JPH02132770A - Device for cooling reforming device of fuel cell - Google Patents

Device for cooling reforming device of fuel cell

Info

Publication number
JPH02132770A
JPH02132770A JP63285462A JP28546288A JPH02132770A JP H02132770 A JPH02132770 A JP H02132770A JP 63285462 A JP63285462 A JP 63285462A JP 28546288 A JP28546288 A JP 28546288A JP H02132770 A JPH02132770 A JP H02132770A
Authority
JP
Japan
Prior art keywords
air
fuel cell
amount
burner
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63285462A
Other languages
Japanese (ja)
Other versions
JP2789201B2 (en
Inventor
Yutaka Mizuno
裕 水野
Toshiji Hanashima
利治 花嶋
Hisatake Matsubara
松原 久剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP63285462A priority Critical patent/JP2789201B2/en
Publication of JPH02132770A publication Critical patent/JPH02132770A/en
Application granted granted Critical
Publication of JP2789201B2 publication Critical patent/JP2789201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent catalysts for reforming from being oxidized, without the structure of the device becoming complicated, by providing a heating passage with an air blowing device capable of blowing a larger amount of air than the required amount of air blowed for operating a fuel cell, and providing means for controlling the air blowing device so that the amount of air blowed is decreased when the air blowing device is operated, whereas it is increased when the device is stopped and cooled. CONSTITUTION:A heating passage B which allows heated gas heated by a burner 9 to pass therethrough is provided with an air blowing device 15 capable of blowing a larger amount of air than the required amount of air blowed for operating a fuel cell 16, and controlling means C are provided for controlling the air blowing device 15 so that the amount of air blowed is decreased when the air blowing device 15 is operated, whereas it is increased when the device is stopped and cooled; i.e., a larger amount of air than the amount of air blowed during operation is forced to pass through the heating passage B, so that a catalyst layer 2 in a raw material passage A is forcibly cooled to enable the temperature of the catalyst layer 2 to be lowered less than its active temperature region. The catalyst can thus be cooled promptly and be preserved when the air blowing device is stopped, and therefore the reforming capability of the catalyst can be prevented from deteriorating without the structure of the device becoming complicated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池用改質装置の冷却装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device for a fuel cell reformer.

〔従来の技術〕[Conventional technology]

燃料電池システムは例えばメタノールと水とを混合させ
た原料を水素ガスに改質する改質装置と、この改質装置
で発生した水素ガスと空気中の酸素とを電気化学的に反
応させて電気エネルギに変換する燃料電池本体などから
構成されている。
A fuel cell system includes, for example, a reformer that reforms a raw material that is a mixture of methanol and water into hydrogen gas, and an electrochemical reaction between the hydrogen gas generated by this reformer and oxygen in the air to generate electricity. It consists of a fuel cell body that converts energy into energy.

ところで、このような燃料電池システムにおいては、運
転停止後、改質装置は放熱によって温度が徐々に低下す
る。このため、改質装置中の気体状態にあるメタノール
および水が凝縮して液体になり、それに伴って改質装置
系統内が負圧レベルが高い状態になる。その結果、弁類
の締りが不十分であったり、配管等のシール状態が不十
分であったりすると、外気を吸い込む場合があり、改質
装置内の改質用の触媒が外気中に含まれる酸素によって
酸化されてしまい、改質能力が低下するようになる。こ
の触媒は一般に耐熱性が悪く、高温時に酸化されるとそ
の熱によって著し《劣化してしまう。
By the way, in such a fuel cell system, after the operation is stopped, the temperature of the reformer gradually decreases due to heat radiation. Therefore, methanol and water in the gaseous state in the reformer condense and become liquid, resulting in a high negative pressure level in the reformer system. As a result, if the valves are not tightened enough or the sealing of piping etc. is insufficient, outside air may be sucked in, and the reforming catalyst in the reformer may be included in the outside air. It is oxidized by oxygen and its reforming ability decreases. This catalyst generally has poor heat resistance, and if it is oxidized at high temperatures, it will deteriorate significantly due to the heat.

このため、従来、燃料電池システムの停止時に、改質装
置系統内へ窒素ガスなどの不活性ガスを触媒温度が低下
するまでパージし続けることによって、触媒が酸化する
のを防止するようにしている。
For this reason, conventionally, when the fuel cell system is stopped, inert gas such as nitrogen gas is continuously purged into the reformer system until the catalyst temperature drops to prevent the catalyst from oxidizing. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このような構造では、不活性ガスを溜めておく
ボンベなど特別な装置が必要になるために、装置が複雑
になるという不具合があった。本発明はこのような事情
に鑑みなされたもので、構造が複雑になることなく、改
質用の触媒の酸化を防止することができる燃料電池用改
質装置の冷却装置を提供するものである。
However, such a structure requires special equipment such as a cylinder for storing inert gas, making the equipment complex. The present invention was made in view of these circumstances, and provides a cooling device for a fuel cell reformer that can prevent oxidation of a reforming catalyst without complicating the structure. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る改質装置の冷却装置は、バーナで加熱され
た加熱ガスを流す加熱通路に燃料電池の運転に必要とさ
れる送風量よりも多い風量を送風できる送風装置を設け
、この送風装置を運転時には送風量が少な《、停止冷却
時には送風量が多くなるように制御する制御手段を設け
たものである。
A cooling device for a reformer according to the present invention includes a heating passage through which heated gas heated by a burner flows, and a blower device capable of blowing a larger amount of air than that required for operating a fuel cell. The system is equipped with a control means that controls the amount of air blown to be small when the system is in operation, and to increase the amount of air blown when the system is stopped and cooled.

〔作用〕 本発明においては、停止冷却時に通常運転時よりも送風
量が多くなり、この空気によって原料通路が強制的に冷
却されるので、触媒が速やかに冷却されるようになる。
[Function] In the present invention, the amount of air blown during stop cooling is larger than during normal operation, and the raw material passage is forcibly cooled by this air, so that the catalyst is quickly cooled.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により詳細に説明する。第
1図は本発明に係る燃料電池用改質装置の冷却装置の第
1の実施例が備えられた燃料電池システムを示す構成図
、第2図は改質装置の拡大断面図で、これらの図におい
て符号1で示すものは改質装置を示し、それぞれ有底円
筒状の内部空間を有しかつ有底円筒状に形成された内ケ
ース1aおよび外ケース1bと、外ケース1bの外側を
覆うカバー1cなどから構成されている。外ケース1b
は開口部を下方へ向けた内ケース1aに被冠され、これ
らの部材の内部空間は開口縁付近において互いに連通さ
れている。またこれらケースの内部空間には後述する原
料を化学反応させる触媒からなる触媒層2が設けられて
いる。触媒としては例えば銅系,銅一亜鉛系,銅−クロ
ム系触媒などを用いることができる。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing a fuel cell system equipped with a first embodiment of a cooling device for a fuel cell reformer according to the present invention, and FIG. 2 is an enlarged sectional view of the reformer. In the figure, the reference numeral 1 indicates a reforming device, which includes an inner case 1a and an outer case 1b each having a cylindrical inner space with a bottom and a cylindrical shape with a bottom, and covers the outside of the outer case 1b. It is composed of a cover 1c and the like. Outer case 1b
are covered with an inner case 1a with the opening facing downward, and the internal spaces of these members are communicated with each other near the edge of the opening. Further, in the internal space of these cases, a catalyst layer 2 made of a catalyst for chemically reacting raw materials, which will be described later, is provided. As the catalyst, for example, copper-based, copper-zinc-based, copper-chromium-based catalysts, etc. can be used.

3は内外ケースの下方に配設された気化器で、中央部は
内ケース1aの開口部内に臨むようにコイル状に巻回さ
れている。この気化器3の入口側は改質装置人口弁4お
よび供給ボンブ5を備えた原料供給管路6を経てメタノ
ールと水とを所定の比率で混合した原料を溜めた原料タ
ンク7に接続され、出口側は前記触媒層2の入口側にあ
たる内ケース1aの内部空間の頂部に接続されている。
Reference numeral 3 designates a carburetor disposed below the inner and outer cases, and the central portion thereof is wound into a coil shape so as to face into the opening of the inner case 1a. The inlet side of the vaporizer 3 is connected via a raw material supply pipe 6 equipped with a reformer population valve 4 and a supply bomb 5 to a raw material tank 7 containing a raw material mixed with methanol and water at a predetermined ratio. The outlet side is connected to the top of the internal space of the inner case 1a, which corresponds to the inlet side of the catalyst layer 2.

触媒層2の出口側にあたる外ケース1bの内部空間の頂
部は、後述する水素供給管路で燃料電池本体16に接続
されている。すなわち、気化器3と内外ケースとによっ
て原料を気化させて触媒層2に導いて水素ガスに改質さ
せると共に、燃料電池本体16に接続された原料通路A
が形成されている。
The top of the internal space of the outer case 1b, which corresponds to the outlet side of the catalyst layer 2, is connected to the fuel cell main body 16 through a hydrogen supply pipe, which will be described later. That is, the raw material is vaporized by the vaporizer 3 and the inner and outer cases, guided to the catalyst layer 2, and reformed into hydrogen gas, and the raw material passage A connected to the fuel cell main body 16.
is formed.

前記気化器3の下方には水素バーナ8およびメタノール
バーナ9が配設されている。メタノールバーナ9はバー
ナ入口弁11およびバーナボンプ12を備えた燃料供給
管路13を経てメタノールを溜めた燃料タンク14に接
続されている。
A hydrogen burner 8 and a methanol burner 9 are arranged below the vaporizer 3. The methanol burner 9 is connected via a fuel supply line 13 having a burner inlet valve 11 and a burner pump 12 to a fuel tank 14 storing methanol.

ここで、バーナ上方の空間と内外ケース間に形成された
空間とは、内ケース1aの頂部を貫通する連絡管1dで
連通されており、内外ケース間に形成された空間と、カ
バー10で外ケース1bの外側に形成された空間とは外
ケース1bの開口縁付近で互いに連通されている。した
がって、メタノールバーナ9等で加熱された加熱ガスは
、内ケース1aの内側から内外ケース間を経て外ケース
1bの外側を流れた後に、外部に排出されるように流れ
る。すなわち、内外ケースla,lbおよびカバーIC
によって、加熱ガスを前記原料通路Aを加熱するように
流す加熱通路Bが形成されている。
Here, the space above the burner and the space formed between the inner and outer cases are communicated by a communication pipe 1d penetrating the top of the inner case 1a, and the space formed between the inner and outer cases is connected to the outer part by the cover 10. The space formed outside the case 1b communicates with the space near the opening edge of the outer case 1b. Therefore, the heated gas heated by the methanol burner 9 or the like flows from the inside of the inner case 1a through the space between the inner and outer cases, and then flows to the outside of the outer case 1b, and then is discharged to the outside. That is, the inner and outer cases la, lb and the cover IC
Thus, a heating passage B is formed through which heating gas flows to heat the raw material passage A.

15は前記加熱通路Bに設けられこの加熱通路Bに外気
を供給するバーナブロワである。このバーナブロワ15
は燃料電池の運転に必要とされる送風量よりも多い風量
を送風できるものが用いられている。そして、バーナブ
ロワ15の出口側には、このバーナブロワ15の送風量
を制御する制御手段としての可変絞りCが設けられてい
る。この可変絞りCは、絞り弁などからなり、通路断面
積を変化させることによって、送風量を燃料電池の運転
時には少なくすると共に、停止冷却時には多くするよう
に制御する。なお、バーナブロヮ15の送風量の制御は
、バーナプロワ15の回転速度を変化させることによっ
て行うこともできる。
A burner blower 15 is provided in the heating passage B and supplies outside air to the heating passage B. This burner blower 15
The air blower is capable of blowing a larger amount of air than that required to operate the fuel cell. A variable throttle C is provided on the outlet side of the burner blower 15 as a control means for controlling the amount of air blown by the burner blower 15. The variable throttle C is composed of a throttle valve or the like, and by changing the cross-sectional area of the passage, the variable throttle C is controlled so that the amount of air blown is decreased when the fuel cell is in operation, and increased when the fuel cell is stopped and cooled. Note that the amount of air blown by the burner blower 15 can also be controlled by changing the rotational speed of the burner blower 15.

16は燃料電池本体であり、陽極と陰極との間に電解質
を介在させた電池セルを多数個積層して構成されており
、陽極の入口側は酸素人口弁17、セルブロワl8、四
方弁19が備えられた酸素供給管路20で改質装置1の
燃焼空気出口に接続されている。四方弁19は第3図に
拡大して示すように、燃料電池本体16を昇温させると
きは破線で示すようにセルブロワ18に改質装置1で加
熱された加熱ガスを供給し、冷却時には外気をセルブロ
ワ18に供給するように酸素供給管路20を切り換える
ものである。一方、陰極の入口側は水素人口弁21およ
びリザーブタンク22が備えられた水素供給管路23で
触媒層2の出口側に接続されている。24は陽極の出口
側に接続された排気管路で、酸素出目弁25を介して大
気中に開放されている。26は陰極の出口側に接続され
た水素回収管路であり、燃料電池本体16で反応しなか
った水素を熱源として利用するために前記改質装置1へ
戻すものであり、リン酸回収器27および水素出目弁2
8を介して前記水素バーナ8に接続されている。29は
バイパス弁30を有するバイパス管路で、水素出目弁2
8の出口側と前記リザーブタンク22との間を互いに連
通している。
Reference numeral 16 denotes a fuel cell main body, which is constructed by stacking a large number of battery cells with an electrolyte interposed between an anode and a cathode, and an oxygen population valve 17, a cell blower l8, and a four-way valve 19 are installed on the inlet side of the anode. It is connected to the combustion air outlet of the reformer 1 with an oxygen supply line 20 provided. As shown in an enlarged view in FIG. 3, the four-way valve 19 supplies the heated gas heated by the reformer 1 to the cell blower 18 as shown by the broken line when raising the temperature of the fuel cell main body 16, and when cooling the fuel cell main body 16, it supplies the heated gas heated by the reformer 1 to the cell blower 18. The oxygen supply line 20 is switched so that the oxygen supply line 20 is supplied to the cell blower 18. On the other hand, the inlet side of the cathode is connected to the outlet side of the catalyst layer 2 through a hydrogen supply pipe 23 equipped with a hydrogen population valve 21 and a reserve tank 22. Reference numeral 24 denotes an exhaust pipe connected to the outlet side of the anode, which is opened to the atmosphere via an oxygen outlet valve 25. A hydrogen recovery pipe 26 is connected to the outlet side of the cathode, and is used to return hydrogen that has not reacted in the fuel cell main body 16 to the reformer 1 for use as a heat source. and hydrogen outlet valve 2
It is connected to the hydrogen burner 8 via 8. 29 is a bypass pipe line having a bypass valve 30, and a hydrogen outlet valve 2
8 and the reserve tank 22 are communicated with each other.

なお、31は燃料電池本体16の出力側にダイオード3
2を介して接続された負荷としてのモータ、33はモー
タ31と同様に接続されたバソテリである。
Note that 31 is a diode 3 on the output side of the fuel cell main body 16.
A motor as a load is connected through 2, and 33 is a battery connected in the same way as the motor 31.

このように構成された燃料電池システムにおいては、バ
ーナボンプ12で加圧されたメタノールがメタノールバ
ーナ9に供給され、バーナブロワ15で供給される外気
によって燃焼する。このため、この燃焼によって加熱ガ
スが発生し、加熱ガスは加熱通路Bを気化器3および触
媒層2を加熱しながら流れて、燃料電池本体16に供給
される。
In the fuel cell system configured in this manner, methanol pressurized by the burner bomb 12 is supplied to the methanol burner 9, and is combusted by outside air supplied by the burner blower 15. Therefore, heating gas is generated by this combustion, and the heating gas flows through the heating passage B while heating the vaporizer 3 and the catalyst layer 2, and is supplied to the fuel cell main body 16.

一方、原料タンク7内のメタノールと水とが混合された
原料は気化器3へ供給され、ここで気化されて触媒層2
に送られ、触媒によって化学反応して水素と炭酸ガスを
主成分とするガスに改質され改質ガスとなった後に燃料
電池本体16へ供給される。そして、燃料電池本体l6
において、改質ガス中の水素ガスとセルブロヮl8によ
り供給される空気中の酸素とが触媒によって電気化学反
応し、電気エネルギが発生する。
On the other hand, the raw material in which methanol and water are mixed in the raw material tank 7 is supplied to the vaporizer 3, where it is vaporized and placed in the catalyst layer 2.
The fuel is sent to the fuel cell main body 16 after being chemically reacted by a catalyst and reformed into a gas whose main components are hydrogen and carbon dioxide. And the fuel cell body l6
In this step, hydrogen gas in the reformed gas and oxygen in the air supplied by the cell block 18 undergo an electrochemical reaction by a catalyst, and electrical energy is generated.

燃料電池システムを停止する場合は、先ず第1の時点に
おいて、供給ボンプ5およびバーナポンブ12の停止操
作を開始し、これらポンプが停止操作開始後ある一定の
時間経過後に停止するようにポンプ出力を段階的あるい
は連続的に徐々に低下させ、気化器3に供給される原料
およびメタノールバーナ9に供給されるメタノールの供
給量を徐々に少なくする。このとき、メタノールバーナ
9による発熱量は小さく抑えながら、次式に示すように
気化された原料ガスが化学反応する時に発生する吸熱作
用を利用して、触媒N2を冷却する。
When stopping the fuel cell system, first, at a first point in time, the operation to stop the supply pump 5 and the burner pump 12 is started, and the pump output is stepped so that these pumps are stopped after a certain period of time has elapsed after the start of the stop operation. The amount of raw material supplied to the vaporizer 3 and the amount of methanol supplied to the methanol burner 9 are gradually decreased by gradually decreasing the amount of the raw material supplied to the vaporizer 3 and the amount of methanol supplied to the methanol burner 9. At this time, while suppressing the amount of heat generated by the methanol burner 9 to a small value, the catalyst N2 is cooled by utilizing the endothermic action that occurs when the vaporized raw material gas undergoes a chemical reaction as shown in the following equation.

C■30H +H20 −3Hz+COz −11.8
 Kcalこのような操作と同時に可変絞りCを通路断
面積が最大になるように制御し、バーナブロヮ15で運
転時よりも多くの風量を加熱通路B内に供給し続ける。
C■30H +H20 -3Hz+COz -11.8
Kcal At the same time as this operation, the variable throttle C is controlled so that the cross-sectional area of the passage is maximized, and the burner blower 15 continues to supply a larger amount of air into the heating passage B than during operation.

なお、四方弁19は冷却側とし、外気を供給して燃料電
池本体16を冷却する。
Note that the four-way valve 19 is on the cooling side and supplies outside air to cool the fuel cell main body 16.

バーナブロワ15よる冷却を行いながらある時間経過し
た第2の時点で、バイパス弁3oを開いて水素人口弁2
lおよび水素出目弁28を閉じ、改質ガスを水素バーナ
8に供給するようにする。
At a second point in time when a certain period of time has elapsed while cooling by the burner blower 15, the bypass valve 3o is opened and the hydrogen population valve 2 is opened.
1 and the hydrogen outlet valve 28 are closed to supply reformed gas to the hydrogen burner 8.

そして、さらにある時間経過した第3の時点において、
供給ポンプ5およびバーナボンブ12を完全に停止し、
改質装置人口弁4およびバーナ入口弁l1を閉じる。第
3の時点までの時間は、最大でも触媒層2の温度が原料
をほとんど化学反応させない温度にまで低下するまでの
時間である。この温度は通常110〜180’c程度で
ある。すなわち、何らかの理由で空気が改質装置1内に
侵入し、触媒層2が酸化発熱反応するようなことがあっ
ても、触媒層2が使用温度範囲の上限側の臨界温度を越
えて著しく劣化するようなことがないような安全な温度
である。詳述すれば、この安全な温度の最高値は通常運
転温度(効率の良い使用温度の上限付近)よりも20〜
50℃低い温度であり、最低値は使用温度の下限よりも
約20℃低い温度である。さらに、改質装置1から水素
の発生がなくなった第4の時点において、バイパス弁3
0を閉じる。この状態でバーナブロワ15はそのまま運
転をし続け、触媒層2の温度が触媒活性温度領域よりも
低くなった第5の時点においてバーナブロワ15を停止
し、セル温度が所定の温度にまで低下した時点でセルブ
ロワ18を停止し、燃料電池システムの停止操作を終了
する。停止操作終了後の改質装置1は、改質装置人口弁
4と水素人口弁21とバイパス弁30とによって密閉さ
れているために、流入する空気は全く生じないかあって
もきわめて少量であり、酸化発熱によって生じる劣化は
なく、終了後の保存も問題はない。
Then, at a third point in time after a certain amount of time has elapsed,
Completely stop the supply pump 5 and burner bomb 12,
Close the reformer population valve 4 and burner inlet valve l1. The time up to the third point is at most the time required for the temperature of the catalyst layer 2 to drop to a temperature at which almost no chemical reaction occurs with the raw materials. This temperature is usually about 110 to 180'C. In other words, even if air enters the reformer 1 for some reason and the catalyst layer 2 undergoes an oxidative exothermic reaction, the catalyst layer 2 will exceed the critical temperature at the upper limit of the operating temperature range and deteriorate significantly. It is a safe temperature that will not cause any damage. To be more specific, the maximum safe temperature is 20 to 20 degrees higher than the normal operating temperature (near the upper limit of efficient operating temperature).
The temperature is 50° C. lower, and the minimum value is about 20° C. lower than the lower limit of the operating temperature. Furthermore, at a fourth point in time when hydrogen is no longer generated from the reformer 1, the bypass valve 3
Close 0. In this state, the burner blower 15 continues to operate, and at the fifth point in time when the temperature of the catalyst layer 2 becomes lower than the catalyst activation temperature range, the burner blower 15 is stopped, and when the cell temperature drops to a predetermined temperature, the burner blower 15 is stopped. The cell blower 18 is stopped, and the fuel cell system stopping operation is completed. After the stop operation is completed, the reformer 1 is sealed by the reformer population valve 4, the hydrogen population valve 21, and the bypass valve 30, so that no air flows in, or at least a very small amount of air flows into the reformer 1. There is no deterioration caused by oxidative heat generation, and there is no problem with storage after completion.

したがって、加熱通路B内に運転時の送風量よりも多く
の空気を流すことによって、原料通路A内の触媒層2を
強制空冷し、触媒層2の温度を速やかに活性温度頷域以
下に下げることができる。
Therefore, by flowing air in the heating passage B in an amount larger than the amount of air blown during operation, the catalyst layer 2 in the raw material passage A is forcedly air-cooled, and the temperature of the catalyst layer 2 is quickly lowered to below the activation temperature range. be able to.

本実施例においては、原料が触媒層2で化学反応すると
きに発生する吸熱作用も利用して冷却しているので、触
媒層2をより効果的に冷却することができる。
In this embodiment, since the endothermic action that occurs when the raw material undergoes a chemical reaction in the catalyst layer 2 is also utilized for cooling, the catalyst layer 2 can be cooled more effectively.

このように本発明は、停止冷却時に加熱通路Bに運転時
よりも多くの空気を送風することによって、冷却効果を
高めるようにしたものであるから、送風装置としては1
台で大きな送風能力を有するものに限定されるものでは
なく、送風装置を制御する手段としても可変絞りCに限
定されるものではない。すなわち、第4図〜第8図は本
発明に係る燃料電池用改質装置の冷却装置の他の実施例
を示す改質装置の構成図であり、第4図および第5図は
第2および第3の実施例を示す。これらの実施例は何れ
も加熱通路Bの入口側に2台のバーナプロワ15.15
を設けたものである。そして、第2の実施例においては
、燃料電池システムの運転時には一方のバーナブロワ1
5のみを運転し、停止冷却時に両方のバーナブロワ15
.15を同時に運転することによって送風量を制御する
。一方、第3の実施例においては、運転するバーナプロ
ワ15の台数および絞り弁41の操作で送風量を制御す
る。
In this way, the present invention is designed to enhance the cooling effect by blowing more air into the heating passage B during stop cooling than during operation, so the blowing device is
The present invention is not limited to a stand having a large air blowing capacity, and the means for controlling the blower is not limited to the variable diaphragm C. That is, FIGS. 4 to 8 are configuration diagrams of a reformer showing other embodiments of the cooling device for a fuel cell reformer according to the present invention, and FIGS. A third example is shown. In both of these embodiments, two burner blowers 15.15 are installed on the inlet side of the heating passage B.
It has been established. In the second embodiment, when the fuel cell system is operated, one burner blower 1 is
5 and both burner blowers 15 when stopped and cooled.
.. 15 at the same time to control the amount of air blown. On the other hand, in the third embodiment, the amount of air blown is controlled by the number of burner blowers 15 being operated and the operation of the throttle valve 41.

第6図は第4の実施例を示し、2台の正逆転機能および
耐熱性を有するバーナプロワ15を用い、これらバーナ
ブロワ15の一方を加熱通路Bの出口側に三方切換弁4
2を介して設けたものである。
FIG. 6 shows a fourth embodiment, in which two burner blowers 15 having a forward/reverse function and heat resistance are used, and one of these burner blowers 15 is connected to the outlet side of the heating passage B with a three-way switching valve 4.
2.

図中実線は運転時における空気の流れを示し、破線およ
び鎖線は停止冷却時の空気の流れを示す。
In the figure, solid lines indicate air flow during operation, and broken lines and chain lines indicate air flow during stop cooling.

第7図は第5の実施例を示し、加熱通路Bの両側にそれ
ぞれ三方切換弁4’2.42を介してバーナプロワ15
.15を設けると共に、出口側のバーナブロワ15の送
風能力を太き《したものである。図中実線は運転時にお
ける空気の流れを示し、破線は停止冷却時の空気の流れ
を示す。この実施例によれば、バーナプロワ15に耐熱
性を持たせることなく、冷却風を加熱通路Bの出口側か
ら入口側へ流すことができる。
FIG. 7 shows a fifth embodiment in which a burner blower 15 is connected to each side of the heating passage B via a three-way switching valve 4'2.42.
.. 15 is provided, and the blowing capacity of the burner blower 15 on the outlet side is increased. In the figure, the solid line indicates the air flow during operation, and the broken line indicates the air flow during stop cooling. According to this embodiment, the cooling air can flow from the outlet side to the inlet side of the heating passage B without imparting heat resistance to the burner blower 15.

第8図は第6の実施例を示し、2台のバーナブロワ15
のうち一方を加熱通路Bの出口側に三方切換弁42を介
して設けると共に、加熱通路Bの中央部に停止冷却時の
みに使用する排気口43を設けたものである。このよう
にすれば、図中実線で運転時における空気の流れを示し
、破線で停止冷却時の空気の流れを示すように、触媒層
2を両側から冷却することができる。
FIG. 8 shows a sixth embodiment, in which two burner blowers 15
One of them is provided on the exit side of the heating passage B via a three-way switching valve 42, and an exhaust port 43 is provided in the center of the heating passage B to be used only during stop cooling. In this way, the catalyst layer 2 can be cooled from both sides, as the solid line in the drawing shows the air flow during operation, and the broken line shows the air flow during stop cooling.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、バーナで加熱され
た加熱ガスを流す加熱通路に燃料電池システムの運転に
必要とされる送風量よりも多い風量を送風できる送風装
置を設け、この送風装置を運転時には送風量が少なく、
停止冷却時には送風量が多くなるように制御する制御手
段を設けたから、停止冷却時において加熱通路に通常運
転時よりも多くの量の空気を送風し、この空気によって
触媒を速やかに冷却することできる。
As explained above, according to the present invention, a blower device capable of blowing a larger amount of air than that required for operation of a fuel cell system is provided in a heating passage through which heated gas heated by a burner flows, and the blower device When driving, the amount of airflow is low,
Since a control means is provided to control the amount of air blown to increase during stop cooling, a larger amount of air is blown into the heating passage during stop cooling than during normal operation, and this air can quickly cool the catalyst. .

したがって、従来の燃料電池システムに簡単な変更を施
すだけで、停止時に速やかに触媒を冷却し保存すること
ができるから、構造が複雑になることなく、触媒の改質
能力が低下するのを防止することができる。
Therefore, by making a simple modification to a conventional fuel cell system, the catalyst can be quickly cooled and stored during shutdown, thereby preventing the catalyst's reforming ability from decreasing without complicating the structure. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃料電池用改質装置の冷却装置の
第1の実施例が備えられた燃料電池システムを示す構成
図、第2図は改質装置の拡大断面図、第3図は四方弁を
示す構成図、第4図〜第8図は第2〜第6の実施例を示
す改質装置の構成図である。 1・・・・改質装置、2・・・・触媒層、3・・・・気
化器、5・・・・供給ポンプ、9・・・・メタノールバ
ーナ、12・・・・バーナポンプ、15・・・・バーナ
ブロワ、16・・・・燃料電池本体、A・・・・原料通
路、B・・・・加熱通路、C・・・・可変絞り。 特許出願人 ヤマハ発動機株式会社
FIG. 1 is a configuration diagram showing a fuel cell system equipped with a first embodiment of a cooling device for a fuel cell reformer according to the present invention, FIG. 2 is an enlarged sectional view of the reformer, and FIG. 1 is a block diagram showing a four-way valve, and FIGS. 4 to 8 are block diagrams of reforming apparatuses showing second to sixth embodiments. DESCRIPTION OF SYMBOLS 1... Reformer, 2... Catalyst layer, 3... Vaporizer, 5... Supply pump, 9... Methanol burner, 12... Burner pump, 15 ... Burner blower, 16... Fuel cell main body, A... Raw material passage, B... Heating passage, C... Variable throttle. Patent applicant Yamaha Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 原料を気化させ触媒に導いて水素ガスに改質する共に燃
料電池本体に接続された原料通路と、外部から導入され
バーナで加熱された加熱ガスを前記原料通路を加熱する
ように流す加熱通路とを有する改質装置を備えた燃料電
池において、前記加熱通路に燃料電池の運転に必要とさ
れる送風量よりも多い風量を送風できる送風装置を設け
、この送風装置を運転時には送風量が少なく、停止冷却
時には送風量が多くなるように制御する制御手段を設け
てなる燃料電池用改質装置の冷却装置。
a raw material passage that vaporizes the raw material and guides it to a catalyst to be reformed into hydrogen gas and is also connected to the fuel cell main body; a heating passage that allows heating gas introduced from the outside and heated by a burner to flow through the raw material passage so as to heat the raw material passage; In a fuel cell equipped with a reformer having a reformer, a blower device capable of blowing a larger amount of air than that required for operation of the fuel cell is provided in the heating passage, and when the blower device is in operation, the amount of air blows is small; A cooling device for a fuel cell reformer, which is provided with a control means for controlling the amount of air blown to be increased during stop cooling.
JP63285462A 1988-11-11 1988-11-11 Cooling device for fuel cell reformer Expired - Fee Related JP2789201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285462A JP2789201B2 (en) 1988-11-11 1988-11-11 Cooling device for fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285462A JP2789201B2 (en) 1988-11-11 1988-11-11 Cooling device for fuel cell reformer

Publications (2)

Publication Number Publication Date
JPH02132770A true JPH02132770A (en) 1990-05-22
JP2789201B2 JP2789201B2 (en) 1998-08-20

Family

ID=17691828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285462A Expired - Fee Related JP2789201B2 (en) 1988-11-11 1988-11-11 Cooling device for fuel cell reformer

Country Status (1)

Country Link
JP (1) JP2789201B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743537B2 (en) 2000-12-11 2004-06-01 Toyota Jidosha Kabushiki Kaisha Hydrogen gas generating systems, fuel cell systems and methods for stopping operation of fuel cell system
JP2006213565A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Hydrogen generator
WO2010058602A1 (en) 2008-11-20 2010-05-27 パナソニック株式会社 Hydrogen generation device and fuel cell system using same
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227374A (en) * 1985-03-30 1986-10-09 Toshiba Corp Fuel cell power generation system
JPS6266578A (en) * 1985-09-19 1987-03-26 Fuji Electric Co Ltd Air cooling type fuel cell power generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227374A (en) * 1985-03-30 1986-10-09 Toshiba Corp Fuel cell power generation system
JPS6266578A (en) * 1985-09-19 1987-03-26 Fuji Electric Co Ltd Air cooling type fuel cell power generating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743537B2 (en) 2000-12-11 2004-06-01 Toyota Jidosha Kabushiki Kaisha Hydrogen gas generating systems, fuel cell systems and methods for stopping operation of fuel cell system
DE10160556B4 (en) * 2000-12-11 2010-09-30 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Hydrogen gas generating systems and methods for stopping the operation of a hydrogen gas generating system
JP2006213565A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Hydrogen generator
JP4604746B2 (en) * 2005-02-04 2011-01-05 パナソニック株式会社 Hydrogen generator
WO2010058602A1 (en) 2008-11-20 2010-05-27 パナソニック株式会社 Hydrogen generation device and fuel cell system using same
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes

Also Published As

Publication number Publication date
JP2789201B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
US8940448B2 (en) Fuel cell system
JP2893344B2 (en) Fuel cell system
EP2351703A1 (en) Hydrogen generation device and fuel battery system having same
JP2005509261A (en) Stopping method for a fuel cell fuel processing system
US7291411B2 (en) Fuel cell shutdown and startup purge using a stoichiometric staged combustor
JP2002313389A (en) Starting control device for fuel cell
JPH02226664A (en) Apparatus and method for driving fuel cell
JP6804661B2 (en) Fuel cell temperature distribution control system, fuel cell, and temperature distribution control method
JP2001345114A (en) Fuel cell system
EP1211744A2 (en) Fuel cell power plant with reformer
JP2007517372A (en) Fuel cell startup method using fuel purge
US20070148528A1 (en) Fuel cell generating system
JPH02132770A (en) Device for cooling reforming device of fuel cell
US20070037027A1 (en) Fuel cell power plant
JP2541288B2 (en) How to shut down the fuel cell
JP4968984B2 (en) Fuel cell reformer
JP2010027217A (en) Fuel cell system
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JP2007165130A (en) Fuel cell system and control method of fuel cell system
JPH02132766A (en) Stopping method for fuel cell system
JPH02132767A (en) Stopping method for fuel cell system
US20200006797A1 (en) Fuel cell system
JP2791951B2 (en) Fuel cell
JP4887561B2 (en) Fuel cell system
JP2008130441A (en) Fuel cell system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees