JPH02132395A - Multidirectional laser doppler speed indicator - Google Patents
Multidirectional laser doppler speed indicatorInfo
- Publication number
- JPH02132395A JPH02132395A JP63287079A JP28707988A JPH02132395A JP H02132395 A JPH02132395 A JP H02132395A JP 63287079 A JP63287079 A JP 63287079A JP 28707988 A JP28707988 A JP 28707988A JP H02132395 A JPH02132395 A JP H02132395A
- Authority
- JP
- Japan
- Prior art keywords
- light
- frequency
- angular frequency
- crosstalk
- beams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 claims abstract description 24
- 230000003287 optical effect Effects 0.000 claims description 17
- 239000013598 vector Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 18
- 238000010586 diagram Methods 0.000 description 6
- 239000013307 optical fiber Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/36—Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
- G01P3/366—Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light by using diffraction of light
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Power Engineering (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、レーザ光を被測定体に照射しその光周波数の
変移つまりドップラシフトより、被測定体の速度ないし
変位を測定するレーザドップラ速度計に関し、特に、2
次元ないし3次元の速度ベクトルを1つの測定器で同時
に測定する測定装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to laser Doppler velocity, which measures the velocity or displacement of a measured object by irradiating the measured object with a laser beam and based on the change in the optical frequency, that is, the Doppler shift. Regarding the total, in particular, 2
The present invention relates to a measuring device that simultaneously measures dimensional or three-dimensional velocity vectors with one measuring device.
[従来の技術及びその問題点]
従来、2次元ないし3次元の速度ヘクトルを計測する場
合、1次元の速度計を2台ないし3台刊合せ、各測定器
からの出力を計算して速度ベクトルを求めていた。この
場合、次元の数に比例して装置の大きさとコストが増大
し、かつ測定毎に測定プローブの高精度な設定も必要で
あった。例えば、特開昭57−93258号に見られる
ように、光ファイバを用い、1次元速度計を複数台使用
する多茨1元蒼度計の特許もある。ところが、多′次元
測定においては以下の実用上の問題点が発生する。[Prior art and its problems] Conventionally, when measuring a two-dimensional or three-dimensional velocity hector, two or three one-dimensional velocity meters are combined, the output from each measuring device is calculated, and a velocity vector is obtained. was looking for. In this case, the size and cost of the apparatus increase in proportion to the number of dimensions, and it is also necessary to set the measurement probe with high precision for each measurement. For example, as seen in Japanese Patent Laid-Open No. 57-93258, there is a patent for a multi-thorn one-dimensional pallor meter that uses an optical fiber and a plurality of one-dimensional velocimeters. However, the following practical problems occur in multi-dimensional measurements.
測定部位の分解能を上げるためには、各速度計のプロー
ブ光を一点に照射することになる。被測定体として光を
散乱する面を対象とする場合が多いため、ある測定プロ
ーブからの散乱光が他のプローブの方でも集光され迷光
となり、プローブ間のクロストークを発生ずる。そして
、クロスl− −クは、本来の信号と分離が出来ず、事
実」二速度計測は不可能になる。この現象を第1図を用
いて説明する。In order to increase the resolution of the measurement site, the probe light of each speedometer must be irradiated to one point. Since the object to be measured is often a surface that scatters light, scattered light from one measurement probe is collected by other probes and becomes stray light, resulting in crosstalk between the probes. The cross-link cannot be separated from the original signal, and in fact, two-speed measurement becomes impossible. This phenomenon will be explained using FIG.
第1図は2次元の速度を計測する場合の例である。図に
おいて、被測定体である散乱粒子5は、速度ベクトルV
をもち、これはX方向速度ベクトル→
→
■8とY方向速度ベクトルvvに分解される。そして、
ベクトルV,と土αの角度をなす2軸の測定プローブ1
、2から、角周波数ω1、ω2の光を照射した場合、レ
ーザ光の波数ベクトルの絶対値をK、速度l\ク1・ル
の絶対値をVうIV,とすると、トップラ角周波数シフ
トΔG)う,八〇,は(1), (2)式の様になる
。FIG. 1 is an example of measuring two-dimensional velocity. In the figure, the scattering particle 5, which is the object to be measured, has a velocity vector V
, which is the velocity vector in the X direction →
→ It is decomposed into 8 and the Y-direction velocity vector vv. and,
Two-axis measurement probe 1 forming an angle between vector V and soil α
, 2, when irradiating light with angular frequencies ω1 and ω2, let the absolute value of the wave number vector of the laser beam be K, and the absolute value of the velocity l ) U, 80, becomes as in equations (1) and (2).
ΔωX = 2−K−Vx−sinc+
( 1 )△(J ,: 24L1V1cosα
( 2 )1→5→1の経路を通る信号光のド
ップラシフ1・△ω151と、2→5→】のg路を通る
クロス1・−ク光のトツブラシフ1・Δω25+は(3
), (4)式の様になる。ΔωX = 2-K-Vx-sinc+
(1)△(J,: 24L1V1cosα
(2) The Doppler shift 1・Δω151 of the signal light passing through the path 1→5→1 and the Totsuburashi shift 1・Δω25+ of the cross 1・−k light passing through the g path 2→5→】 are (3
), as shown in equation (4).
Δω151=Δ(J x一 △ω, (3)△
ω251 − ( ω2−ωI )一 Δω, (
4)2軸の光源として2つの独立なレーザ光を用いると
、2つのレーザ光の光周波数の差ω2−ω1がクaスト
ーク成分に加わる。通常2つの独立なレーザの光周波数
の差ω2−ω1は時間とともにランダムかつ大きく変化
ずるためクロストーク成分の角周波数△ω251は不規
則な変化をする。たとえ、ω2二01と出来ても、速度
へク1・ルの向きにより2つの1・ツブラシフト成分△
ω151、△ω2,,の大小関係が変化して本来の信号
成分△ω151だけを分離出来ない。このため、 He
−Neレーザのような単一周波数しか選択出来ないレー
ザな光源とする1次元レーザ速度計を複数台組み合わせ
て多次元測定することは、実用上不可能である。Δω151=Δ(J x - △ω, (3)△
ω251 − (ω2−ωI)−Δω, (
4) When two independent laser beams are used as a biaxial light source, the difference ω2−ω1 in the optical frequency of the two laser beams is added to the quastoke component. Usually, the difference ω2-ω1 between the optical frequencies of two independent lasers changes randomly and greatly over time, so the angular frequency Δω251 of the crosstalk component changes irregularly. Even if it is possible to obtain ω2201, there will be two 1-tubular shift components △ depending on the direction of the speed hexle.
The magnitude relationship between ω151, Δω2, . changes, and only the original signal component Δω151 cannot be separated. For this reason, He
It is practically impossible to perform multidimensional measurements by combining a plurality of one-dimensional laser velocimeters that use a laser light source such as a -Ne laser that can only select a single frequency.
この現象を避けるには、明らかに周波数の違う2種類の
レーザな用いる方法があるが、A「イオンレーザのよう
にたいへん大型でコストの高いものになり、かつ軸の数
に比例してコストが増大ずる欠点を除去できない。To avoid this phenomenon, there is a method of using two types of lasers with clearly different frequencies, but A. Unable to eliminate growing defects.
本発明は、従来の1次元速度計を複数組み合わせた多次
元速度計ではクロストーク光のある場合測定できないと
いう欠点を解消し、多次元速度測定が可能な単一光源か
らなる小型なレーザドップラ速度計を提供することを目
的とする。The present invention solves the drawback that a conventional multidimensional speedometer that combines multiple one-dimensional speedometers cannot measure when there is crosstalk light, and provides a compact laser Doppler speedometer that uses a single light source that can measure multidimensional speeds. The purpose is to provide a
[問題点を解決するための手段]
単一光源からのレーザ光を2本以上の複数ビームに分割
し、かつ各ビームの光周波数を一定量ずつシフトさせ、
これら複数本のビームの光周波数がずへて異なるように
設定し、そのビームをプローブ光とし、各プローブ光と
異なる光周波数を持つビームを参照光として用い、検波
電流をバンドパスフィルタに通して必要な信号を得るよ
うにした。[Means for solving the problem] The laser beam from a single light source is divided into two or more beams, and the optical frequency of each beam is shifted by a certain amount.
The optical frequencies of these multiple beams are set to be different from each other, the beam is used as a probe beam, the beam with an optical frequency different from each probe beam is used as a reference beam, and the detection current is passed through a bandpass filter. I got the signal I needed.
[作用]
単一光源を使用し、プローブ光の光周波数を一定間隔て
違えた複数のビームを用い、参照光として相互のビーム
な却み合わせて使用しているので、1台の装置で多次元
速度計測が行えると共に、周波数分離により、プローブ
間のクロストークを除去できる。[Operation] A single light source is used, multiple beams with different optical frequencies of the probe light are used at regular intervals, and each beam is used as a reference light. In addition to dimensional velocity measurement, frequency separation eliminates crosstalk between probes.
[実施例コ 本発明の一実施例を第2図を用いて説明する。[Example code] An embodiment of the present invention will be described using FIG. 2.
第2図は2次元速度計の例である。第2図において6は
レーザ光源、7は超音波偏向器を用いた周波数シフタ、
8はシフタ7のトライバ、9、 1 0,11、 12
はハーフミラー 13はレンズ、 14、15はPIN
フAトダイオートやAPDなとの゛光検出器である。レ
ーザ光源はω0の角周波数で発振しており、7の超音波
偏向器てO次と1次の2っの回折ビームに分ける。1次
回折光はトライバ8の駆動角周波数ωした(プ周波数シ
フトしてωθ+ωLになる。そして、 ωL》Δωヶ、
ωL》△ω,と設定しておく。FIG. 2 is an example of a two-dimensional speedometer. In Fig. 2, 6 is a laser light source, 7 is a frequency shifter using an ultrasonic deflector,
8 is the driver of shifter 7, 9, 1 0, 11, 12
is a half mirror, 13 is a lens, 14 and 15 are PIN
It is a photodetector such as a photodiode or APD. The laser light source oscillates at an angular frequency of ω0, and the ultrasonic deflector 7 separates it into two diffracted beams: O-order and 1st-order. The first-order diffracted light has the driving angular frequency ω of the driver 8 (the frequency is shifted to ωθ + ωL, and ωL》Δω,
ωL》△ω, is set.
まず、光検出器14に入射する光線の経路を説明する。First, the path of the light beam incident on the photodetector 14 will be explained.
角周波数ωθ+のLを持つプローブ1の照射光が、1→
5→1という経路を経てトップラシフトを受けて ω0
+ωL+Δω8−Δω,の−角周波数を持つ信号光にな
る。同時に、2→5→1の経路を経たω0−△ω,の角
周波数を持つクロス1・−ク光が人躬ずる。一方参照光
としてハーフミラー11で分離した角周波数ω0のビー
ムをハーフミラー10て混合して入射させる。この時、
参照光の光強度は信号光より十分大きい状態にしておく
。The irradiation light of probe 1 with L of angular frequency ωθ+ is 1→
Through the path 5 → 1, it undergoes a top-ra shift and ω0
The signal light has a negative angular frequency of +ωL+Δω8−Δω. At the same time, a cross 1.-k light having an angular frequency of ω0-Δω, which has passed through a path of 2→5→1, is misleading. On the other hand, as a reference light, beams of angular frequency ω0 separated by a half mirror 11 are mixed and incident on the half mirror 10. At this time,
The light intensity of the reference light is set to be sufficiently higher than that of the signal light.
この結果、光検出器14の検波電流として現われるもの
は、 1→5→1の経路を経た ωL十Δω一八〇,と
クロストーク成分のΔω,となる。そして、ωL》 △
ω。、ωL》△ω,のため△ωLを中心とするバントパ
スフィルタを通せば、クロストーク成分が除去される。As a result, what appears as the detection current of the photodetector 14 is ωL + Δω 180, which has passed through the path of 1→5→1, and the crosstalk component Δω. And ωL》 △
ω. , ωL》△ω, so if the signal is passed through a band pass filter centered on △ωL, the crosstalk component is removed.
なお、Δω151とΔω251の差の角周波数も光検出
器で検波されるが、おのおの信号強度が参照光より十分
小さいので抑圧される。同様に、光検出器15において
も、2→5→2の経路による信号成分△ω1+△ω8+
△ω,とクロストーク成分△ω,が現れ,バンドバスフ
ィルタによりクロス1・−ク成分が除去される。Note that although the angular frequency of the difference between Δω151 and Δω251 is also detected by the photodetector, each signal intensity is sufficiently smaller than that of the reference light, so it is suppressed. Similarly, in the photodetector 15, the signal component △ω1+△ω8+ due to the path 2→5→2
Δω, and a crosstalk component Δω appear, and the crosstalk component Δω is removed by the bandpass filter.
速度ベクトルを求めるための信号処理系を第3図に示す
。FIG. 3 shows a signal processing system for determining the velocity vector.
2つの光検出器 14、15から得られた検波電流は、
ωLを中心とするバントパスフィルタ16、17をへて
クロスト・−ク成分を除去し、周波数変移を電圧に変換
する周波数弁別器18、 19を通る。18、19の出
力はそれぞれVx Vv +V− + VVに比例す
るため、18、19の出力信号の和と差を20、21で
求める事によりX+ y両方向の速度成分Vx,Vy
がその方向も含めて電圧υ8,υ,として求められる。The detection current obtained from the two photodetectors 14 and 15 is
The signal passes through bandpass filters 16 and 17 centered at ωL to remove crosstalk components, and then passes through frequency discriminators 18 and 19 that convert frequency shifts into voltages. Since the outputs of 18 and 19 are proportional to Vx Vv +V- + VV, respectively, by calculating the sum and difference of the output signals of 18 and 19 using 20 and 21, the velocity components Vx, Vy in both the X+y directions can be calculated.
is obtained as the voltage υ8, υ, including its direction.
第4図は3次元測定の例である。FIG. 4 is an example of three-dimensional measurement.
基本的には前述の2次元速度計を直交する方向に2組組
み合わせた構成になっているが、2種類のトライブ周波
数をもつ超音波偏向器22、23、24を合計3台使用
する点が異なる。Basically, it has a configuration in which two sets of the aforementioned two-dimensional speedometers are combined in orthogonal directions, but the point is that a total of three ultrasonic deflectors 22, 23, and 24 with two types of tribe frequencies are used. different.
超音波偏向器23、24は22に対して2倍の角周波数
2ωして駆動される。4つのビームの光周波数ω1,ω
2,ω3,ω4はωLの差をもっている。これらのビー
ムを第5図に示すような正四角錘の斜辺に沿う方向から
照射し、頂点5上の散乱光を、同一辺からの反射光とし
て捕らえ、これを信号光とする、参照光として2ωした
け角周波数の異なるビームからの光線をハーフミラーで
分離して用いる。The ultrasonic deflectors 23 and 24 are driven at an angular frequency 2ω which is twice that of the ultrasonic deflector 22. Optical frequencies ω1, ω of the four beams
2, ω3, and ω4 have a difference of ωL. These beams are irradiated from the direction along the hypotenuse of a square pyramid as shown in Figure 5, and the scattered light on the vertex 5 is captured as reflected light from the same side, and this is used as signal light and reference light. Light rays from beams with different 2ω angular frequencies are separated by a half mirror and used.
第6図は各ビームの信号光、゛クロストーク光成分と参
照光成分そして、検波電流の角周波数成分を示す。FIG. 6 shows the signal light of each beam, the crosstalk light component, the reference light component, and the angular frequency component of the detection current.
この図で黒塗りのスペクトル成分は信号光、斜線のスペ
クトル成分はクロストーク光からのものである。各検波
電流を2ωLを中心とするバンドバスフィルタを通すこ
とにより、クロストーク成分を除去できる。そして、プ
ローブ■と■からの検波信号はXとy方向の速度成分を
含み、プローブ■と■からの検波信号はyと2方向の速
度成分を含む。そして、2次元速度計測の時と類似の方
法で周波数弁別器を通し、計算することにより3次元速
度ベクトル(Vx ,Vv ,V2)が求まる。In this figure, the black spectral components are from signal light, and the diagonally shaded spectral components are from crosstalk light. Crosstalk components can be removed by passing each detection current through a bandpass filter centered on 2ωL. The detected signals from the probes ■ and ■ include velocity components in the X and y directions, and the detected signals from the probes ■ and ■ include velocity components in the y and two directions. Then, a three-dimensional velocity vector (Vx, Vv, V2) is determined by passing it through a frequency discriminator and calculating in a manner similar to that used in two-dimensional velocity measurement.
プローブの先端部は、小型でかつ操作性の良い様に、第
7図に示すが如く光ファイバを用いてレーザ光を導くこ
とも可能である。For the tip of the probe to be compact and easy to operate, an optical fiber can be used to guide the laser beam as shown in FIG. 7.
[発明の効果コ
このように本発明によると、従来の1次元速度計を複数
用いた多次元速度計の欠点であるクロストークによる測
定不可能な状態でも、測定が可能になりかつ、光源であ
るレーザが1絹てすみ、超音波偏向器の数も少ないため
安価でかつ、小型な多次元速度計が提供できる。[Effects of the Invention] As described above, according to the present invention, even in a state where measurement is impossible due to crosstalk, which is a drawback of a conventional multidimensional speedometer using a plurality of one-dimensional speedometers, measurement is possible, and it is possible to perform measurements using a light source. Since a certain laser requires only one laser beam and the number of ultrasonic deflectors is small, an inexpensive and compact multidimensional velocity meter can be provided.
また、本速度計は参照光型であるため、プローブ光が交
差した領域以外においても信号光が得られる。このため
、ビームが交差する領域しか測定できない従来の2光束
差動型速度計よりも広いダイナミックレンジを有すると
いう特長も合わせ持つ。この特長は固体の3次元振動計
測には大変有効である。Furthermore, since this speedometer is of a reference light type, signal light can be obtained even in areas other than the area where the probe light intersects. Therefore, it also has the advantage of having a wider dynamic range than conventional two-beam differential velocimeters, which can only measure the area where the beams intersect. This feature is very effective for three-dimensional vibration measurement of solid objects.
第1図は従来装置での2次元測定時の信号光とクロスト
ーク光を説明する図、第2図は本発明による2次元速度
計の光学系の例を示す図、第3図は第2図に対する信号
処理系を示す図、第4図は本発明による3次元速度計の
光学系の一例を示す図、第5図は本発明のプローブ部の
配置例を示す図、第6図は、各点での角周波数スペクト
ルを示す図、第7図は、プローブ先端部に光ファイバを
用いた例の図である。
図 面 中、
1、2、3、4は測定プローブ
5は被測定体く光散乱粒子)
6はレーザ光源
7は超音波偏向器を用いた周波数シフタ8は7の駆動用
トライバ
9、 10、 11、 12はハーフミラ13はレンズ
14、15、25、26、27、28は光検出器16、
17はバンドバスフィルタ
18、19は周波数弁別器
20、21は加算、減算器
22は超音波偏向器を用いた周波数シフタ23、24は
22と駆動周波数が異なる周波数シック
29は光ファイバ
である。
特許出願人 日本板硝子株式会社
ti)t
tt)2
a)3
W4
参!区肥大Rクl−tン
tJJ3
ω4
W2
4クし2k1転鍵梶シスハSクLlf/θ
Wム
za)ム
ρ
妨
Za)t− 3alt
2tt)LFig. 1 is a diagram explaining signal light and crosstalk light during two-dimensional measurement with a conventional device, Fig. 2 is a diagram showing an example of the optical system of a two-dimensional speedometer according to the present invention, and Fig. 4 is a diagram showing an example of the optical system of the three-dimensional speedometer according to the present invention, FIG. 5 is a diagram showing an example of the arrangement of the probe section of the present invention, and FIG. FIG. 7, a diagram showing the angular frequency spectrum at each point, is a diagram of an example in which an optical fiber is used at the tip of the probe. In the figure, reference numerals 1, 2, 3, and 4 indicate measurement probes 5 (light scattering particles on the object to be measured), 6 indicate laser light sources 7, and frequency shifters 8 using ultrasonic deflectors; 11, 12 are half mirrors 13, lenses 14, 15, 25, 26, 27, 28 are photodetectors 16,
17 is a bandpass filter 18; 19 is a frequency discriminator 20; 21 is an adder; 22 is a frequency shifter 23 using an ultrasonic deflector; Patent applicant Nippon Sheet Glass Co., Ltd. ti)t tt)2 a)3 W4 See! ward hypertrophy R kl-t tJJ3 ω4 W2 4kshi 2k1 key turn Kajishi Suk Llf/θ W Muza)mu ρ Za)t- 3alt 2tt)L
Claims (2)
射し、その反射光のドップラシフトより被測定体の速度
ないし変位ベクトルを多次元的に計測する光学式レーザ
ドップラ速度計において、単一光源からのレーザ光を2
本以上の複数ビームに分割し、かつ各ビームの光周波数
を一定量ずつシフトさせ、複数本のビームの光周波数が
すべて異なるように設定して該ビームをプローブ光とし
、各プローブ光と異なる光周波数を持つビームを参照光
として用い、検波電流をバンドパスフィルタに通して必
要な信号を得る事を特徴とする参照光型多次元レーザド
ップラ速度計。(1) In an optical laser Doppler velocimeter that irradiates a measured object with two or more probe lights at a fixed angle and multidimensionally measures the velocity or displacement vector of the measured object from the Doppler shift of the reflected light, 2 laser beams from a single light source
The optical frequency of each beam is divided into multiple beams, and the optical frequency of each beam is shifted by a certain amount, and the optical frequencies of the multiple beams are all set to be different, and the beam is used as a probe light. A reference light type multidimensional laser Doppler velocimeter that uses a beam with a frequency as a reference light and passes the detection current through a bandpass filter to obtain the necessary signal.
ブ光を有するレーザドップラ速度計において、4本のプ
ローブ光の光角周波数をω_Lずつずらし、参照光の光
周波数として、各プローブ光の光角周波数より2ω_L
だけずれたビームを用いる事を特徴とする請求項1記載
の多次元レーザドップラ速度計。(2) In a laser Doppler velocimeter with four probe lights that measure a three-dimensional velocity vector, the optical angular frequency of the four probe lights is shifted by ω_L, and the optical frequency of each probe light is used as the reference light optical frequency. 2ω_L from the angular frequency
The multidimensional laser Doppler velocimeter according to claim 1, characterized in that the beams are shifted by a certain amount.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63287079A JP2504544B2 (en) | 1988-11-14 | 1988-11-14 | Multidimensional laser Doppler velocimeter |
US07/435,086 US4990791A (en) | 1988-11-14 | 1989-11-13 | Multi-dimensional laser Doppler velocimeter |
FR8914943A FR2639124A1 (en) | 1988-11-14 | 1989-11-14 | OPTICAL DOPPLER VELOCIMETER WITH REFERENCE BEAM FOR MULTIDIMENSIONAL MEASUREMENTS |
DE3937851A DE3937851A1 (en) | 1988-11-14 | 1989-11-14 | LASER DOPPLER SPEED METER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63287079A JP2504544B2 (en) | 1988-11-14 | 1988-11-14 | Multidimensional laser Doppler velocimeter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02132395A true JPH02132395A (en) | 1990-05-21 |
JP2504544B2 JP2504544B2 (en) | 1996-06-05 |
Family
ID=17712784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63287079A Expired - Lifetime JP2504544B2 (en) | 1988-11-14 | 1988-11-14 | Multidimensional laser Doppler velocimeter |
Country Status (4)
Country | Link |
---|---|
US (1) | US4990791A (en) |
JP (1) | JP2504544B2 (en) |
DE (1) | DE3937851A1 (en) |
FR (1) | FR2639124A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008512674A (en) * | 2004-09-13 | 2008-04-24 | ジ ユニバーシティ オブ ワイカト | Range and speed detection system |
JP2010500086A (en) * | 2006-08-09 | 2010-01-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light-emitting device specifically for flow measurement |
JP2014513301A (en) * | 2011-05-03 | 2014-05-29 | ポリテック・ゲー・エム・ベー・ハー | Apparatus and method for measuring non-contact optical vibration of a vibrating object |
JP2016080426A (en) * | 2014-10-14 | 2016-05-16 | 新日鐵住金株式会社 | Speed measuring device and speed measuring method |
WO2016092705A1 (en) * | 2014-12-12 | 2016-06-16 | 三菱電機株式会社 | Laser radar device |
JP2020106508A (en) * | 2018-09-20 | 2020-07-09 | 日本製鉄株式会社 | Speed measurement method and speed measurement device |
JP2020169876A (en) * | 2019-04-03 | 2020-10-15 | 日本製鉄株式会社 | Speed measuring method and speed measuring device |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0752227B2 (en) * | 1988-07-25 | 1995-06-05 | 大塚電子株式会社 | Light scattering measurement device |
JP2801360B2 (en) * | 1990-05-21 | 1998-09-21 | キヤノン株式会社 | Doppler speedometer |
DE4028521A1 (en) * | 1990-09-07 | 1992-03-12 | Deutsch Franz Forsch Inst | METHOD FOR DETERMINING A DOPPLER SIGNAL IN LASER-DOPPLER ANEMOMETRY, AND LASER-DOPPLER ANEMOMETER FOR IMPLEMENTING THIS METHOD |
DE9013559U1 (en) * | 1990-09-27 | 1990-12-06 | Mesacon Gesellschaft für Meßtechnik mbH, 4600 Dortmund | Optical device for measuring the speed or length of a moving surface |
DE9014815U1 (en) * | 1990-10-26 | 1991-01-24 | Mesacon Gesellschaft für Meßtechnik mbH, 4600 Dortmund | Optical device for measuring the speed or length of a moving surface by means of a measuring light beam emitted by a laser |
US5094526A (en) * | 1990-11-07 | 1992-03-10 | General Signal Corporation | Integrated optical waveguide doppler velocimeter |
US5274361A (en) * | 1991-08-15 | 1993-12-28 | The United States Of America As Represented By The Secretary Of The Navy | Laser optical mouse |
US5394233A (en) * | 1993-04-06 | 1995-02-28 | Wang; Charles P. | Apparatus for measuring high frequency vibration, motion, or displacement |
JP3279116B2 (en) * | 1994-03-22 | 2002-04-30 | 株式会社豊田中央研究所 | Laser Doppler velocimeter |
US6885968B2 (en) * | 2000-05-08 | 2005-04-26 | Automotive Technologies International, Inc. | Vehicular exterior identification and monitoring system-agricultural product distribution |
FR2720515B1 (en) * | 1994-05-27 | 1996-08-23 | Aerospatiale | Space laser observation instrument, and space vehicle comprising it. |
JP3450446B2 (en) * | 1994-08-03 | 2003-09-22 | キヤノン株式会社 | Optical displacement detector |
US6409294B1 (en) | 1997-12-21 | 2002-06-25 | Ascom Hasler Mailing Systems Ag | Digital postage franking with coherent light velocimetry |
US6220686B1 (en) | 1998-02-13 | 2001-04-24 | Ascom Hasler Mailing Systems Ag | Measurement of paper speed using laser speckle detection |
US6424407B1 (en) | 1998-03-09 | 2002-07-23 | Otm Technologies Ltd. | Optical translation measurement |
US6297878B1 (en) * | 1998-11-13 | 2001-10-02 | Rosemount Aerospace Inc. | Non-scanning, three-axis, self-referenced heterodyne laser air data sensing system |
DE50009478D1 (en) * | 1999-03-03 | 2005-03-17 | Trumpf Laser Gmbh & Co Kg | OPTICAL MODULATION DEVICE |
US7450222B1 (en) | 2007-07-02 | 2008-11-11 | The United States Of America As Represented By The United States Department Of Energy | Correlated-intensity velocimeter for arbitrary reflector |
CN102359814B (en) * | 2011-07-04 | 2012-11-07 | 苏州舜新仪器有限公司 | Three-dimensional laser motion attitude measuring system and method |
AT524725A1 (en) | 2021-01-19 | 2022-08-15 | Univ Wien Tech | Method for determining at least one velocity component of a fluid flow |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3897152A (en) * | 1974-02-04 | 1975-07-29 | Us Air Force | Laser doppler velocimeter |
US3915572A (en) * | 1974-02-27 | 1975-10-28 | Nasa | Combined dual scatter, local oscillator laser doppler velocimeter |
US3930733A (en) * | 1974-04-15 | 1976-01-06 | Atlantic Research Corporation | Process and apparatus for monitoring angular orientation |
US4397550A (en) * | 1980-02-14 | 1983-08-09 | Agency Of Industrial Science & Technology | Laser doppler velocimeter |
US4470696A (en) * | 1981-10-14 | 1984-09-11 | Systems Research Laboratories, Inc. | Laser doppler velocimeter |
US4466738A (en) * | 1982-08-23 | 1984-08-21 | Lockheed Missiles & Space Co. | Vibration sensor |
DE3435423A1 (en) * | 1984-02-21 | 1985-08-22 | Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft, dieser vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt, 3300 Braunschweig | LASER DOPPLER ANEMOMETER |
-
1988
- 1988-11-14 JP JP63287079A patent/JP2504544B2/en not_active Expired - Lifetime
-
1989
- 1989-11-13 US US07/435,086 patent/US4990791A/en not_active Expired - Lifetime
- 1989-11-14 FR FR8914943A patent/FR2639124A1/en active Granted
- 1989-11-14 DE DE3937851A patent/DE3937851A1/en not_active Ceased
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008512674A (en) * | 2004-09-13 | 2008-04-24 | ジ ユニバーシティ オブ ワイカト | Range and speed detection system |
JP2010500086A (en) * | 2006-08-09 | 2010-01-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light-emitting device specifically for flow measurement |
JP2014513301A (en) * | 2011-05-03 | 2014-05-29 | ポリテック・ゲー・エム・ベー・ハー | Apparatus and method for measuring non-contact optical vibration of a vibrating object |
JP2016080426A (en) * | 2014-10-14 | 2016-05-16 | 新日鐵住金株式会社 | Speed measuring device and speed measuring method |
WO2016092705A1 (en) * | 2014-12-12 | 2016-06-16 | 三菱電機株式会社 | Laser radar device |
JPWO2016092705A1 (en) * | 2014-12-12 | 2017-04-27 | 三菱電機株式会社 | Laser radar equipment |
JP2020106508A (en) * | 2018-09-20 | 2020-07-09 | 日本製鉄株式会社 | Speed measurement method and speed measurement device |
JP2020169876A (en) * | 2019-04-03 | 2020-10-15 | 日本製鉄株式会社 | Speed measuring method and speed measuring device |
Also Published As
Publication number | Publication date |
---|---|
FR2639124B1 (en) | 1994-04-22 |
JP2504544B2 (en) | 1996-06-05 |
DE3937851A1 (en) | 1990-05-17 |
FR2639124A1 (en) | 1990-05-18 |
US4990791A (en) | 1991-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02132395A (en) | Multidirectional laser doppler speed indicator | |
Aizu et al. | Principles and development of spatial filtering velocimetry | |
EP0092369B1 (en) | Light frequency change detecting method and apparatus | |
US3915572A (en) | Combined dual scatter, local oscillator laser doppler velocimeter | |
US4148585A (en) | Three dimensional laser Doppler velocimeter | |
US4537507A (en) | Dual beam maximum intensity laser sizing system | |
US5148229A (en) | Laser velocimetry technique for measuring the three dimensional velocity components of a particle in a fluid flow | |
US3809480A (en) | Method and apparatus for surveying the velocities of a flow field | |
US5526109A (en) | Multi-velocity component LDV | |
US4263002A (en) | Differential doppler technique for on-axis backscatter measurements | |
US4397550A (en) | Laser doppler velocimeter | |
US5831720A (en) | Velocimeter, signal processing method, and driving system using the same | |
US4725136A (en) | Method for measuring particle velocity using differential photodiode arrays | |
US7012688B2 (en) | Method and apparatus for measuring particle motion optically | |
US4040741A (en) | Polarized grating optical odometer | |
GB2237950A (en) | Particle size and velocity determination | |
CN114966730A (en) | Laser Doppler velocity measurement method and system based on double-incidence-angle frequency mixing | |
US4255048A (en) | Direction sensitive laser velocimeter | |
CN1027557C (en) | Optic frequency shift separation method for three-dimensional laser Doppler signal and three-dimensional laser Doppler speed measuring device | |
EP0105163A1 (en) | Electro-optical velocity measuring system | |
JPS59128449A (en) | Method for detecting moving speed of object | |
SU1091076A1 (en) | Optical doppler meter of reynolds stresses in liquid or gas flow | |
JPS61130887A (en) | Laser doppler speedometer | |
JPS6316232A (en) | Measuring method for diameter of laser beam | |
EP0240522A1 (en) | Method and apparatus for measuring the rotary movement of objects, especially the rotary velocity of a rotating body and the vorticity in a flowing medium |