTION In recent years, various electronic devices using water surface-deployable films and Langmuir and Projet films for transferring these onto substrates have been actively researched. Among these, when organic thin films are used as insulating films, protective films, etc.

一般に有機材料に重合性を付与し、水面展開時や累積後
に光を照射しポリマー化することが知られている。
It is generally known to impart polymerizability to an organic material, and then irradiate it with light during development on the water surface or after accumulation to turn it into a polymer.

水面展開膜の重合は通常、水槽上面にランプを設置し、
水面全体にわたり光を照射し行われる(例えば、D、D
ay et al、 Makuromol、 Chew
、 180(+979)+059) 、 Lかし、この
重合方法では、主に光源からの輻射熱の影響を受は有機
材料が熱膨張し、また水槽全面の光照射により、有機材
料を圧縮するバリヤーや表面張力を検出するプレート付
近も重合し、基板累積時にプレート位置の変動に伴う表
面張力変化や有機材料の流動性の減少に伴うピンホール
が起こり、有機薄膜の結晶性、配向性、バッキング密度
の点で非常に問題がある。
Polymerization of water surface membranes is usually carried out by installing a lamp on the top of the water tank.
It is performed by irradiating light over the entire water surface (for example, D, D
ay et al, Makuromol, Chew
, 180 (+979) +059) , L. In this polymerization method, the organic material expands thermally under the influence of radiant heat from the light source, and the irradiation of the entire surface of the aquarium with light creates a barrier that compresses the organic material. The vicinity of the plate that detects surface tension also polymerizes, and pinholes occur due to changes in surface tension due to changes in plate position during substrate accumulation and decrease in fluidity of the organic material, resulting in changes in the crystallinity, orientation, and backing density of the organic thin film. It's very problematic in that respect.

また、この問題を避けるために遠方より光を導入し、水
面上でミラーにより反射させ照射する方法があるが、複
数のミラーとその駆動袋ユの導入による装置の大型化や
光軸調整に伴う操作性等の問題が生じる。
In order to avoid this problem, there is a method of introducing light from a distance and irradiating it by reflecting it with a mirror on the water surface, but this method requires increasing the size of the device and adjusting the optical axis by introducing multiple mirrors and their driving bag Problems such as operability arise.

発明が解決しようとする課題 本発明は熱による影響がなく限定した部分に光IK(射
し、有機薄膜の結晶性、配向性、バッキング密度を向」
ニさせ、コンパクトで操作性に優れた右機薄膜製造装置
を提供することを目的とする。
Problems to be Solved by the Invention The present invention aims to improve the crystallinity, orientation, and backing density of organic thin films by irradiating light onto a limited area without being affected by heat.
The purpose of the present invention is to provide a thin film manufacturing device that is compact and has excellent operability.

課題を解決するための手段 本発明は、水面上に木に不溶な重合性有機材料(例えば
ジアセチレン、ジエン酸等)を展開し、光照射により重
合薄膜とする有機薄膜製造装置において、累積膜となる
基板周辺部分を光重合するために、光導入用のガラスフ
ァイバと集光レンズを一体化させた光照射装置を水槽上
部に有する有機薄膜製造装置である。
Means for Solving the Problems The present invention is an organic thin film manufacturing apparatus in which a polymerizable organic material insoluble in wood (e.g., diacetylene, dienoic acid, etc.) is spread on a water surface and a polymerized thin film is formed by light irradiation. This is an organic thin film manufacturing apparatus that has a light irradiation device integrated with a glass fiber for introducing light and a condensing lens at the top of the water tank in order to photopolymerize the peripheral portion of the substrate.

レンズ一体型光ファイバとは、通常のファイバでは光が
広がるため、レンズを用い集光、投影するもので、ファ
イバ端面に複数のレンズを納めたカートリッジ式ホルダ
ーを装着したものであり。
A lens-integrated optical fiber uses a lens to focus and project light, since light spreads out in a normal fiber, and a cartridge-type holder containing multiple lenses is attached to the fiber end.

照射面積に応じてホルダ一部分を交換出来る。Part of the holder can be replaced depending on the irradiation area.

作用 本発明によれば、光源と照射箇所を離すことが可俺とな
り、光源からの輻射熱の影響による有機材料の熱膨張を
避けることが出来、また、必要な箇所にのみ限定して照
射するため、水槽全面の光照射時に生じる有機材料を圧
縮するバリヤーや表面張力を検出するプレート付近の重
合がなく、そのため基板累積時に表面張力検出プレート
が基板に引き寄せられ、表面張力値が変動するとゆうこ
とがなく、有機材料の流動性の減少に伴うピンホール発
生も解決される。
According to the present invention, it is possible to separate the light source from the irradiation area, thereby avoiding thermal expansion of the organic material due to the influence of radiant heat from the light source, and irradiating only the necessary areas. , there is no polymerization near the barrier that compresses the organic material or the plate that detects surface tension, which occurs when the entire surface of the aquarium is irradiated with light, and as a result, the surface tension detection plate is attracted to the substrate when the substrate is accumulated, and the surface tension value fluctuates. This also solves the problem of pinhole formation due to decreased fluidity of the organic material.

また1本方法は、水面上でのミラー反射を利用した光導
入方法を用いる場合に生じる装置の大型化(駆動系やミ
ラー等の設備導入)や、複雑な光軸調整は必要とせず、
全面照射に比べ光源を小型化出来る。
In addition, the single method does not require the enlargement of equipment (introducing equipment such as drive systems and mirrors) or complicated optical axis adjustment that would occur when using a light introduction method that uses mirror reflection on the water surface.
The light source can be made smaller compared to full-surface irradiation.

更に圧縮した状態で必要な箇所のみ重合しているので、
累積膜の結晶性、配向性、バッキング密度が向上出来る
Furthermore, since it is polymerized only in the necessary parts in a compressed state,
The crystallinity, orientation, and backing density of the cumulative film can be improved.

以下、さらに詳細に説明する。ガラスファイバは用いる
光の透過性が良いもので、紫外線の場合は石英ガラス製
のものが良い、また、ファイバの口は照射面積に応じて
決めることが出来、長方形状、正方形状、円形状などで
ある。
This will be explained in more detail below. The glass fiber has good transmittance for the light used, and in the case of ultraviolet rays, it is best to use quartz glass.Furthermore, the fiber opening can be determined according to the irradiation area, and can be rectangular, square, circular, etc. It is.

ファイバの口に接続するレンズは第2図で説明すると、
ファイバ口が長方形状の場合は円筒面レンズ及び球面レ
ンズ、円形状の場合は球面レンズを照射面積に応じて数
枚組み合わせて用いたり。
The lens connected to the fiber opening is explained in Figure 2.
If the fiber opening is rectangular, a cylindrical lens and a spherical lens are used, and if it is circular, a combination of several spherical lenses is used depending on the irradiation area.

装置環境に適した焦点距離のレンズを選択出来る。また
、面積を限定するためにスリットをレンズの前後や間に
入れる。これらは一つのホルダーに納められ、必要照射
面積に厄じて取り替えることが出来る。
A lens with a focal length suitable for the equipment environment can be selected. In addition, slits are placed in front of and between the lenses to limit the area. These are housed in one holder and can be replaced depending on the required irradiation area.

光の照射方法は第3図のように一つのファイバで照射し
ても良いし、第4図のように複数のファイバを用いても
良く、第5図のように基板累積中にメニスカス部分に照
射しても良い。
The light irradiation method may be by using one fiber as shown in Fig. 3, or by using multiple fibers as shown in Fig. 4, or by applying light to the meniscus part during substrate accumulation as shown in Fig. 5. It may also be irradiated.

この場合、有機材料を圧縮しているバリヤープレート付
近が重合すると有機材料の流動性が低下するので、水槽
下部からの反射光による影響を少なくするために水槽中
にアルミニウムコーティング板を設ける方が良い(第3
図、第4図)。
In this case, if the area around the barrier plate that compresses the organic material polymerizes, the fluidity of the organic material will decrease, so it is better to install an aluminum coating plate in the tank to reduce the influence of reflected light from the bottom of the tank. (3rd
Fig. 4).

また、メニスカス部への光照射は、レンズにより線状に
集光するが、基板からの反射光による周辺部の重合を避
けるために、水槽中にアルミニウムコーティング反射板
を用いる(第5図)、更に、反射角度φは反射板を設置
しやすいように10〜80°の範囲が望ましい、これら
の装置のうち、光源部分は環境の温度変化を生じさせな
いために水槽から離した方が良い。
In addition, the light irradiation to the meniscus part is focused linearly by a lens, but in order to avoid polymerization of the peripheral part due to light reflected from the substrate, an aluminum coated reflector is used in the water tank (Figure 5). Furthermore, the reflection angle φ is preferably in the range of 10 to 80 degrees to facilitate the installation of the reflector. Among these devices, it is better to keep the light source part away from the aquarium in order to prevent changes in the temperature of the environment.

実施例1 以下、図面を参照して本発明の詳細な説明する。Example 1 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は米袋を全体を示すもので、■は幅10cm、長
さ80cm、深さlc■ポリテトラフロロエチレンでコ
ートされた水槽、2はポリテトラフロロエチレンでコー
トされた表面圧縮バーである。これはモーター7で移動
する。
Figure 1 shows the entire rice bag, where ■ is a width of 10 cm, length is 80 cm, and depth is lc ■ A water tank coated with polytetrafluoroethylene, and 2 is a surface compression bar coated with polytetrafluoroethylene. . This is moved by motor 7.

3は表面圧変化を測定するためのプレートで、表面圧検
出はプレートの重さを測定する電子天秤4を用い、wi
llhe1mt型で行なっている。
3 is a plate for measuring changes in surface pressure, and the surface pressure is detected using an electronic balance 4 that measures the weight of the plate.
This is done using the llhe1mt type.

5は本発明の有機薄膜製造装置に具備する石英ガラス製
ファイバで、コア径220μm 、 4200木を出口
面積IXZc■にしてあり、先端部にスリットと円筒面
レンズ(焦点距離38m■)が付けである。
5 is a quartz glass fiber equipped in the organic thin film manufacturing apparatus of the present invention, which has a core diameter of 220 μm, is made of 4200 mm wood with an exit area IXZc, and has a slit and a cylindrical lens (focal length 38 m) at the tip. be.

また、ファイバ長さは2mで、超高圧水銀灯(25゜W
)6に接続してあり、水槽とは別の部屋に設21.周囲
の温度変化が生じないようにしである。
The fiber length is 2 m, and the ultra-high pressure mercury lamp (25°W)
) 6 and installed in a separate room from the aquarium 21. This is to prevent ambient temperature changes from occurring.

8はアルミニウムコーティング反射板で水槽下部からの
反射による周辺部の重合を防ぐものである。
Reference numeral 8 denotes an aluminum coated reflector that prevents polymerization of the surrounding area due to reflection from the bottom of the tank.

以下1本装置を用いた有機薄膜の製造例を説明する。An example of manufacturing an organic thin film using one apparatus will be described below.

まず、ヘプタコサ10.+2ジイン酸をクロロホルムに
溶解し、濃度1.0g/見の展開溶媒を調整し。
First, Heptacosa 10. +2 diyic acid was dissolved in chloroform to prepare a developing solvent with a concentration of 1.0 g/ml.

この溶液を18℃で2.5XIO−4MのCdCl2を
含む500dの水溶液上に少量滴下し、クロロホルムを
蒸発させた後、バー2を移動させ表面張力を20dyn
/amに調整した。
A small amount of this solution was dropped onto a 500d aqueous solution containing 2.5XIO-4M CdCl2 at 18°C, and after evaporating the chloroform, the bar 2 was moved to lower the surface tension by 20dyn.
/am.

表面張力を一定に保ちながら、紫外線をファイバとレン
ズを通し、基板伺近の約8c層2に30厘W/c112
.1時間照射した。
While keeping the surface tension constant, ultraviolet rays are passed through the fiber and lens to the approximately 8c layer 2 near the substrate at 30 W/c112.
.. It was irradiated for 1 hour.

この膜を表面張力を20dyn/c厘に保ちながら、金
電極を設けたSi基板に、[■/■inの基板スピード
でト下させ3層移し取った。この膜の上に金電極を蒸着
(面積1c重2)し、抵抗を測定したところ1016Ω
・effiであった。
While maintaining the surface tension at about 20 dyn/c, this film was lowered onto a Si substrate provided with a gold electrode at a substrate speed of [■/■in] to transfer three layers. A gold electrode was deposited on top of this film (area 1c weight 2), and the resistance was measured to be 1016Ω.
・It was effi.

実施例2 ヘプタコサ10,12ジイン酸をクロロホルムに溶解し
濃度1.0g/41の展開溶媒を調整し、この溶液を1
8℃テ2 、5 X 10−’ M (F) CdC’
l 2を含む500d (7)水溶液上に少量滴下し、
クロロホルムを蒸発させた後、バー2を移動させ表面張
力を20dyn/c■に調整した。
Example 2 Heptacosa 10,12 diynoic acid was dissolved in chloroform to prepare a developing solvent with a concentration of 1.0 g/41, and this solution was
8℃Te2, 5 x 10-' M (F) CdC'
500d containing l2 (7) Drop a small amount onto the aqueous solution,
After chloroform was evaporated, the bar 2 was moved to adjust the surface tension to 20 dyn/c.

表面張力を一定に保ちながら、紫外線をファイバとレン
ズを通し、基板付近のメニスカスに、幅1aps、長さ
2C■で45@から照射し、この状態で金電極を設けた
31基板に、1+*m/膳inの基板スピードで上下さ
せ3層移し取った。この膜の上に金電極を7L7’jC
面積IC112)L、抵抗を測定したところ1016Ω
・cllであった・ 比較例 ヘプタコサ+0 、12ジイン酸をクロロホルムに溶解
し、濃度1.0g/ lの展開溶媒を調整し、この溶液
ヲ18℃テ2 、5 X I O−’ M ノCd(J
 2を含ム500m(7)水溶液」−に少量滴下し、ク
ロロホルムを蒸発させた後、バー2を移動させ表面張力
を20db整した。
While keeping the surface tension constant, ultraviolet rays were passed through the fiber and lens to irradiate the meniscus near the substrate from 45@ with a width of 1 aps and a length of 2 C. In this state, the 31 substrate with gold electrodes was exposed to 1+ Three layers were transferred by moving the substrate up and down at a substrate speed of m/m/in. A gold electrode is placed on top of this film.
Area IC112)L, resistance measured 1016Ω
Comparative Example: Heptacosa+0, 12 diyic acid was dissolved in chloroform, a developing solvent with a concentration of 1.0 g/l was prepared, and this solution was heated to 18° C. (J
After the chloroform was evaporated, the bar 2 was moved to adjust the surface tension by 20 db.

表面張力を一定に保ちながら、水面上部の超高圧水銀灯
から紫外線を30111I/c112で1時間全面に照
射した。この時、温度上昇(2℃)による膜面積の増大
が観測された。
While keeping the surface tension constant, the entire surface was irradiated with ultraviolet rays of 30111I/c112 for 1 hour from an ultra-high pressure mercury lamp above the water surface. At this time, an increase in membrane area due to temperature rise (2° C.) was observed.

この膜を表面張力を20dyn/cmに保ちながら、金
電極を設けたSi基板に、1■/■inの基板スピード
で上下させ3層移し取った。
While maintaining the surface tension at 20 dyn/cm, three layers of this film were transferred onto a Si substrate provided with a gold electrode by moving it up and down at a substrate speed of 1 inch/inch.

この時、表面張力を測定しているプレートが累積基板方
向に引き寄せられ、表面張力値が±5dマn/c■で変
化し、累積膜には縞模様が観察された。この膜の上に金
電極を蒸着(面積1c■2)し、抵抗を測定したところ
108〜1014Ω・0層の範囲でばらつきがあった。
At this time, the plate on which the surface tension was being measured was drawn toward the cumulative substrate, the surface tension value changed by ±5 dman/c, and a striped pattern was observed on the cumulative film. A gold electrode was deposited on this film (area: 1 cm x 2), and when the resistance was measured, there was a variation in the range of 10 8 to 10 14 Ω/0 layer.

発明の効果 本発明によれば、熱による影響がなく必要な箇所のみ限
定して光重合し、有IafiJ膜の結晶性、配向性、バ
ッキング密度を向上させ、コンパクトで操作性に優れた
有機薄膜製造装置を提供することか出来る。
Effects of the Invention According to the present invention, photopolymerization is performed only in the necessary areas without being affected by heat, improving the crystallinity, orientation, and backing density of the IafiJ film, and producing an organic thin film that is compact and has excellent operability. We can provide manufacturing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示すもので第1図は装
置全体を示す斜視図、fiZ図はファイバ先端を模型的
に示した図、第3図及び第4図は木簡照射を示した図(
(d)は立面図、(b)はモ面図)、第5図はメニスカ
ス部分への照射を示した説明図である。 l・・・水M、2・・ψバー、3・・・プレート、4番
・・電子天秤、5・命・集光レンズ一体型光ファイバ、
6・・・超高圧水銀灯、7・・・モーター、8・・・ア
ルミニウムコーチインク反射板、9・・ψ基板、lO・
・参上下モーター、11・一番フアイ/<、121+ 
$ 6スリツト、13−・・レンズ、14・・φ照射面
積、 15・・・水槽底面。
The drawings all show embodiments of the present invention; Fig. 1 is a perspective view of the entire device, the fiZ drawing schematically shows the fiber tip, and Figs. 3 and 4 show wooden tablet irradiation. figure(
(d) is an elevation view, (b) is a top view), and FIG. 5 is an explanatory view showing irradiation to the meniscus portion. l... Water M, 2... ψ bar, 3... Plate, No. 4... Electronic balance, 5. Life - Optical fiber with integrated condensing lens,
6...Ultra high pressure mercury lamp, 7...Motor, 8...Aluminum coach ink reflector, 9...ψ substrate, lO.
・Reference up and down motor, 11・Ichiban Huai/<, 121+
$6 slit, 13-...lens, 14...φ irradiation area, 15...bottom of the aquarium.

Claims (1)

【特許請求の範囲】[Claims]  水面上に有機材料を展開し光照射により重合薄膜とす
る有機薄膜製造装置において、レンズ一体化光ファイバ
により水面上の一部分の光照射を可能とする有機薄膜重
合装置。
An organic thin film production device that spreads an organic material on a water surface and forms a polymerized thin film by irradiating it with light.This organic thin film polymerization device enables light irradiation of a portion of the water surface using a lens-integrated optical fiber.
JP28577788A 1988-11-14 1988-11-14 Apparatus for polymerization of thin organic film Pending JPH02133402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28577788A JPH02133402A (en) 1988-11-14 1988-11-14 Apparatus for polymerization of thin organic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28577788A JPH02133402A (en) 1988-11-14 1988-11-14 Apparatus for polymerization of thin organic film

Publications (1)

Publication Number Publication Date
JPH02133402A true JPH02133402A (en) 1990-05-22

Family

ID=17695931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28577788A Pending JPH02133402A (en) 1988-11-14 1988-11-14 Apparatus for polymerization of thin organic film

Country Status (1)

Country Link
JP (1) JPH02133402A (en)

Similar Documents

Publication Publication Date Title
US11280944B2 (en) Optical element
US20030227100A1 (en) Solidifiable tunable liquid microlens
WO2011037323A2 (en) High ultraviolet transmitting double-layer wire grid polarizer for fabricating photo-alignment layer and fabrication method thereof
US20030143343A1 (en) Wall-structured body and process for manufacturing the same
CN1326392A (en) Laser ablated feature formation device
JPS6027595B2 (en) Laser beam recording method
US20120013987A1 (en) Light scattering sheet and method for producing the same
KR860001860B1 (en) Preparation method for photo-sensitive organic thin layer
TW200401684A (en) Method and device for removal of thin-film
JP2012505544A (en) Energy source for curing in imprint lithography systems
CN110412808A (en) A kind of light beam deflector part, preparation method and light beam deviation detection device
JPH0618739A (en) Production of waveguide
JP4995739B2 (en) How to create an uneven structure of a polymer
CN109891279A (en) The manufacturing method and optical article of optical article
CN105264408A (en) Phase difference film, method for manufacturing phase difference film, polarizing plate and image display device which use phase difference film, and 3d image display system using image display device
JPH02133402A (en) Apparatus for polymerization of thin organic film
Okoshi Micro/nano-suction cup structure of silicone rubber fabricated by ArF excimer laser
KR20060123258A (en) Collimator
JP2003534942A (en) Method for forming a layer containing at least a polymer material
JP3504683B2 (en) Method of forming lens region, lens and lens array plate
KR102272003B1 (en) A method for forming patterns on a substrate and a substrate prepared by the method
Sakurai et al. Microlens array fabrication based on polymer electrodeposition
Matsumaru et al. Development of EUV chemically amplified resist which has novel protecting group
KR890702083A (en) Volume-limited targets and their mounting methods to minimize drop volume
JP2019101226A (en) Polarized light irradiation device, and, method of manufacturing substrate with photosensitive film