JPH02133325A - Method for molding optical element - Google Patents

Method for molding optical element

Info

Publication number
JPH02133325A
JPH02133325A JP28535588A JP28535588A JPH02133325A JP H02133325 A JPH02133325 A JP H02133325A JP 28535588 A JP28535588 A JP 28535588A JP 28535588 A JP28535588 A JP 28535588A JP H02133325 A JPH02133325 A JP H02133325A
Authority
JP
Japan
Prior art keywords
glass material
molding
temperature
optical element
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28535588A
Other languages
Japanese (ja)
Other versions
JP2583592B2 (en
Inventor
Toshimasa Honda
本多 利正
Mitsuo Goto
光夫 後藤
Eiji Kawamura
川村 英司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63285355A priority Critical patent/JP2583592B2/en
Publication of JPH02133325A publication Critical patent/JPH02133325A/en
Application granted granted Critical
Publication of JP2583592B2 publication Critical patent/JP2583592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To eliminate sink marks and to provide the optical element usable as it is to optical applications by heating the optical element in such a manner that the thin part of a glass part attains the temp. higher than the temp. in the thick part at the time of press-molding the optical element by using a metallic mold for molding. CONSTITUTION:The glass stock 3 on a transporting tray 14 is moved into a heating furnace 81 by moving and controlling a transporting arm 5 and is heated and softened to the viscosity at which the stock can be molded. The front ends of an upper temp. control rod 82 and a lower temp. control rod 83 are then brought into contact (or proximity) with the front and rear glass surfaces of the glass stock 3 and the central thick part of the glass stock 3 is controlled to the temp. lower than the temp. in the peripheral thin part. The transporting arm 5 is then moved into a molding section chamber where the glass stock is pressed and molded by the upper mold and the lower mold, by which the optical element is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス等の光学素材を加熱軟化しつつ加圧成
形する光学素子の成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for molding an optical element in which an optical material such as glass is pressure molded while being heated and softened.

〔従来の技術〕[Conventional technology]

従来、ガラス素材を加熱軟化した後、成形用金型により
光学素子を押圧成形する方法にあっては、所望の光学素
子の形状に対応した成形面を有する一対の成形用金型が
用いられいてる。
Conventionally, in a method of heating and softening a glass material and then press-molding an optical element using a mold, a pair of molds having molding surfaces corresponding to the shape of the desired optical element are used. .

又、特願昭62−306509号には、一方の成形用金
型を輪帯状に分割構成し、分割された部分を別々に温度
設定しつつ光学素子を押圧成形する方法が開示されてい
る。
Further, Japanese Patent Application No. 62-306509 discloses a method in which one of the molding molds is divided into annular zones, and an optical element is press-molded while separately setting the temperature of the divided portions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、成形用金型によりガラス素材を押圧して光学素
子を成形する場合、成形用金型はガラス転移点程度、ガ
ラス素材は軟化点程度に加熱される。
Generally, when pressing a glass material with a molding die to mold an optical element, the molding die is heated to about the glass transition point and the glass material is heated to about the softening point.

よって、上記所望の成形面を有する一対の成形用金型に
より光学素子を成形する方法において、肉厚差の大きい
ガラス素材を用いて成形する場合、押圧成形中に、ガラ
ス素材の一部が先に固化して、全押圧力を固化した部分
で受けてしまい、まだ十分に固化していない温度の高い
部分に圧力が加わらず、成形が完了した時点にて、温度
が高く圧力がかからなかった部分がヒケとなり所定の形
状に反転しないという問題点が生じていた。
Therefore, in the above-mentioned method of molding an optical element using a pair of molding molds having desired molding surfaces, when molding is performed using glass materials with a large difference in wall thickness, part of the glass material may be formed first during press molding. The solidified part receives all the pressing force, and no pressure is applied to the high temperature part that has not yet sufficiently solidified, and when the molding is completed, the temperature is high and no pressure is applied. A problem has arisen in that the parts that have been removed become sinks and do not turn over to a predetermined shape.

第17図及び第18図は、上記状態を示すもので、まず
ガラス素材は第17図aで示すように全体が温度分布の
ない状態で均一に加熱される。その後、かかるガラス素
材は、ガラス素材より温度の低い成形用金型にて押圧さ
れると第17図すで示すように、薄肉部は低温となり固
化が進むが厚肉部は高温状態が維持される。即ち、薄肉
部が固化してその後押圧成形できなくなった時点におい
ても高温状態にあるので、かかる状態でガラス素材が常
温になる(冷却される)と、第17図Cで示すように厚
肉部においてヒケが生ずることとなる。第18図は、上
記ガラス素材の内部温度の経時変化を示すもので、縦軸
にガラス素材の温度T、横軸に時間tをとり、ガラス素
材の断面位置におけるガラス面中心部j、厚肉中心部に
、薄肉中心部1c第17図a参照)の温度を表している
。即ち、t0時点でガラス素材のに点、1点、j点は等
温度に加熱軟化されているが、成形用金型により押圧さ
れると温度が低下してt3時点でガラス素材は変形する
。その後、1.時点になると2点の固化が進み、押圧し
ても変形しなくなっているが、k点は完全に固化してい
ない、即ち、k点においては、かかる状態にあっても温
度が高くガラス素材が完全に固化するまでの収縮量が2
点よりも多いのでヒケが生ずることとなる(第17図C
参照)。
FIGS. 17 and 18 show the above state. First, the glass material is heated uniformly throughout without temperature distribution, as shown in FIG. 17a. Thereafter, when this glass material is pressed with a molding die whose temperature is lower than that of the glass material, as shown in FIG. 17, the thin wall portion becomes cold and solidification progresses, but the thick wall portion remains at a high temperature. Ru. In other words, even when the thin-walled part solidifies and cannot be press-formed after that, it is still in a high-temperature state, so when the glass material reaches room temperature (cools down) in this state, the thick-walled part forms as shown in FIG. 17C. This will cause sink marks. FIG. 18 shows the change in the internal temperature of the glass material over time, with the temperature T of the glass material on the vertical axis and the time t on the horizontal axis, and the center part j of the glass surface and the thick wall at the cross-sectional position of the glass material. The temperature of the thin center portion 1c (see FIG. 17a) is shown in the center. That is, at time t0, points 1, 1, and j of the glass material are heated and softened to the same temperature, but when pressed by a molding die, the temperature decreases and the glass material deforms at time t3. After that, 1. At this point, the two points have solidified and no longer deform when pressed, but point k has not completely solidified. The amount of shrinkage until completely solidified is 2
Since there are more points than dots, sink marks will occur (Fig. 17C
reference).

また、特願昭62−306509号における光学素子を
成形する方法にあっては、一方の成形用金型を輪帯状に
分割して構成し、分割された輪帯状の金型をそれぞれ別
々に温度調整してガラス素材の薄肉部と厚肉を個別に押
圧成形するので光学素子にヒケは生じないが、輪帯状に
分割された成形用金型により押圧されたガラス面には断
続部(段部)が生ずるので、上記ガラス面に研磨加工を
施さなければならず、成形用金型により押圧成形された
光学素子を直ちに光学的用途に用いることができない問
題点があった。
Furthermore, in the method of molding an optical element in Japanese Patent Application No. 62-306509, one molding mold is divided into annular zones, and each of the divided annular molds is heated separately. Since the thin and thick parts of the glass material are adjusted and press-molded separately, there will be no sink marks on the optical element. ), the glass surface must be polished, and there is a problem in that the optical element press-molded by the molding die cannot be immediately used for optical purposes.

本発明は、上記問題点に鑑みてなされたものであって、
ヒケがなくかつそのまま光学的用途に用いることができ
る光学素子の成形方法を提供することを目的とする。
The present invention has been made in view of the above problems, and includes:
It is an object of the present invention to provide a method for molding an optical element that is free from sink marks and can be used as is for optical purposes.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の光学素子の成形方
法にあっては、ガラス素材を加熱軟化した後、成形用金
型により押圧成形する光学素子の成形方法において、ガ
ラス素材を加熱軟化するにあたり、上記ガラス素材の厚
肉部より薄肉部が高温度となるように加熱している。
In order to achieve the above object, in the optical element molding method of the present invention, the glass material is heated and softened, and then the glass material is press-molded using a molding die. At this time, the glass material is heated so that the thinner part has a higher temperature than the thicker part.

〔作用] 上記構成の光学素子の成形方法によれば、ガラス素材を
加熱軟化するにあたり、ガラス素材の薄肉部の温度を厚
肉部の温度より高くすることにより、次の工程である成
形用金型でガラス素材を押圧成形した場合の、反転完了
時点にてガラス素材内部の温度差が無くなる。従って熱
ダマリ部分が無くなり、成形完了したレンズにヒケが発
生しなくなる。
[Function] According to the method for molding an optical element having the above configuration, when heating and softening the glass material, the temperature of the thin part of the glass material is made higher than the temperature of the thick part, so that the molding metal used in the next step is heated. When a glass material is press-molded using a mold, the temperature difference inside the glass material disappears when the reversal is completed. Therefore, there are no heat spots and no sink marks occur on the molded lens.

〔実施例] 以下、図面を用いて本発明の実施例を詳細に説明する。〔Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

(第1実施例) 第1図は、本発明に係る光学素子の成形方法の第1実施
例を実施するための成形装置1を示す断面図、第2図は
、成形装置lにおける加熱室2を示す断面図であり、本
実施例は中央部の肉厚が厚い凸形状のガラス素子を加圧
成形する方法について例示しである。
(First Example) FIG. 1 is a sectional view showing a molding apparatus 1 for carrying out a first example of the method for molding an optical element according to the present invention, and FIG. 2 is a heating chamber 2 in the molding apparatus l. This embodiment is an example of a method for pressure forming a convex glass element with a thick central portion.

成形装置1は、成形されるガラス素材3や成形の完了し
た光学素子(球面レンズや非球面レンズ等)を搬送する
ための搬送室部4と、搬送室部4の搬送アーム5を介し
て搬送されるガラス素材3を押圧成形するための成形室
部6と、上記搬送室部4と成形室部6との間に配置構成
された加熱室部2等より構成しである。
The molding device 1 includes a transport chamber 4 for transporting glass material 3 to be molded and optical elements (spherical lenses, aspheric lenses, etc.) that have been molded, and a transport arm 5 of the transport chamber 4 for transporting the glass material 3 and the optical elements (spherical lenses, aspheric lenses, etc.) that have been molded. The molding chamber 6 includes a molding chamber 6 for press-molding the glass material 3, and a heating chamber 2 disposed between the transfer chamber 4 and the molding chamber 6.

搬送室部4及び成形室部6は、それぞれ搬送室フレーム
8.成形室フレーム9にて密閉構成されており、各室部
4.6は装置本体架台10にて支持構成されている。
The transfer chamber section 4 and the molding chamber section 6 each have a transfer chamber frame 8. The molding chamber is sealed by a frame 9, and each chamber 4.6 is supported by a device main frame 10.

搬送室部4は、上記搬送室フレーム8と、搬送機構部1
1と、搬送室フレーム8の上部に立設状に固定保持され
た待機基121回収塔13と、搬送室フレーム8の下部
に配備され、上記待機基12、回収塔13とそれぞれ協
働して回収塔13内の搬送皿(ガラス素材3を載置した
)14を躍送アーム5上にセットしたり、成形の完了し
た光学素子を載置した搬送皿14を回収塔13内に回収
させたりするための特機部アクチエエータ15及び回収
部アクチュエータ16とより構成しである。
The transfer chamber section 4 includes the transfer chamber frame 8 and the transfer mechanism section 1.
1, a standby base 121 fixedly held in an upright manner on the top of the transfer chamber frame 8, a recovery tower 13, and a standby base 121 disposed at the bottom of the transfer chamber frame 8, cooperating with the standby base 12 and the recovery tower 13, respectively. The transport tray 14 (on which the glass material 3 is placed) in the collection tower 13 is set on the moving arm 5, and the transport tray 14 on which the molded optical element is placed is collected into the collection tower 13. It is composed of a special equipment section actuator 15 and a recovery section actuator 16.

搬送機構部11は、搬送アーム5上の所定位置にセット
されたガラス素材3を加熱室部2内や成形室部6内に搬
入したり、成形の完了した成形品(光学素子)を搬出し
たりするためのもので、搬送アーム5.II送搬機本体
部17びモータ等の駆動装置18等より構成しである。
The transport mechanism unit 11 transports the glass material 3 set at a predetermined position on the transport arm 5 into the heating chamber 2 or the molding chamber 6, and transports the molded product (optical element) that has been molded. The transfer arm 5. It is composed of a II transporter main body 17, a drive device 18 such as a motor, and the like.

*送アーム5は、第3図にて示すごとく、駆動装置18
を介して回転駆動されるボールねじ軸19.ボールねじ
軸19に螺合するボールハウジング20及び一対のリニ
アスライド21を介して第1図における左右方向(矢印
22方向)に移動制御自在に構成しである。搬送アーム
5の先端部には、第4図にて示すように搬送皿14下面
部のテーパ面部14aと嵌合するテーパ状の嵌合部23
と、上記各アクチュエータ15.16における待機軸2
51回収軸26の軸径よりも大径の孔27とが形設して
あり、嵌合部23と孔27とは同心にて加工形成しであ
る。
*The feed arm 5 is connected to the drive device 18 as shown in FIG.
A ball screw shaft 19. It is configured to be able to freely control movement in the left-right direction (direction of arrow 22) in FIG. 1 via a ball housing 20 screwed onto a ball screw shaft 19 and a pair of linear slides 21. At the tip of the transfer arm 5, as shown in FIG.
and the standby shaft 2 in each of the actuators 15 and 16 above.
51 is formed with a hole 27 having a larger diameter than the shaft diameter of the collection shaft 26, and the fitting portion 23 and the hole 27 are formed concentrically.

待機基12は、その内部に、成形されるガラス素材3を
載置した(セツティングした)搬送皿!4を複数個収納
、支持できるように設定しであるとともに、内部に収納
、支持した搬送皿14を1個ずつ下方位置の搬送アーム
5上に嵌合、セットしうるように構成しである。第5図
に示すように待機基12の塔本体28内には、モータ2
9、タイミングベルト30,31.32を介して回転駆
動される2本のチェーン33.34が垂直にかつ平行に
配設してあり、モータ29を介して各チェーン33.3
4を矢印35方向に同期回転させることにより、各チェ
ーン33.34に固設した搬送皿受は部36に支持され
た搬送皿14を1個づつ下方向に搬送しうるように設定
構成しである。
The standby base 12 is a transport tray on which the glass material 3 to be formed is placed (set)! It is configured so that a plurality of transfer plates 14 can be stored and supported, and the transfer plates 14 stored and supported inside can be fitted and set one by one onto the transfer arm 5 at the lower position. As shown in FIG. 5, inside the tower body 28 of the standby base 12, a motor
9. Two chains 33.34, which are rotationally driven via timing belts 30, 31.32, are arranged vertically and parallel to each other, and each chain 33.3 is driven by a motor 29.
4 in the direction of the arrow 35, the conveyor tray supports fixed to each chain 33, 34 can be configured to convey the conveyor trays 14 supported by the portions 36 downward one by one. be.

塔本体28の下部にはフランジ部28aが形設してあり
、塔本体28は、搬送室フレーム8に螺着される固定部
材37を介して着脱自在に固定される構成となっている
。38で示すのはOリングである。
A flange portion 28a is formed in the lower part of the tower body 28, and the tower body 28 is configured to be detachably fixed to the transfer chamber frame 8 via a fixing member 37 screwed thereto. Reference numeral 38 indicates an O-ring.

回収塔13は、上記待機基12と同様に構成しである。The recovery tower 13 has the same structure as the standby unit 12 described above.

但し、回収塔13は、成形の完了した光学素子を載置、
収容した搬送皿14を1個づつ収容するためのもので、
空の塔本体28内に搬送皿14を1個ずつ下方から上方
に収納しうるように設定構成しである。
However, the recovery tower 13 is used to place optical elements that have been completely molded.
It is for accommodating the accommodated transport trays 14 one by one.
The configuration is such that the transport plates 14 can be stored one by one in the empty tower main body 28 from the bottom to the top.

特機部アクチュエータ15は、待機基12の下方位置に
おいて装置本体架台10に固設しである。
The special equipment actuator 15 is fixed to the apparatus main body frame 10 at a position below the standby base 12.

成形室部6は、搬送皿14内のガラス素材3を押圧成形
するための上型50と、搬送皿14を上型41方向に移
動するための突上げ機構部60等より構成しである。
The molding chamber 6 is composed of an upper mold 50 for press-molding the glass material 3 in the transport tray 14, a push-up mechanism section 60 for moving the transport tray 14 toward the upper mold 41, and the like.

上型50ば、エアーシリンダー52を介して上下動操作
自在に構成しである。この上型50は、断熱材51を介
して成形室フレーム9に取付けられたスリーブ52の軸
心孔部に嵌挿してあり、上型50はこのスリーブ52に
摺動案内されつつ上下動繰作されるようになっている。
The upper mold 50 is configured to be vertically movable via an air cylinder 52. This upper mold 50 is fitted into the axial center hole of a sleeve 52 attached to the molding chamber frame 9 via a heat insulating material 51, and the upper mold 50 is slidably guided by this sleeve 52 and moves up and down. It is now possible to do so.

スリーブ52の外周部には上型50加熱用のヒーター5
3が装備しである。スリーブ52の下部には、搬送皿1
4におけるガラス素材3収容用の円環状突起部14bの
外周テーパ面(上型5oとの軸心台セ用テーパ状案内面
)14cと嵌合可能なテーパ状案内面54が形設しであ
る。
A heater 5 for heating the upper die 50 is provided on the outer periphery of the sleeve 52.
3 is equipped. At the bottom of the sleeve 52, there is a conveyor tray 1.
A tapered guide surface 54 that can be fitted with the outer circumferential tapered surface (tapered guide surface for axle base connection with the upper mold 5o) 14c of the annular protrusion 14b for housing the glass material 3 in 4 is formed. .

特機部アクチュエータ15には待機軸25が軸方向に移
動制御自在に装備してあり、第6図a。
The special equipment actuator 15 is equipped with a standby shaft 25 that can be freely controlled to move in the axial direction, as shown in FIG. 6a.

b、  cにて示すごと(、待機軸25を上動させて待
機基12内の最下部の搬送皿14をその上端部に支持さ
せ、その後下動させることによって搬送皿14を1個ず
つ待機基12から下方に取り出すことができるように設
定構成しである。39で示すのは密閉シール用の0リン
グである。
As shown in b and c (by moving the standby shaft 25 upward to support the lowest transport tray 14 in the standby base 12 at its upper end, and then moving it downward, the transport trays 14 are placed on standby one by one). It is configured so that it can be taken out downward from the base 12. Reference numeral 39 indicates an O-ring for a hermetic seal.

回収部アクチュエータ16は、回収塔13の下方位置に
おいて装置本体架台10に固設してあり、回収部アクチ
ュエータ16の待機軸26により特機部アクチュエータ
15と逆の工程にて、成形された光学素子を載置、収容
した搬送皿14を1個ずつ回収塔I3内に回収できるよ
うに設定構成しである、40で示すのは密閉シール用の
0リングである。
The recovery section actuator 16 is fixed to the apparatus main body pedestal 10 at a position below the recovery tower 13, and is formed using a standby shaft 26 of the recovery section actuator 16 in a process opposite to that of the special equipment section actuator 15. 40 is an O-ring for airtight sealing.

突上げ機構部50は、搬送皿14を突上げるための下型
61と、突上げ軸部62と、下型61を軸方向(上下方
向)に駆動操作するための駆動部63等より構成してあ
り、下型61には下型61加熱用のヒーター64が装備
しである。65で示すのは断熱材、6Gで示すのは密封
シール用のOリングである。
The push-up mechanism section 50 is composed of a lower die 61 for pushing up the transfer plate 14, a push-up shaft section 62, a drive section 63 for driving the lower die 61 in the axial direction (vertical direction), and the like. The lower mold 61 is equipped with a heater 64 for heating the lower mold 61. Reference numeral 65 indicates a heat insulating material, and reference numeral 6G indicates an O-ring for sealing.

成形室部6における成形室70内は、パイプ71を介し
て真空排気されるとともに、パイプ72を介して成形室
70内に不活性ガスを注入しうるように設定しである。
The inside of the molding chamber 70 in the molding chamber section 6 is evacuated through a pipe 71 and is set so that an inert gas can be injected into the molding chamber 70 through a pipe 72.

加熱室部2は、搬送アーム5上に保持されたガラス素材
3を加熱軟化するためのヒーター80を装備した加熱炉
81と、ガラス素材3を部分的に温度調節するための上
温調棒82及び下温調棒83等より構成しである。
The heating chamber section 2 includes a heating furnace 81 equipped with a heater 80 for heating and softening the glass material 3 held on the transfer arm 5, and an upper temperature control rod 82 for partially adjusting the temperature of the glass material 3. It is composed of a lower temperature control rod 83 and the like.

上温羽棒82及び下温調棒83は、それぞれ加熱炉8I
の上下炉壁を貫通してガラス素材3の加熱炉81内の停
止位置(加熱位置)におけるガラス素材3と同軸に設置
されるとともに、成形室部6の成形室フレーム9に固定
したエアシリンダー等の上アクチュエータ84及び下ア
クチュエータ85によりガラス素材3に接近3離反自在
に保持されている。上温調捧82及び下a3J1棒83
の内部には、それぞれ温調管82a及び83aが設けら
れ、温調管82a、83a内にN□ガス等の不活性ガス
を2itt一定に流通させて上下温調棒8283の先端
を温度調整し得るようになっている。
The upper temperature control rod 82 and the lower temperature control rod 83 are respectively connected to the heating furnace 8I.
An air cylinder or the like is installed coaxially with the glass material 3 at the stop position (heating position) in the heating furnace 81 by penetrating the upper and lower furnace walls of the glass material 3, and is fixed to the molding chamber frame 9 of the molding chamber section 6. It is held by an upper actuator 84 and a lower actuator 85 so as to be able to approach and move away from the glass material 3. Upper temperature control rod 82 and lower a3J1 rod 83
Temperature control tubes 82a and 83a are provided inside the temperature control tubes 82a and 83a, respectively, and the temperature of the tips of the upper and lower temperature control rods 8283 is adjusted by constantly circulating 2 yt of inert gas such as N□ gas into the temperature control tubes 82a and 83a. I'm starting to get it.

なお、図においては温調管82a、83a内への不活性
ガスの流入、流出用の配管は省略しである。
In addition, in the figure, the pipes for inflowing and outflowing the inert gas into the temperature control pipes 82a and 83a are omitted.

更に、上温調棒82及び下温調棒83の先端は、それぞ
れガラス素材3の上ガラス面及び下ガラス面と対応した
形状に形成してあり、ガラス素材3の加熱時に上、下ガ
ラス面と接触又はごく接近させて停止させ上下ガラス面
を部分的にそれぞれ所定温度に調整できるようになって
いる。即ち、本実施例にあっては、ガラス素材3の厚肉
部(中央部)の温度を薄肉部(周辺部)の温度より低下
し得るようになっている。
Further, the tips of the upper temperature control rod 82 and the lower temperature control rod 83 are formed in shapes corresponding to the upper and lower glass surfaces of the glass material 3, respectively, so that when the glass material 3 is heated, the upper and lower glass surfaces are heated. It is possible to partially adjust the temperature of the upper and lower glass surfaces to a predetermined temperature by stopping them in contact with or in close proximity to the glass surface. That is, in this embodiment, the temperature of the thick portion (central portion) of the glass material 3 can be lowered than the temperature of the thin portion (periphery).

次に、上記成形装置lにて光学素子を成形する方法につ
いて説明する。
Next, a method of molding an optical element using the molding apparatus 1 will be explained.

まず、搬送アーム5を、その嵌合部23が待機径12の
真下位置となるように駆動装置18を介して移動させて
停止させる。
First, the transfer arm 5 is moved via the drive device 18 so that its fitting portion 23 is located directly below the standby diameter 12, and then stopped.

次に、待機軸25を上動させ、待機軸25が搬送アーム
5の孔27を貫通して待機径12の下方位置に達した時
点で停止させる。次に、待機基12内の各チェーン33
.34を矢印35方向に回動させ、搬送皿14を第6図
aにて示すごとく待機軸25上に載置させる。次に、第
6図すにて示すように各チェーン33.34を回転させ
た後に待機軸25を下動させる。この下動操作時に搬送
皿14を搬送アーム5の嵌合部23上に嵌合させる。搬
送皿14と嵌合部23は互のテーバ状嵌合部14a、2
3を介して正確に嵌合する。待機軸25は、搬送アーム
5の動作に支障のない位置まで下動せしめる。
Next, the standby shaft 25 is moved upward and stopped when the standby shaft 25 passes through the hole 27 of the transfer arm 5 and reaches a position below the standby diameter 12. Next, each chain 33 in the standby base 12
.. 34 in the direction of the arrow 35, and the transport tray 14 is placed on the standby shaft 25 as shown in FIG. 6a. Next, as shown in FIG. 6, after each chain 33, 34 is rotated, the standby shaft 25 is moved downward. During this downward movement operation, the transport tray 14 is fitted onto the fitting portion 23 of the transport arm 5. The conveyor tray 14 and the fitting part 23 are connected to each other by mutually tapered fitting parts 14a and 2.
3 to ensure an accurate fit. The standby shaft 25 is moved down to a position where the movement of the transport arm 5 is not hindered.

次に、搬送皿14が加熱炉81内に収容されるように搬
送アーム5を移動制御シ、ガラス素材3を加熱する。こ
の加熱工程において、ガラス素材3は成形可能な粘度に
加熱軟化される。
Next, the transfer arm 5 is controlled to move so that the transfer plate 14 is accommodated in the heating furnace 81, and the glass material 3 is heated. In this heating step, the glass material 3 is heated and softened to a moldable viscosity.

本実施例にあっては、特に、上記加熱工程において、ガ
ラス素材3の上下ガラス面にそれぞれ上温洞埠92及び
下温圃捧93の先端を接触(又ifごく接近)させ、ガ
ラス素材3の中央部(厚肉部)を周辺部(薄肉部)より
低下させた状態で成形可能な粘度にガラス素材3を加熱
軟化している。
In this embodiment, in particular, in the heating step, the tips of the upper and lower glass surfaces of the glass material 3 are brought into contact with (or very close to) the upper and lower glass surfaces of the glass material 3, respectively. The glass material 3 is heated and softened to a viscosity that can be molded in a state where the central part (thick part) is lower than the peripheral part (thin part).

次に、搬送アーム5を成形室部6方向に移動せしめ第7
図aにて示すように搬送アーム5に保持された搬送皿1
4の軸心が成形室部6の上型50の軸心と一致した時点
で停止制御する。
Next, the transfer arm 5 is moved toward the molding chamber section 6, and the seventh
Transfer plate 1 held on transfer arm 5 as shown in Figure a
Stop control is performed when the axial center of the mold 4 coincides with the axial center of the upper mold 50 of the molding chamber 6.

次に、第7図すにて示すように、下型61を上動させて
搬送皿14を搬送部5から上動せしめる。
Next, as shown in FIG. 7, the lower mold 61 is moved upward to move the conveying plate 14 upward from the conveying section 5.

この上動時には、第7図Cにて示すごとく搬送皿14側
の当接面部14dが上型50例のスリーブ52の下端面
52aに当接して停止する。
During this upward movement, as shown in FIG. 7C, the contact surface portion 14d on the transfer tray 14 side comes into contact with the lower end surface 52a of the sleeve 52 of the upper mold 50 and stops.

次に、上型50をエアーシリンダー52を介して下動操
作し、搬送皿14に対してガラス素材3を押圧し、プレ
ス成形する。この際、上型50が第7図Cにおいて2点
鎖線で示す位置から実線で示す位置まで移動する。
Next, the upper mold 50 is moved downward via the air cylinder 52, and the glass material 3 is pressed against the conveying tray 14 to perform press molding. At this time, the upper die 50 moves from the position shown by the two-dot chain line to the position shown by the solid line in FIG. 7C.

成形工程が終了したら、上型50を第7図dにて示すよ
うに上動させるとともに、下型61を下動せしめる。こ
の工程にて、成形品である光学素子3aを収容した搬送
皿14は搬送アーム5の嵌合部23に嵌合保持される。
When the molding process is completed, the upper mold 50 is moved upward as shown in FIG. 7d, and the lower mold 61 is moved downward. In this step, the transport tray 14 containing the molded optical element 3a is fitted and held in the fitting portion 23 of the transport arm 5.

次に、搬送アーム5を第1図にて示すように矢印22方
向に移動せしめ、搬送皿14が回収塔13の真下位置に
達した時点で停止制御する。
Next, the transfer arm 5 is moved in the direction of arrow 22 as shown in FIG. 1, and when the transfer plate 14 reaches a position directly below the recovery tower 13, it is controlled to stop.

次に、回収軸26を上動させ、待機塔12からの搬送皿
取出し工程とは逆の工程を経て光学素子3aを収容した
搬送皿14を回収塔13内に収容する。
Next, the recovery shaft 26 is moved upward, and the transfer plate 14 containing the optical element 3a is accommodated in the recovery tower 13 through a process that is reverse to the process of taking out the transfer plate from the standby tower 12.

次に、回収軸26を下動せしめた後、搬送アーム5の嵌
合部23が待機塔12の真下位置に達するまで搬送アー
ム5を移動させ、停止制御させる。
Next, after the collection shaft 26 is moved down, the transport arm 5 is moved until the fitting portion 23 of the transport arm 5 reaches a position directly below the standby tower 12, and then the transport arm 5 is controlled to stop.

以下、上記工程を繰り返して光学素子3aを連続成形す
る。
Thereafter, the above steps are repeated to continuously mold the optical element 3a.

以上説明したように本実施例の光学素子の成形方法は、
ガラス素材3内部に強制的に温度分布を生じさせるよう
に加熱軟化した後、ガラス素材3を成形用金型50.6
1により押圧成形するものであり、かかる温度分布の状
態を第8図及び第9図に示す。
As explained above, the method for molding the optical element of this example is as follows:
After heating and softening the glass material 3 to forcibly create a temperature distribution inside the glass material 3, the glass material 3 is placed in a mold 50.6.
The temperature distribution is shown in FIGS. 8 and 9.

第8図aは、ガラス素材3が加熱炉81で加熱軟化され
、上下温調捧82.83の作用により強制的に温度分布
を生じさせて上下型50.61間に移送される直前の状
態を示しである。即ち、ガラス素材3の内部の各点、即
ち、ガラス素材3の表面中心部m、径方向かつ厚さ方向
の中心位ff。
FIG. 8a shows the state in which the glass material 3 is heated and softened in the heating furnace 81, and is just before being transferred between the upper and lower molds 50, 61 with forced temperature distribution created by the action of the upper and lower temperature controllers 82, 83. is shown. That is, each point inside the glass material 3, that is, the surface center m of the glass material 3, and the center position ff in the radial direction and thickness direction.

及び外周部の厚さ方向の中心位置nの温度が、m点、0
点、n点の順で高温となるように加熱されている。第9
図は、樅軸にガラス素材3の温度T、横軸に時間むをと
って表したm点、0点及びn点の経時変化のグラフ図で
、時点t0は上記温度状態時を示している。その後、上
記ガラス素材3が上下型50.61により押圧成形され
るとガラス素材3の厚肉部の中心位置である0点の温度
は下がりずらいが、予めn点より低い温度に加熱されて
いるため、n点の流動がほとんど停止する温度T+とな
る11時点でガラス素材3の温度はほぼ同程度となる。
and the temperature at the center position n in the thickness direction of the outer circumference is point m, 0
The points are heated to a high temperature in this order. 9th
The figure is a graph of the temperature T of the glass material 3 on the fir axis, and the time-dependent changes at points m, 0, and n, with time plotted on the horizontal axis, and time t0 indicates the above temperature state. . After that, when the glass material 3 is press-molded by the upper and lower molds 50 and 61, the temperature at the 0 point, which is the center position of the thick part of the glass material 3, is difficult to fall, but it is heated to a temperature lower than the n point in advance. Therefore, the temperature of the glass material 3 becomes approximately the same at point 11, which is the temperature T+ at which the flow at point n almost stops.

また、m点の温度は急激に下がるが温度↑1と上下型5
0.61の型温度T2とが接近しているため温度T、付
近で温度の低下が緩やかとなり、T、時点で、ガラス素
材3はm点、n点及び0点で温度差のほとんどない第8
図すの等混線で示す状態に冷却されている。そして、そ
の後、ガラス素材3の温度が型温度T2に収束される過
程にあっても、ガラス素材3内部の流動が停止するT1
時点でのガラス素材3内部の温度分布が少ないためヒケ
が生じにく(なり、第8図Cに示すように所望形状に転
写された光学的に高精度な光学素子3aが形成される。
In addition, the temperature at point m decreases rapidly, but the temperature ↑1 and the upper and lower molds 5
Since the mold temperature T2 of 0.61 is close to the mold temperature T2, the temperature decreases slowly near the temperature T, and at the time T, the glass material 3 reaches the point where there is almost no temperature difference between the m point, the n point, and the 0 point. 8
It is cooled to the state shown by the isomixture lines in the figure. After that, even if the temperature of the glass material 3 is in the process of converging to the mold temperature T2, the flow inside the glass material 3 stops at T1.
Since the temperature distribution inside the glass material 3 at this point is small, sink marks are less likely to occur, and as shown in FIG. 8C, an optical element 3a with high optical precision is formed which is transferred into a desired shape.

次に、本実施例の成形方法と比較するために、ガラス素
材3に温度分布を強制的に生じさせないで行う従来の成
形方法におけるガラス素材3の温度分布を第10図及び
第11図を用いて説明する。
Next, in order to compare with the molding method of this example, the temperature distribution of the glass material 3 in the conventional molding method, which is performed without forcibly creating a temperature distribution in the glass material 3, is shown in FIGS. 10 and 11. I will explain.

まず、ガラス素材3が加熱炉内でほぼ均一に加熱され、
第10図aに示すように温度分布が生ぜず、ガラス素材
3内部のm点、n点及び0点は、10時点で温度T、と
なっている(第11図参照)、その後、上記ガラス素材
3が成形型により押圧成形されるとガラス素材3は冷却
される。この時、m点の温度は急激に下がり、次にn点
の温度がやや遅れて下がる。しかし、0点の温度は下が
りずらくn点がT、温度となる11時点で0点は温度が
高く流動状態となっている。この時の温度分布は、第1
0図すの等混線で示すように0点を中心とした楕円状に
なっている。その後、ガラス素材3の温度がT2に収束
され、m点、0点及びn点は同一温度となるが、0点の
温度は遅れて下がり固化も遅いため、第10図すに示す
ように中心部にヒケが発生することになる。
First, the glass material 3 is heated almost uniformly in a heating furnace,
As shown in FIG. 10a, no temperature distribution occurs, and points m, n, and 0 inside the glass material 3 are at a temperature T at time 10 (see FIG. 11). When the glass material 3 is press-molded using a mold, the glass material 3 is cooled. At this time, the temperature at point m drops rapidly, and then the temperature at point n drops with a slight delay. However, the temperature at point 0 does not fall easily, and at point 11, when point n reaches T, the temperature at point 0 is high and in a fluid state. The temperature distribution at this time is the first
It has an elliptical shape centered on the 0 point, as shown by the equimixture lines in Figure 0. After that, the temperature of the glass material 3 converges to T2, and the m point, 0 point, and n point become the same temperature, but the temperature at the 0 point falls with a delay and solidification is slow, so the center A sink mark will occur in the area.

(第2実施例) 第12図は、本発明に係る光学素子の成形方法の第2実
施例を実施するための成形装置の要部を示す断面図であ
る。
(Second Embodiment) FIG. 12 is a sectional view showing essential parts of a molding apparatus for carrying out a second embodiment of the method for molding an optical element according to the present invention.

本実施例の光学素子の成形方法の特徴は、中央部に薄く
かつ周辺部を厚くした凹レンズ形状のガラス素材87を
押圧して光学素子を成形するもので、温調環88をガラ
ス素材87の周辺部と接触(又はごく接近)させて厚肉
部を冷却してガラス素材87に強制的に温度分布を生じ
させるように構成しである。
The feature of the method for molding an optical element of this embodiment is that the optical element is molded by pressing a glass material 87 in the shape of a concave lens, which is thin in the center and thick in the peripheral part. It is configured to cool the thick portion by bringing it into contact with (or very close to) the peripheral portion, thereby forcibly creating a temperature distribution in the glass material 87.

即ち、温調環88は、その先端部がガラス素材87の厚
肉部87aのみに接触可能なリング状88aに形成され
ている。又、温調環88の内部には上記第1実施例の温
調管82aと同様にN2ガス等の不活性ガスを@量一定
に流通させて先端部の温度調整するための温調管89が
設けられている。なお、温調環88はガラス素材87の
上下方向に上下動自在に配設されており、一方の温調環
については、図示の温調環88の構成と同一であるので
図示を省略しである。さらに、その他の構成は、上記第
1図示の成形製r!11と同様に構成され、光学素子の
成形方法は上記第1実施例と同様であるのでその説明を
省略する。
That is, the temperature control ring 88 is formed into a ring shape 88a that allows its tip to contact only the thick portion 87a of the glass material 87. Also, inside the temperature control ring 88, there is a temperature control tube 89 for controlling the temperature at the tip by flowing an inert gas such as N2 gas at a constant amount, similar to the temperature control tube 82a of the first embodiment. is provided. The temperature control ring 88 is arranged to be able to move up and down in the vertical direction of the glass material 87, and one temperature control ring is not shown because it has the same configuration as the temperature control ring 88 shown in the figure. be. Furthermore, the other configurations are the molded r! shown in the first diagram above. 11, and the method of molding the optical element is the same as that of the first embodiment, so a description thereof will be omitted.

本実施例によれば、温調環88によりガラス素材87の
厚肉部87aの温度が強制的に薄肉部より低下した温度
分布状態となる。即ち、第13図aは、上記温度分布状
態を示すもので、ガラス素材87は、加熱軟化時に厚肉
部87導周辺の温度がガラス素材87の厚さ方向の中心
部87b及び薄肉部より低温状態に加熱される。その後
、このガラス素材87を成形用金型により押圧成形する
と薄肉部の温度低下が急激なため、第13図すに示すよ
うにガラスの流動が停止する時点でガラス素材87の温
度分布はほぼ均一化される。従って、その後のガラス素
材87の冷却過程でヒケが生ぜず、第13図Cに示すよ
うに所望形状に転写された晶精度な光学素子87cが成
形される。
According to this embodiment, the temperature control ring 88 forces the temperature of the thick portion 87a of the glass material 87 to be in a temperature distribution state lower than that of the thin portion. That is, FIG. 13a shows the above-mentioned temperature distribution state, and when the glass material 87 is heated and softened, the temperature around the thick part 87 is lower than the center part 87b and the thin part in the thickness direction of the glass material 87. heated to a state. After that, when this glass material 87 is press-molded using a molding die, the temperature of the thin wall portion decreases rapidly, so that the temperature distribution of the glass material 87 is almost uniform when the flow of the glass stops, as shown in FIG. 13. be converted into Therefore, no sink marks occur during the subsequent cooling process of the glass material 87, and as shown in FIG. 13C, an optical element 87c with crystal precision and transferred to a desired shape is formed.

第14図は、ガラス素材87に強制的に温度分布を生し
させない従来の成形方法におけるガラス素材87の温度
分布を示すもので、均一な温度に加熱軟化されたガラス
素材87(第14図a)を成形用金型により押圧すると
、薄肉部の温度低下は早く、厚内部87aの内部の温度
低下は遅いため、第14図すに示すように厚肉部87a
の内部中央87dが高温状態となる。このとき、ガラス
素材87の薄肉部及び外面は固化して流動しない状態に
なっているが、厚内部87aの内部中央87dは流動可
能な状態のため、その後、冷却されつつ成形が完了し温
度分布がなくなったとき、流動可能な内部中央87dの
収縮により第14図Cに示すように光学素子87cの周
辺部にヒケが発生することになる。
FIG. 14 shows the temperature distribution of the glass material 87 in a conventional molding method that does not forcefully create a temperature distribution in the glass material 87. ) is pressed by a molding die, the temperature in the thin part 87a decreases quickly and the temperature in the thick part 87a decreases slowly, so as shown in FIG.
The center 87d of the interior is in a high temperature state. At this time, the thin wall part and the outer surface of the glass material 87 are solidified and are in a non-flowable state, but the inner center 87d of the thick inner part 87a is in a flowable state, so that the molding is completed while being cooled and the temperature distribution When the flowable inner center 87d shrinks, a sink mark is generated at the periphery of the optical element 87c as shown in FIG. 14C.

(第3実施例) 第15図は、本発明に係る光学素子の成形方法の第3実
施例を実施するための成形装置の要部を示す断面図であ
る。
(Third Embodiment) FIG. 15 is a sectional view showing essential parts of a molding apparatus for carrying out a third embodiment of the method for molding an optical element according to the present invention.

本実施例の光学素子の成形方法の特徴は、ガラス素材9
0の厚肉部に冷却用ガス92を吹き付けてガラス素材9
0に強制的に温度分布を生じさせるようにしたものある
The characteristics of the optical element molding method of this example are that the glass material 9
Cooling gas 92 is sprayed onto the thick part of glass material 9.
There is one that forcibly creates a temperature distribution at zero.

即ち、ガラス素材90を温調する温調環91は、その内
部にN2ガス等の冷却用ガス92導通用の貫通孔93が
設けられている。なお、温調環91はガラス素材90の
上下方向に配置されている。
That is, a temperature control ring 91 for controlling the temperature of the glass material 90 is provided with a through hole 93 for conducting a cooling gas 92 such as N2 gas therein. Note that the temperature control ring 91 is arranged in the vertical direction of the glass material 90.

その他の構成は、上記第1図示の成形装置1と同様に構
成され、光学素子の成形方法についても、ガラス素材9
0の厚内部に温調環91の先端から冷却用ガスを吹き付
けてガラス素材90内部に強制的に温度分布を生じさせ
る以外は上記第1実施例と同様であるのでその説明を省
略する。
The rest of the structure is the same as that of the molding apparatus 1 shown in the first drawing, and the method for molding the optical element is also different from that of the glass material 9.
This embodiment is the same as the first embodiment except that a cooling gas is blown from the tip of the temperature control ring 91 into the glass material 90 to forcibly create a temperature distribution inside the glass material 90, so a description thereof will be omitted.

本実施例によれば、上記第1実施例と同様な作用、効果
を得ることができる。
According to this embodiment, the same functions and effects as those of the first embodiment described above can be obtained.

(第4実施例) 第16図は、本発明に係る光学素子の成形方法の第4実
施例を実施するための成形装置の要部を示し、第16図
aは正面図、第16図すは平面図である。
(Fourth Embodiment) FIG. 16 shows the main parts of a molding apparatus for carrying out the fourth embodiment of the method for molding an optical element according to the present invention, FIG. 16a is a front view, and FIG. is a plan view.

本実施例の光学素子の成形方法の特徴は、ガラス素材9
5のP1肉部に輻射される加熱炉のヒーターからの熱を
さえ切ることによりガラス素材に強制的に温度分布を生
じさせるようにしたものある。
The characteristics of the optical element molding method of this example are that the glass material 9
There is a method that forcibly creates a temperature distribution in the glass material by cutting off the heat from the heater of the heating furnace that is radiated to the P1 meat part of No. 5.

即ち、ガラス素材95を温調する温調環96は、その先
端に加熱炉のヒーターより輻射をさえ切る遮蔽板97が
設けられている。なお、温調捧96はガラス素材95の
上下方向に設けられている。
That is, a temperature control ring 96 for controlling the temperature of the glass material 95 is provided with a shielding plate 97 at its tip to block radiation from the heater of the heating furnace. Note that the temperature control shafts 96 are provided in the vertical direction of the glass material 95.

その他の構成は、上記第1図示の成形装置1と同様に構
成され、光学素子の成形方法についても、ヒーターから
の熱を遮蔽板97により厚肉部の温度上昇を抑えてガラ
ス素材95内部に強制的に温度分布を生じさせる以外は
、上記第1実施例と同様であるのでその説明を省略する
The rest of the structure is the same as that of the molding apparatus 1 shown in the first diagram above, and the method for molding the optical element is such that the heat from the heater is suppressed from increasing in temperature in the thick portion by the shielding plate 97 and transferred to the inside of the glass material 95. The second embodiment is the same as the first embodiment except that the temperature distribution is forcibly generated, so the explanation thereof will be omitted.

本実施例によれば、上記第1実施例と同様な作用、効果
を得ることができる。
According to this embodiment, the same functions and effects as those of the first embodiment described above can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、加熱炉内で加熱中の成形
前のガラス素材に予め強制的に温度分布をつけ、薄肉部
より厚肉部を低い温度に設定することにより、押圧成形
時にガラス素材内部の温度差が少なくなるため、大口径
であったり、変肉度の大きい光学素子であっても成形面
の形状の反転性が向上し、即ち、ヒケによる反転劣化が
無くなり、かつ短時間に成形を完了できる。
As described above, according to the present invention, by forcibly creating a temperature distribution in advance on the glass material before forming while it is being heated in a heating furnace, and by setting the thicker part to a lower temperature than the thinner part, it is possible to Since the temperature difference inside the glass material is reduced, the reversibility of the shape of the molding surface is improved even for optical elements with large diameters or large degrees of thickness change.In other words, reversal deterioration due to sink marks is eliminated, and the molding process is shortened. The molding can be completed on time.

従−で、高精度でコストの安い光学素子を得ることがで
きる。
A highly accurate, low-cost optical element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光学素子の成形方法の第1実施例
を実施するための成形装置の縦断面図、第2図は第1図
の要部の縦断面図、第3図は成形装置の搬送アームの駆
動部を示す平面図、第4口字素子を成形する工程の説明
図、第8図及び第9図はガラス素材内部の温度分布を示
す説明図及びグラフ図、第10図及び第11図は従来の
成形方法におけるガラス素材内部の温度分布を示す説明
図及びグラフ図、第12図は本発明に係る光学素子の成
形方法の第2実施例を実施するための成形装置の要部の
縦断面図、第13図はガラス素材内部の温度分布を示す
説明図、第14図は従来の成形方法におけるガラス素材
内部の温度分布を示す説明図、第15図は本発明に係る
光学素子の成形方法の第3実施例を実施するための成形
装置の要部の縦断面図、第16図は本発明に係る光学素
子の成形方法の第4実施例を実施するための成形装置の
要部を示し、第16図a、bは正面図、平面図、第17
図a、b、c及び第18図は従来技術におけるガラス素
材内部の温度分布を示す説明図及びグラフ図である。 3・・・ガラス素材 81・・・加熱炉 82・・・上温調棒 83・・・下温調棒 特許出願人  オリンパス光学工業株式会社第 図 第7 (c) 図 第 図 (b) 第 図 第 12図 第 13図 吟 問 第 17図 平成元年 1月13日 昭和63年特許願第285355号 2、発明の名称 光学素子の成形方法 3、補正をする者 事件との関係  特許出願人 住 所 東京都渋谷区幡ケ谷2丁目43番2号名 称 
(037)オリンパス光学工業株式会社代表者  下 
 山  敏  部 4、代理人〒105 住 所 東京都港区浜松町2丁目2番15号6、補正の
対象 図   面 7、補正の内容 (1)  図面中、 第8図a、b 第10図a、第13図a。 第 図 第 10図
FIG. 1 is a longitudinal sectional view of a molding apparatus for carrying out the first embodiment of the optical element molding method according to the present invention, FIG. 2 is a longitudinal sectional view of the main parts of FIG. 1, and FIG. A plan view showing the driving part of the transport arm of the device, an explanatory diagram of the process of molding the fourth mouth element, FIGS. 8 and 9 are explanatory diagrams and graphs showing the temperature distribution inside the glass material, and FIG. 10 and FIG. 11 are explanatory diagrams and graphs showing the temperature distribution inside the glass material in the conventional molding method, and FIG. 12 is a diagram of a molding apparatus for carrying out the second embodiment of the method for molding an optical element according to the present invention. A vertical cross-sectional view of the main parts, FIG. 13 is an explanatory diagram showing the temperature distribution inside the glass material, FIG. 14 is an explanatory diagram showing the temperature distribution inside the glass material in the conventional molding method, and FIG. 15 is an explanatory diagram showing the temperature distribution inside the glass material according to the present invention. FIG. 16 is a vertical cross-sectional view of a main part of a molding apparatus for implementing the third embodiment of the optical element molding method, and FIG. 16 is a molding apparatus for implementing the fourth embodiment of the optical element molding method according to the present invention. Figures 16a and 16b are front views, top views, and 17th
Figures a, b, c and Fig. 18 are explanatory diagrams and graphs showing the temperature distribution inside the glass material in the prior art. 3...Glass material 81...Heating furnace 82...Upper temperature control rod 83...Lower temperature control patent applicant Olympus Optical Industry Co., Ltd. Figure 7 (c) Figure 7 (b) Figure 12 Figure 13 Questions Figure 17 January 13, 1989 Patent Application No. 285355, 1988 2. Name of the invention Method for molding optical elements 3. Person making the amendment Relationship to the case Patent applicant Address: 2-43-2 Hatagaya, Shibuya-ku, Tokyo Name:
(037) Representative of Olympus Optical Industry Co., Ltd.
Toshi Yamabe 4, Agent 105 Address 6, 2-2-15 Hamamatsucho, Minato-ku, Tokyo Drawing subject to amendment 7 Contents of amendment (1) In the drawings, Figure 8 a, b Figure 10 a, Figure 13a. Figure 10

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス素材を加熱軟化した後、成形用金型により
押圧成形する光学素子の成形方法において、ガラス素材
を加熱軟化するにあたり、上記ガラス素材の厚肉部より
薄肉部が高温度となるように加熱することを特徴とする
光学素子の成形方法。
(1) In an optical element molding method in which a glass material is heated and softened and then press-molded using a molding die, when the glass material is heated and softened, the thinner part of the glass material is heated to a higher temperature than the thicker part. A method for molding an optical element, characterized by heating it to a temperature of .
JP63285355A 1988-11-11 1988-11-11 Optical element molding method Expired - Lifetime JP2583592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285355A JP2583592B2 (en) 1988-11-11 1988-11-11 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285355A JP2583592B2 (en) 1988-11-11 1988-11-11 Optical element molding method

Publications (2)

Publication Number Publication Date
JPH02133325A true JPH02133325A (en) 1990-05-22
JP2583592B2 JP2583592B2 (en) 1997-02-19

Family

ID=17690488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285355A Expired - Lifetime JP2583592B2 (en) 1988-11-11 1988-11-11 Optical element molding method

Country Status (1)

Country Link
JP (1) JP2583592B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330152A (en) * 2004-05-20 2005-12-02 Konica Minolta Opto Inc Method of forming optical device and optical device
JP2013107796A (en) * 2011-11-21 2013-06-06 Olympus Corp Method and apparatus for manufacturing optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330152A (en) * 2004-05-20 2005-12-02 Konica Minolta Opto Inc Method of forming optical device and optical device
JP2013107796A (en) * 2011-11-21 2013-06-06 Olympus Corp Method and apparatus for manufacturing optical element

Also Published As

Publication number Publication date
JP2583592B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US5588980A (en) Apparatus for molding a glass optical element with a transporting supporting member
US5160362A (en) Process for manufacturing optical element
JPH02133325A (en) Method for molding optical element
JPH01157424A (en) Method and apparatus for making of optical element
JP2004238260A (en) Molding apparatus and molding method of press molding, and molding method of glass optical element
JPH0431328A (en) Mold structure for forming optical element and press-molding method
JPS6337044B2 (en)
JP2000233934A (en) Method for press-forming glass product and device therefor
JPH10101352A (en) Production of quartz glass tube and device for the production
JP2618523B2 (en) Optical element manufacturing method
JPH07330347A (en) Method for forming optical element
JP2718451B2 (en) Optical glass parts molding method
JP3585260B2 (en) Apparatus and method for manufacturing optical element
JP3614902B2 (en) Preform for glass molded lens and manufacturing method thereof
JP3209722B2 (en) Method for molding optical element and optical element
JP3184584B2 (en) Glass lens molding method
JPS6374926A (en) Forming of optical glass part
JPH02267127A (en) Method for forming optical element and device therefor
JPH03279225A (en) Glass molding equipment and glass molding using the same
JPH04338120A (en) Method for forming glass optical element
JPH07247127A (en) Transfer member of optical element forming apparatus
JPH05193962A (en) Method for forming glass optical element
JPH09169526A (en) Method for forming annular optical element and apparatus therefor
JPH05170456A (en) Forming method for glass optical element
JPH03254911A (en) Apparatus and method for molding optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

EXPY Cancellation because of completion of term