JPH02131987A - Recording medium - Google Patents

Recording medium

Info

Publication number
JPH02131987A
JPH02131987A JP1094438A JP9443889A JPH02131987A JP H02131987 A JPH02131987 A JP H02131987A JP 1094438 A JP1094438 A JP 1094438A JP 9443889 A JP9443889 A JP 9443889A JP H02131987 A JPH02131987 A JP H02131987A
Authority
JP
Japan
Prior art keywords
recording
layer
crystal
recording medium
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1094438A
Other languages
Japanese (ja)
Other versions
JP2995681B2 (en
Inventor
Kyoji Tsutsui
恭治 筒井
Akio Kojima
小島 明夫
Masabumi Ota
正文 太田
Ryohei Miyake
了平 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1094438A priority Critical patent/JP2995681B2/en
Publication of JPH02131987A publication Critical patent/JPH02131987A/en
Priority to US08/919,424 priority patent/US6090508A/en
Application granted granted Critical
Publication of JP2995681B2 publication Critical patent/JP2995681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0052Reproducing involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To provide excellent recording sensitivity, recording speed, satisfactory recording stability, high speed erasure of recorded information by providing a recording layer which contains a thin filmlike crystal containing fatty acid or fatty acid derivative as a main ingredient or a layer containing its thin filmlike crystal. CONSTITUTION:A substrate 1 formed with an optothermal conversion layer 3 is covered with a glass plate or a resin film corresponding to a protective layer 5 for holding a gap responsive to the thickness of a necessary recording layer 2. The whole substrate formed with the gap is intruded into a constant- temperature oven, held at a temperature higher than the melting point of a material used for the layer 2, the melted material is placed at the end of the gap, and impregnated to the gap. When the obtained melted liquid layer is gradually cooled and crystallized, a thin filmlike crystal of the layer 2 is formed between the layers 3 and 5. The recording medium of this invention is made of the thin filmlike crystal which contains fatty acid or fatty acid derivative as a main ingredient or has a recording layer containing it, and utilizes the fact that the crystal state of the crystal is reversibly changed by the application of heat.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は熱エネルギーの印加による結晶状態の可逆的な
変化を利用した高密度記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a high-density recording medium that utilizes a reversible change in crystalline state due to the application of thermal energy.

〔従来技術〕[Prior art]

近年,たとえば光によって与えられた情報を熱エネルギ
ーの形に変換して印加し、記録材料の形状変化や物性変
化として記録するいわゆるヒートモード記録システムが
実用化されつつある.このようなヒートモード記録媒体
としては、7e,Bi,Se,Tb,Inなどを主成分
とする金属材料を用いた無機系の記録媒体,あるいは,
シアニンなどのポリメチン系色素,フタ口シアニン,ナ
フタロシアニン、ボリフィリンなどの大環状アザアヌレ
ン系色素、ナフトキノン,アントラキノン系色素および
ジチオール金属鉗体系色素などの有機色素を用いた記録
媒体が知られている。これらの記録媒体は集光したレー
ザー光の照射などにより熱エネルギーが加えられると,
照射部分の記録層が溶融あるいは蒸発して孔(ピット)
を形成し,情報を記録するものである。しかし、これら
の記録媒体は,記録した情報を消去して,再び新しい情
報を記録する可逆性を有していない。
In recent years, so-called heat mode recording systems have been put into practical use, which convert information given by light into thermal energy and record it as a change in the shape or physical properties of a recording material. Such heat mode recording media include inorganic recording media using metal materials whose main components are 7e, Bi, Se, Tb, In, etc.;
Recording media are known that use organic dyes such as polymethine dyes such as cyanine, macrocyclic azaannulene dyes such as phthalocyanine, naphthalocyanine, and vorifylline, naphthoquinone, anthraquinone dyes, and dithiol metalloid dyes. When thermal energy is applied to these recording media, such as by irradiation with focused laser light,
The recording layer in the irradiated area melts or evaporates, creating holes (pits).
It is used to form and record information. However, these recording media do not have the reversibility of erasing recorded information and recording new information again.

上記のような再生専用、追記型のヒートモード光記録媒
体の発達とともに、記録、再生,消去が可能な可逆記録
媒体の必要性が高まっている.こうした可逆記録媒体と
して、たとえばGd,Tb,Dyなどの希土類元素とF
e,Ni,Coなどの遷移金属とからなる合金薄膜を用
いた光磁気記録媒体がある。これは、レーザー光照射に
よる加熱と外部印加磁界を併用して記録し,磁化の向き
による光の振動面の回転方向の違いを利用して再生する
ものである。また、情報の消去はレーザーによる加熱と
記録時とは逆向きの外部磁界を加えることにより行なわ
れる。しかし、この光磁気記録媒体は、再生時の感度が
十分でなくSハ比が悪いこと、および酸化などの影響に
より記録感度の劣化や記録の安定性に問題があるなどの
欠点を有している。
With the development of read-only, write-once type heat mode optical recording media as described above, the need for reversible recording media that can be recorded, played back, and erased is increasing. As such a reversible recording medium, for example, rare earth elements such as Gd, Tb, Dy and F
There is a magneto-optical recording medium that uses an alloy thin film made of transition metals such as e, Ni, and Co. This uses a combination of heating by laser beam irradiation and an externally applied magnetic field to record, and reproduces by utilizing the difference in the rotational direction of the light vibration plane depending on the direction of magnetization. Furthermore, information is erased by heating with a laser and by applying an external magnetic field in the opposite direction to that used during recording. However, this magneto-optical recording medium has drawbacks such as insufficient sensitivity during reproduction and a poor S/R ratio, as well as problems with deterioration of recording sensitivity and recording stability due to effects such as oxidation. There is.

また、可逆記録媒体としてGo,Te,Ss,Sb,I
n,Snなどの元素を主成分とする無機材料薄膜からな
る記録層の結晶一非晶間の相転移を利用したものがある
.この記録媒体はレーザー光の照射のみでヒートモード
で記録および消去ができる利点があるが、記録部と非記
録部のコントラストや記録の安定性が十分でないこと、
記録層の材料の安全性に関して問題があるなどの欠点を
有している.一方、特開昭54−119377、同55
−1541911.同63−39378、同63−41
186号公報には,樹脂マトリックス材と、このマトリ
ックス材中に微粒子分散状態で存在する有機低分子物質
からなる熱記録材料が開示されている。この記録材料は
ある温度以上に加熱し冷却すると白濁状態(遮光状態)
になり、またある温度範囲に加熱し冷却すると透明状態
となり、この遮光性の可逆的な変化により記録が行なわ
れる。しかし、この遮光性によるコントラストは、通常
目視で観察できる程度の大きさの記録の場合には明瞭で
あったとしても,数【程度の小さな部分が変化してでき
た記録部を顕微鏡的に拡大して観察する場合には記録と
して確認できない程度の低いコントラストとなってしま
う。記録層中では有機低分子物質の微粒子のマトリック
ス中での状態によって、光の散乱性が変化しているので
あるが,記録部分の大きさが数声程度になってしまうと
,記録部分の大きさに対してこの微粒子の大きさがこの
ような散乱を起こすには十分なほどの小ささではなくな
ってしまうためである.これを補うためには、記録の大
きさに比べ記録層の厚さをはるかに厚くすることが考え
られるが、このように厚い記録層を厚さ方向に全体に均
一に加熱して小さな記録部を形成することは、実質的に
困難である.したがって、高密度な記録を行なう記録媒
体に適用することはできない. その他に,有機材料を用いた消去可能な記録媒体として
、たとえば特開昭58−199343号公報には有機金
属錯体ビス(1−p−n−アルキルフェニルブタン−1
.3−ジオナト)(■)と有機高分子混合物,特開昭6
3−15793号公報には結晶性と非品性の熱可塑性樹
脂混合物、特開昭63−95993号、同96748号
公報には結晶性芳香族ビニレンスルフィド重合体、特開
昭63−279440号公報には含硫黄ポリマー、特開
昭63−128993号公報にはジアザビシク口(2,
2,2]オクタン4級塩,特開昭63−259851号
公報には延伸配向した高分子や液晶性高分子の結品一非
晶転移あるいは配向度の変化を利用した記録媒体が示さ
れている。しかし,これらはいずれも記録速度あるいは
消去速度がおそく実用化は困難である。
Also, as reversible recording media, Go, Te, Ss, Sb, I
There is a method that utilizes the crystal-amorphous phase transition of a recording layer made of a thin film of an inorganic material mainly composed of elements such as n and Sn. This recording medium has the advantage of being able to record and erase information in heat mode using only laser light irradiation, but the contrast between recorded and non-recorded areas and recording stability are not sufficient.
It has drawbacks such as problems with the safety of the material of the recording layer. On the other hand, JP-A-54-119377, JP-A-55
-1541911. 63-39378, 63-41
Publication No. 186 discloses a thermal recording material comprising a resin matrix material and an organic low-molecular substance present in the matrix material in the form of fine particles dispersed therein. When this recording material is heated above a certain temperature and cooled, it becomes cloudy (light-shielding state).
When heated to a certain temperature range and then cooled, it becomes transparent, and recording is performed by this reversible change in light-shielding properties. However, even if the contrast caused by this light-shielding property is clear in the case of records that are large enough to be observed with the naked eye, microscopically magnifying the recorded areas formed by small changes in the number of When observing the recorded image, the contrast becomes so low that it cannot be confirmed as a record. In the recording layer, the scattering properties of light change depending on the state of the matrix of fine particles of organic low-molecular substances. This is because the size of these particles is no longer small enough to cause such scattering. In order to compensate for this, it is possible to make the recording layer much thicker than the size of the recording, but by heating the thick recording layer uniformly throughout the thickness direction, it is possible to create a small recording area. It is practically difficult to form. Therefore, it cannot be applied to recording media that perform high-density recording. In addition, as an erasable recording medium using an organic material, for example, JP-A-58-199343 discloses an organometallic complex bis(1-p-n-alkylphenylbutane-1
.. 3-dionato) (■) and organic polymer mixture, JP-A-1986
No. 3-15793 discloses a mixture of crystalline and immature thermoplastic resins, JP-A-63-95993 and JP-A-96748 disclose a crystalline aromatic vinylene sulfide polymer, and JP-A No. 63-279440 discloses a crystalline aromatic vinylene sulfide polymer. is a sulfur-containing polymer, and JP-A No. 63-128993 discloses a sulfur containing polymer,
2,2] Octane quaternary salt, Japanese Patent Application Laid-Open No. 63-259851 discloses a recording medium that utilizes the crystalline-amorphous transition or change in the degree of orientation of stretched and oriented polymers or liquid crystalline polymers. There is. However, all of these have slow recording speeds or slow erasing speeds, making them difficult to put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように従来の記録媒体には、記録の安定性、記録感
度、消去速度、記録部と非記録部のコントラストなどに
種々の問題を残している.また、記録媒体は安全性の面
から毒性のない材料を用いたものであることが望ましい
. このような観点から、本発明は、情報を記録し、再生し
、かつ記録された情報を消去することができ,繰り返し
使用可能な記録媒体を提供するものである。また、記録
感度、記録速度に優れ、記録の安定性が良好で、記録部
と非記録部のコントラストが大きく,高密度に情報が記
録でき、記録された情報を高速に消去できる記録媒体を
提供するものである。さらに、本発明は毒性がなく安全
性の亮い記録媒体を提供するものである.〔課題を解決
するための手段〕 本発明者らは、以上のような目的から種々の有機材料の
熱変化を検討した結果、脂肪酸または脂肪V誘導体の薄
膜状結晶を記録層に用いた場合、熱を印加した部分の結
晶状態が変化することを見出した。また、この変化部分
が適当な温度に再加熱されることにより元に戻ることを
見出した.本発明は、このような脂肪酸または脂肪酸誘
導体薄膜状結晶の熱的な可逆変化に基づくものである。
As described above, conventional recording media have various problems such as recording stability, recording sensitivity, erasing speed, and contrast between recorded and non-recorded areas. Furthermore, from the standpoint of safety, it is desirable that the recording medium be made of non-toxic materials. From this viewpoint, the present invention provides a recording medium on which information can be recorded, reproduced, and recorded information can be erased, and which can be used repeatedly. We also provide recording media that have excellent recording sensitivity and recording speed, good recording stability, high contrast between recorded and non-recorded areas, can record information at high density, and can erase recorded information at high speed. It is something to do. Furthermore, the present invention provides a non-toxic and highly safe recording medium. [Means for Solving the Problems] As a result of studying the thermal changes of various organic materials for the above-mentioned purposes, the present inventors found that when thin film crystals of fatty acids or fat V derivatives are used in the recording layer, It was discovered that the crystalline state of the part to which heat was applied changes. We also discovered that this changed area could be restored to its original state by being reheated to an appropriate temperature. The present invention is based on the thermal reversible change of such fatty acid or fatty acid derivative thin film crystals.

すなわち、本発明の記録媒体は、基板上に記録層を有す
る記録媒体において、記録層が脂肪酸または脂肪酸誘導
体を主成分とする薄膜状結晶であるか,またはその薄膜
状結晶を含む層であることを特徴とするものである. また、本発明の記録媒体は、上記薄膜状結晶からなるか
、またはこれを含む記録層と、記録時に照射された光の
一部または全部を吸収し熱に変換する光熱交換層を有す
ることを特徴とするものである。
That is, the recording medium of the present invention is a recording medium having a recording layer on a substrate, in which the recording layer is a thin film crystal whose main component is a fatty acid or a fatty acid derivative, or a layer containing the thin film crystal. It is characterized by Further, the recording medium of the present invention has a recording layer made of or containing the above-mentioned thin film crystal, and a light-heat exchange layer that absorbs part or all of the light irradiated during recording and converts it into heat. This is a characteristic feature.

また,本発明の記録媒体は、上記の二つの構成において
,脂肪酸または脂肪酸誘導体を含む記録層中に記録時に
照射された光の一部または全部を吸収し熱に変換する光
熱変換物質を含有することを特徴とするものである. 以下に本発明の記録媒体について詳細に説明する. 本発明の記録媒体の記録層は脂肪酸または脂肪酸誘導体
を主成分とする薄膜状結晶からななるか.またはこれを
含む層であるが、ここで言う脂肪酸または脂肪酸誘導体
とは,詳しくは、飽和または不飽和のモノまたはジカル
ボン酸またはこれらのエステル,アミド,アニリド,ヒ
ドラジド、ウレイド、無水物、あるいは,アンモニウム
塩または金属塩のような脂肪酸塩であり、エステルは2
個以上の水酸基を持つ化合物とのエステル,たとえばモ
ノ、ジまたはトリグリセリドなどを含む.また、これら
のものはハロゲン、ヒドロキシ基,アシル基、アシルオ
キシ基あるいは置換または無置換のアリール基により置
換されていてもよい。これらの飽和または不飽和脂肪酸
は直鎖のものでも枝分れしたものでよく、不飽和脂肪酸
は二重結合または三重結合を1個持つものでも,2個以
上持つものでもよい.これらの飽和または不飽和脂肪酸
の炭素数は10以上であることが好ましい.飽和脂肪酸
の具体例としては,たとえば,ウンデカン酸,ラウリン
酸,ミリスチン酸、ペンタデカン酸,パノレミチン酸,
ヘプタデカン酸,ステアリン酸,ナノデカン酸,アラキ
ン酸,べヘン酸、リグノセリン酸,セロチン酸、モンタ
ン酸、メリシン酸などがあり、不飽和脂肪酸としては,
たとえば、オレイン酸,エライジン酸、リノール酸,ソ
ルビン酸、ステアロール酸などがある.またエステルの
具体例としては、たとえば,これらの脂肪酸のメチルエ
ステル,エチルエステル,ヘキシルエステル,オクチル
エステル,デシルエステル、ドデシルエステル、テトラ
デシルエステル、ステアリルエステル、エイコシルエス
テル,ドコシルエステルなどがある。
Furthermore, in the above two configurations, the recording medium of the present invention contains a photothermal conversion substance that absorbs part or all of the light irradiated during recording and converts it into heat in the recording layer containing a fatty acid or a fatty acid derivative. It is characterized by this. The recording medium of the present invention will be explained in detail below. Does the recording layer of the recording medium of the present invention consist of thin film crystals containing fatty acids or fatty acid derivatives as a main component? In detail, the fatty acid or fatty acid derivative referred to here refers to saturated or unsaturated mono- or dicarboxylic acids or their esters, amides, anilides, hydrazides, ureides, anhydrides, or ammonium salts or fatty acid salts such as metal salts; esters are
Includes esters with compounds having more than one hydroxyl group, such as mono-, di-, or triglycerides. Further, these may be substituted with a halogen, a hydroxy group, an acyl group, an acyloxy group, or a substituted or unsubstituted aryl group. These saturated or unsaturated fatty acids may be linear or branched, and unsaturated fatty acids may have one double or triple bond or two or more. The carbon number of these saturated or unsaturated fatty acids is preferably 10 or more. Specific examples of saturated fatty acids include undecanoic acid, lauric acid, myristic acid, pentadecanoic acid, panolemitic acid,
Examples of unsaturated fatty acids include heptadecanoic acid, stearic acid, nanodecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, and melisic acid.
Examples include oleic acid, elaidic acid, linoleic acid, sorbic acid, and stearolic acid. Specific examples of esters include methyl esters, ethyl esters, hexyl esters, octyl esters, decyl esters, dodecyl esters, tetradecyl esters, stearyl esters, eicosyl esters, and docosyl esters of these fatty acids.

また、金属塩の例としては、たとえば、これらの脂肪酸
のナトリウム,カリウム、マグネシウム、カルシウム、
ニッケノレ,コバノレト、亜鉛,カドミウム、アルミニ
ウムなどの金属塩がある。
Examples of metal salts include sodium, potassium, magnesium, calcium,
There are metal salts such as nickel, nickel, zinc, cadmium, and aluminum.

使用する脂肪酸または脂肪酸誘導体は、好ましくは融点
が50−200℃,特に60〜150℃の範囲のものが
好ましい.これより低いと記録の保存性に問題あり,ま
た高いと記録に要するエネルギーが大きくなり、記録速
度がおそくなる. 本発明の記録媒体の記録層には、これらの脂肪酸または
脂肪酸誘導体の1種または2種以上を混合して用いるこ
とができる.また、本発明における記録層は、これらの
脂肪酸または脂肪酸誘導体を主成分とする薄膜状結晶か
らなるか、またはこれを含むものであるが、これ以外に
、層を形成する上で必要に応じ樹脂を用いることができ
る.JtA脂としては、たとえば、ポリ塩化ビニル,塩
化ビニルー酢酸ビニル共重合体、塩化ビニルー酢酸ビニ
ルービニルアルコール共重合体、塩化ビニルー酢酸ビニ
ルーマレイン酸共重合体、塩化ビニルーアクリレート共
重合体、ポリ塩化ビニリデン、塩化ビニリデンーアクリ
ロニトリル共重合体、ポリエステル、ポリアミド、ポリ
アクリレート,ポリメタクリレート、ポリカーボネート
、ポリウレタン、シリコン樹脂などが挙げられる。記録
層中に樹脂を用いる場合,記録層全体で脂肪酸または脂
肪酸誘導体1に対して、樹脂は重量比で3以下、特に1
以下であることが好ましい。
The fatty acid or fatty acid derivative used preferably has a melting point in the range of 50-200°C, particularly 60-150°C. If it is lower than this, there will be a problem with the preservation of the record, and if it is higher, the energy required for recording will increase and the recording speed will be slow. In the recording layer of the recording medium of the present invention, one type or a mixture of two or more of these fatty acids or fatty acid derivatives can be used. Further, the recording layer in the present invention is made of or contains thin film-like crystals mainly composed of these fatty acids or fatty acid derivatives, but in addition to this, resins may be used as necessary to form the layer. be able to. Examples of the JtA resin include polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl acetate-maleic acid copolymer, vinyl chloride-acrylate copolymer, and polyvinyl chloride-vinyl acetate copolymer. Examples include vinylidene chloride, vinylidene chloride-acrylonitrile copolymer, polyester, polyamide, polyacrylate, polymethacrylate, polycarbonate, polyurethane, and silicone resin. When a resin is used in the recording layer, the weight ratio of the resin to 1 part fatty acid or fatty acid derivative in the entire recording layer is 3 or less, especially 1 part by weight.
It is preferable that it is below.

本発明の記録媒体に用いられる基板としては、ガラス板
、金属板,ポリメチルメタクリレート、ポリカーボネー
トなどのプラスチック板などがある。ただし、情報記録
後、透過光により記録を読み取る場合には、基板には再
生光を透過するものを用いる必要がある。また反射光に
より読み取る場合には,必要に応じ、たとえば白金、チ
タン、シリコン、クロム,ニッケル、ゲルマニウム、ア
ルミニウムなどの金属または半金属の膜を設け反射層と
する. 本発明の記録媒体は記録層に熱を印加することにより記
録するものであるが、熱を印加する方法としてレーザー
光などの光を用いる場合には、記録すべき情報に従って
照射された光の一部または全部を吸収し熱に変換する光
熱変換層を設けるか,あるいは,記録層中に光を吸収し
熱に変換する物質を含有させる必要がある.光熱変換層
としては前記反射層と同様の金属または半金属の膜を設
ければよく、したがって、この層は反射層と兼用するこ
とができる.また光熱変換層は照射した光を吸収する色
素、たとえば、アゾ系色素,シアニン系色素、ナフトキ
ノン系色素、アントラキノン系色素、スクアリリウム系
色素,フタ口シアニン系色素,ナフタロシアニン系色素
,ポルフィリン系色素、インジゴ系色素、ジチオール錯
体系色素、アズレニウム系色素、キノンイミン系色素、
キノンジイミン系色素などを含有する層であってもよく
、記録に用いる光の波長により選択する.一方、記録層
中に含有させる光を吸収して熱に変換する物質としては
、上記光熱変換層中に含有させる各種色素を使用するこ
とができ、記録に用いる光の波長により選択する. 本発明の記録媒体は,基板上に脂肪酸または脂肪酸誘導
体を主成分とする薄膜状結晶からなるが,またはこれを
含む記録層を有し,その記録層が熱の印加により結晶状
態が変化する層であることを特徴とするものであり,そ
れらの構成については特定するものではないが通常よく
用いられる記録媒体の構成例を第1図から第5図に示す
.第1図において,1は基板、2は脂肪酸または脂肪酸
誘導体を主成分とする薄膜状結晶からなるか、またはこ
れを含む記録層である.第2図は第1図に示される基板
1と記録層2との間に、光の一部または全部を吸収し熱
に変換し必要に応じて光の一部を反射する光熱変換層3
を設けたものである.第3図は基板1上に記録Jけ2を
設けその上に光熱変換層3を設けたものである.第4図
は第2図の記録層2の下に、たとえば記録層2の膜質の
向上などを目的とする下引き層4を設けたものである.
さらに第5図は第4図の記録層2の上に保護層5を設け
たものである。
Substrates used in the recording medium of the present invention include glass plates, metal plates, and plastic plates such as polymethyl methacrylate and polycarbonate. However, if the information is to be read using transmitted light after recording, it is necessary to use a substrate that transmits the reproduction light. When reading by reflected light, a film of a metal or semimetal such as platinum, titanium, silicon, chromium, nickel, germanium, or aluminum is provided as a reflective layer, if necessary. The recording medium of the present invention performs recording by applying heat to the recording layer, but when using light such as a laser beam as a method of applying heat, one part of the irradiated light is used in accordance with the information to be recorded. Either it is necessary to provide a light-to-heat conversion layer that absorbs some or all of the light and convert it into heat, or it is necessary to include a substance in the recording layer that absorbs light and converts it into heat. As the light-to-heat conversion layer, a metal or semimetal film similar to the reflective layer may be provided, and therefore, this layer can also be used as the reflective layer. The photothermal conversion layer also contains dyes that absorb the irradiated light, such as azo dyes, cyanine dyes, naphthoquinone dyes, anthraquinone dyes, squarylium dyes, phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, Indigo dyes, dithiol complex dyes, azulenium dyes, quinoneimine dyes,
It may be a layer containing a quinone diimine dye, etc., and is selected depending on the wavelength of the light used for recording. On the other hand, as the substance to be contained in the recording layer that absorbs light and converts it into heat, various dyes can be used to be contained in the light-to-heat conversion layer, and the material is selected depending on the wavelength of the light used for recording. The recording medium of the present invention has a recording layer made of or containing a thin film crystal mainly composed of a fatty acid or a fatty acid derivative on a substrate, and the recording layer is a layer whose crystal state changes upon application of heat. Figures 1 to 5 show examples of the configurations of commonly used recording media, although their configurations are not specified. In FIG. 1, 1 is a substrate, and 2 is a recording layer consisting of or containing a thin film-like crystal whose main component is a fatty acid or a fatty acid derivative. FIG. 2 shows a photothermal conversion layer 3 between the substrate 1 and the recording layer 2 shown in FIG. 1, which absorbs part or all of light, converts it into heat, and reflects part of the light as necessary
It has been established. In FIG. 3, a recording layer 2 is provided on a substrate 1, and a photothermal conversion layer 3 is provided thereon. In FIG. 4, an undercoat layer 4 is provided below the recording layer 2 of FIG. 2 for the purpose of improving the film quality of the recording layer 2, for example.
Further, FIG. 5 shows a structure in which a protective layer 5 is provided on the recording layer 2 of FIG. 4.

下引き)94には、前記の記録層2を形成するときに用
いてもよい樹脂の例のような種々の樹脂を用いることが
できる.また保護層5も同様にこれらの樹脂を用いても
よいし、あるいはガラス板を用いてもよい.ガラス板を
用いる場合には、下引きMと同様の目的で表面(記録層
に接する面)に同様の樹脂層を設けてもよいし、ガラス
表面の性質を改良する表面処理剤たとえばシラン系また
はチタネート系表面処理剤であらかじめ処理を施してお
いてもよい. 本発明の記録媒体を製造するには、前記の基板1上に必
要に応じ光熱変換層3をたとえば前記のような金属また
は半金属を用い、蒸着、スパッタあるいはメッキなどの
手段によって形成し、その上に記録層2を形成する. 記録層2を形成する方法にはたとえば次のような方法が
ある。まず、光熱変換層3を設けた基板l上に、必要な
記録層2の厚さに応じたギャップを保ち保護層5に相当
するガラス板あるいは樹脂フィルムをかぶせる。ギャッ
プを作るために、記録層2を形成する部分の周囲にスペ
ーサー層を設けておいてもよいし、あるいは微小で均一
な径を有するギャップ材たとえばシリカ粒子、ポリスチ
レンビーズなどをあらかじめ光熱変換N3側または保護
層5側に付着させておいてもよい.このようにしてギャ
ップを形成した基板全体を恒温槽中に入れるかホットプ
レート上にのせ、記録/f12に用いる材料の融点より
高い温度に保ち,ギャップの端部に溶融した材料を置き
,ギャップ間に浸み込ませる.得られた融液層を徐冷し
結晶化させると、光熱変換層3と保護層5の間に,記@
層2の薄膜状結晶が形成できる。このとき、ギャップ間
隔を一定に維持するため、結晶化するまでの間,おもり
などで加圧しておいてもよい。また気泡が入らないよう
にするためこれらの作業を減圧下で行なってもよい. また,別の製造方法としては、たとえば記録層2を形成
する材料を適当な有機溶媒たとえばテトラヒド口フラン
、メチルエチルケトン.メチルイソブチルケトン、クロ
ロホルム、西塩化炭素などに溶解し、スピンコート法、
ブレードコート法、ディップコート法などにより塗布し
乾燥するか、または蒸着法により光熱変換層3上に均一
な厚さの層を形成する.この上に必要に応じて適当な溶
媒に溶解した樹脂を塗布する.次に、これを恒温槽中に
入れるかホットプレート上にのせて、記録層2の材料の
融点以上になるように加熱した後、徐冷することにより
結晶化させ記録層2の薄膜状結晶を形成する。記録層2
の形成にはこの他、ラングミュア・プロジェット法など
種々の方法を用いることができる. 記録層2中に光熱変換物質を含ませる場合には、たとえ
ば記録層2の材料の溶液の中に前記の色素を同時に溶解
するか、あるいは分散して塗布すればよい。
For the undercoat 94, various resins can be used, such as the resins that may be used when forming the recording layer 2 described above. The protective layer 5 may also be made of these resins, or may be made of a glass plate. When using a glass plate, a similar resin layer may be provided on the surface (the surface in contact with the recording layer) for the same purpose as undercoat M, or a surface treatment agent such as silane or It may be treated in advance with a titanate-based surface treatment agent. In order to manufacture the recording medium of the present invention, a light-to-heat conversion layer 3 is formed on the substrate 1 as necessary using, for example, the metal or metalloid as described above, by means such as vapor deposition, sputtering, or plating. Recording layer 2 is formed on top. For example, there are the following methods for forming the recording layer 2. First, a glass plate or resin film corresponding to the protective layer 5 is covered over the substrate l provided with the light-to-heat conversion layer 3, keeping a gap corresponding to the required thickness of the recording layer 2. In order to create a gap, a spacer layer may be provided around the area where the recording layer 2 will be formed, or a gap material having a minute and uniform diameter, such as silica particles or polystyrene beads, may be placed in advance on the photothermal conversion N3 side. Alternatively, it may be attached to the protective layer 5 side. Place the entire substrate with gaps formed in this way in a constant temperature bath or place it on a hot plate, keep it at a temperature higher than the melting point of the material used for recording/f12, place the molten material at the end of the gap, and place the molten material between the gaps. Let it soak in. When the obtained melt layer is slowly cooled and crystallized, a film is formed between the photothermal conversion layer 3 and the protective layer 5.
Thin film crystals of layer 2 can be formed. At this time, in order to maintain the gap interval constant, pressure may be applied using a weight or the like until crystallization. Additionally, these operations may be performed under reduced pressure to prevent air bubbles from entering. Further, as another manufacturing method, for example, the material forming the recording layer 2 may be mixed with a suitable organic solvent such as tetrahydrofuran or methyl ethyl ketone. Dissolve in methyl isobutyl ketone, chloroform, carbon chloride, etc., spin coat method,
A layer of uniform thickness is formed on the light-to-heat conversion layer 3 by coating and drying by a blade coating method, dip coating method, or the like, or by a vapor deposition method. If necessary, apply a resin dissolved in an appropriate solvent on top of this. Next, this is placed in a constant temperature bath or placed on a hot plate and heated to a temperature higher than the melting point of the material of the recording layer 2, and then slowly cooled to crystallize and form the thin film crystals of the recording layer 2. Form. Recording layer 2
In addition, various methods such as the Langmuir-Prodgett method can be used to form the . When a photothermal conversion substance is included in the recording layer 2, the dye may be simultaneously dissolved in a solution of the material of the recording layer 2, or dispersed and applied.

記録時または消去時に照射された光の一部または全部を
吸収し熱に変換する光熱変換層3を前記のごとき色素を
用いて形成する場合には、蒸着、スバツタなどの方法に
より形成するが、溶媒に溶解または分散した液を塗布し
て形成してもよい。
When forming the light-to-heat conversion layer 3, which absorbs part or all of the light irradiated during recording or erasing and converts it into heat, using the dye described above, it is formed by a method such as vapor deposition or sputtering. It may also be formed by applying a solution dissolved or dispersed in a solvent.

この場合には必要に応じ結着性樹脂を用いてもよい.光
反射層が必要な場合は、金属の蒸着膜を別に設けてもよ
い. また,脂肪酸または脂肪酸誘導体を主成分とする薄膜状
結晶からなるか、またはこれを含む記録層2の膜厚は、
特に限定するものではないが、通常10人〜10. ,
好ましくは1o人〜5一程度である.光熱変換層3の厚
さは,記録に用いた光の波長や強度と用いた材料の種類
により適当な範囲が決まるが、おおむね、50人〜5p
m程度である.本発明の記録媒体は、脂肪酸または脂肪
酸誘導体を主成分とする薄膜状結晶からなるか,または
これを含む記録層を有し、その薄膜状結晶の結晶状態が
熱の印加によって可逆的に変化することを利用するもの
である.情報の記録すなわち熱の印加の方法には種々の
方法が考えられるが、高密度な記録を行なうためには集
光したレーザー光の照射による方法が最も好ましい.こ
の場合,記録媒体には光を吸収し熱に変換する前述の光
熱変換層を設けるか、あるいは光を吸収して熱に変換す
る物質を記録層中に加える必要がある。
In this case, a binding resin may be used if necessary. If a light-reflecting layer is required, a vapor-deposited metal film may be provided separately. Furthermore, the thickness of the recording layer 2 that is made of or contains thin film-like crystals mainly composed of fatty acids or fatty acid derivatives is as follows:
There is no particular limitation, but usually 10 to 10. ,
Preferably, the number is about 10 to 51 people. The thickness of the photothermal conversion layer 3 is determined in an appropriate range depending on the wavelength and intensity of the light used for recording and the type of material used, but it is generally between 50 and 5 pcm.
It is about m. The recording medium of the present invention has a recording layer consisting of or containing thin film crystals mainly composed of fatty acids or fatty acid derivatives, and the crystal state of the thin film crystals is reversibly changed by application of heat. It takes advantage of this fact. Various methods can be considered for recording information, that is, applying heat, but in order to perform high-density recording, the most preferable method is to use focused laser light irradiation. In this case, it is necessary to provide the recording medium with the aforementioned photothermal conversion layer that absorbs light and converts it into heat, or to add a substance that absorbs light and converts it into heat into the recording layer.

記録時には,レーザー光照射部分は,光熱変換層または
光熱変換物質が光を吸収して発熱し、脂肪酸または脂肪
酸誘導体の簿膜状結晶からなるが,またはこれを含む記
@層は瞬時に加熱され、レーザー光照射が止むと急激に
冷却され、記録ピット(ただし、ここで言うピットとは
穴ではなく、薄膜状結晶中に結晶状態の変化として記録
された部分をさす.)が形成される. このとき、記録層中では、薄膜状結晶の一部、すなわち
短時間のレーザー光照射により発熱した光熱変換層(物
質)から伝わった熱によって瞬時に加熱された部分は、
結晶が完全に溶融する温度にまで到達する.しかし、レ
ーザー光照射が止むと熱は拡散し,この部分は瞬時に冷
却され,同化(結晶化)する.このように瞬時に加熱溶
融→冷却結晶化した部分の結晶状態は、熱が印加されて
いない部分の状態すなわち周囲の非記録部の結晶状態と
は異なった状態となる。
During recording, the photothermal conversion layer or photothermal conversion material absorbs light and generates heat in the area irradiated with the laser beam, and the recording layer made of film-like crystals of fatty acids or fatty acid derivatives or containing the same is instantaneously heated. When the laser beam irradiation stops, the material cools down rapidly, forming recording pits (the pits here are not holes, but areas recorded as changes in the crystal state in the thin film crystal). At this time, in the recording layer, a part of the thin film crystal, that is, a part that is instantaneously heated by the heat transmitted from the light-to-heat conversion layer (substance) generated by short-term laser beam irradiation,
A temperature is reached at which the crystal completely melts. However, when the laser light irradiation stops, the heat diffuses, and this part is instantly cooled and assimilated (crystallized). The crystalline state of the portion where heat melting and then cooling crystallization occur instantaneously in this manner is different from that of the portion to which no heat is applied, that is, the crystalline state of the surrounding non-recording portion.

この結晶状態の変化とは、たとえば(1)結晶粒の大き
さ形態の変化、(2)結晶軸の方向の変化、または分子
の配向方向の変化、(3)結晶楕造の変化などがある。
Examples of changes in the crystal state include (1) changes in the size and morphology of crystal grains, (2) changes in the direction of crystal axes or molecular orientation, and (3) changes in crystal ellipsoidal structure. .

記録が行なわれる前の記録層は、全体がほぼ一様な方向
を向いて並んだ、ほぼ一様な厚さの薄膜状の結晶となっ
ている.この変化のうち(1)の結晶粒の大きさ形態の
変化とは,たとえば薄膜状結晶の中の記録部が,小さく
分割された結晶の集合となったものである.この状態の
変化は、たとえば走査型電子顕微鏡などで、剥離した記
録層を観察することにより確認できる。また(2)の結
晶軸方向の変化または分子配内方向の変化とは、たとえ
ば結晶靖造は基本的には同じであるが、結晶の向いてい
る方向、すなわち結晶軸の方向が異なって結晶化したも
の、あるいは,これほどには明確ではないが、基本的に
は何らかの配向をした分子の集合となっており、その全
体の配向方向が周囲の非記録部とは異なる場合である。
Before recording is performed, the recording layer is a thin film of crystals with a substantially uniform thickness and oriented in a substantially uniform direction. Among these changes, (1) change in the size and form of crystal grains means, for example, that the recording part in a thin film crystal becomes a collection of small crystals. This change in state can be confirmed by observing the peeled recording layer using, for example, a scanning electron microscope. In addition, the change in the direction of the crystal axis or the change in the direction of the molecular arrangement in (2) means, for example, that the crystals are basically the same, but the direction in which the crystals are oriented, that is, the direction of the crystal axis, is different. Or, although it is not as clear as this, it is basically a collection of molecules with some kind of orientation, and the overall orientation direction is different from that of the surrounding non-recording area.

また、(3)の結晶構造の変化とは,記録部が周囲の非
記録部とは異なる結晶状態へ結晶化したものであり、こ
の中には分子配列の規則性の乱れが大きく、あるいは規
則性を持つ範囲が非常にせまい、非晶状態に変化する場
合も含まれる. これらの結晶状態の変化は、薄収状結晶への部分的な短
時間の熱の印加,すなbち短時間の光照射によって起こ
る溶融状態からの急冷に起因するものであるが、その冷
却速度は主に光照射の時間に依存する.集光したレーザ
ー光に照射された微小な部分の温度変化を測定すること
は困難であるため、レーザー光の強度分布、光吸収と熱
伝導を考慮し,各層の厚さ、光吸収特性,熱伝導率、比
熱などの熱特性を表−1に示す値とし、記録層の温度変
化をシュミレーションすると,たとえば、80℃から6
0℃まで冷却されるのに要する時間は、照射時間が10
0μsecでは約1.7μsec、照射時間が0.25
μsecでは約15nsecとなり、その冷却速度の差
は非常に大きい。したがって,短時間の光照射(熱の印
加)によって起こる結晶状態の変化も、照射時間によっ
て変化し一定ではない.たとえば、微結晶化では、冷却
速度が速いほどより微細化する傾向が認められる.また
、分子の配向状態とも関係し,一般に冷却速度が速いほ
ど配向の乱れが大きくなる傾向があり,分子が規則的配
列をとる範囲がせまく、結晶化度の低い状態になる場合
もある.ただし,このような条件でも、少なくとも部分
的には何らかの配向状態が存在し、本発明の記録方法に
おいては、この記録部の配向が、周囲の非記録部の配向
方向と異なることによって特徴づけられる.このような
記録による配向方向の変化はたとえば記録層のXA!回
折を測定することによって確認できる.また,記録によ
って起こる前記(1)、(2)、(3)の結晶状態の変
化は,それぞれ別々に起こるというよりは複合して起こ
るものである。また,レーザー光を照射された記録層中
の溶融した部分の中は、光熱変換層からの距離やビーム
の中心からの距離によって,到達温度,冷却速度が大き
く異なり,それぞれの場所で異なる結晶化が起こるため
、必ずしも一様な状態とはならない.したがって、(1
)、(2)、(3)の結晶状態の変化は、ひとつの記録
部内においても、位置により様々な形で複合されて起こ
る。
In addition, the change in crystal structure (3) refers to the crystallization of the recording area to a different crystalline state from the surrounding non-recording area, and this includes cases where the regularity of the molecular arrangement is greatly disturbed or This includes cases where the range in which it has properties is very narrow and it changes to an amorphous state. These changes in the crystal state are caused by the local application of short-term heat to the thin convergent crystal, i.e., the rapid cooling from the molten state caused by short-term light irradiation. The speed mainly depends on the time of light irradiation. Since it is difficult to measure temperature changes in minute areas irradiated with focused laser light, we consider the intensity distribution of the laser light, light absorption and heat conduction, and measure the thickness of each layer, light absorption characteristics, and If we simulate the temperature change of the recording layer using the thermal properties such as conductivity and specific heat as shown in Table 1, we can see that, for example, the change in temperature from 80°C to 6°C
The time required to cool down to 0°C is the irradiation time of 10
At 0 μsec, it is approximately 1.7 μsec, and the irradiation time is 0.25
In μsec, it is about 15 nsec, and the difference in cooling rate is very large. Therefore, changes in the crystal state caused by short-term light irradiation (heat application) also vary depending on the irradiation time and are not constant. For example, in microcrystalization, there is a tendency for the faster the cooling rate, the more fine the material becomes. It is also related to the state of molecular orientation; in general, the faster the cooling rate, the more disordered orientation tends to occur, and the range in which molecules are regularly arranged becomes narrower, which may result in a state of low crystallinity. However, even under such conditions, some kind of orientation state exists at least partially, and in the recording method of the present invention, the orientation of this recording area is characterized by being different from the orientation direction of the surrounding non-recording area. .. Such a change in the orientation direction due to recording may be caused by, for example, XA! of the recording layer. This can be confirmed by measuring diffraction. Furthermore, the changes in the crystal state (1), (2), and (3) that occur due to recording occur in combination rather than individually. In addition, the temperature and cooling rate of the melted portion of the recording layer that is irradiated with the laser beam varies greatly depending on the distance from the photothermal conversion layer and the distance from the center of the beam, and crystallization occurs differently in each location. occurs, so the condition is not necessarily uniform. Therefore, (1
), (2), and (3) are compounded in various forms depending on the position even within one recording section.

表−1 レーザー光波長: 830nm このような記録による結晶状態の変化を,より具体的に
説明するために,記録層の材料として代表的な脂肪酸で
あるステアリン酸を用いた場合について示す.前述のよ
うにして形成したステアリン酸薄膜状結晶によりなる記
録層(基板:ガラス,光熱変換層:クロム蒸着膜、保護
H:塩化ビニルー酢酸ビニル共重合体)の未記録時の結
晶状態は、ステアリン酸のC型結品であり,そのa軸,
b軸を基板とほぼ平行に配向している。これは、この記
録層のX線回折図(第6図)で、ステアリン酸C型結品
の長而間隔(39.8人)に起因する回折線(ただし,
r+=2.3,4,5,7,8,9,10,12)のみ
が認められることからわかる。一方.この記@層に、波
長830n履、ビーム径1praφの半導体レーザー光
を線速3500〜40001m/see、媒体面での強
度5+sWで連続点灯し、記録ライン間の間隔をとらず
、スパイラル状に全面記録した後、4Ig定したX線回
折図(第7図)では,未記録時に現われていたステアリ
ン酸C型長面間隔の回折線以外に、新たに21.6°に
明確な回折線が現われる。この回折線はC型結晶の短面
間隔(4.IL人)によるものであり,このことは、未
記録時にはa軸、b軸を基板にほぼ平行に配向していた
ものが、レーザー光の照射後は結晶の配向方向が変化し
て、少なくとも部分的には,C軸を基板に対して平行に
配向した構造が形成されたことを示している。
Table 1 Laser light wavelength: 830 nm In order to more specifically explain the change in crystalline state caused by such recording, we will explain the case where stearic acid, a typical fatty acid, is used as the material for the recording layer. The crystal state of the recording layer (substrate: glass, light-to-heat conversion layer: chromium-deposited film, protective H: vinyl chloride-vinyl acetate copolymer) made of stearic acid thin film crystals formed as described above when unrecorded is stearin. It is a C-type crystal of acid, and its a-axis,
The b-axis is oriented substantially parallel to the substrate. This is the X-ray diffraction diagram of this recording layer (Fig. 6), which shows the diffraction line (however,
This can be seen from the fact that only r+=2.3, 4, 5, 7, 8, 9, 10, 12) is observed. on the other hand. On this recording layer, a semiconductor laser beam with a wavelength of 830 nm and a beam diameter of 1 praφ is continuously illuminated at a linear velocity of 3,500 to 40,001 m/see and an intensity of 5+ sW on the medium surface, so that the recording line is illuminated over the entire surface in a spiral shape without leaving any gaps between recording lines. After recording, in the X-ray diffraction diagram determined by 4Ig (Fig. 7), a clear diffraction line appears at 21.6° in addition to the diffraction line of stearic acid C-type long plane spacing that appeared before recording. . This diffraction line is due to the short plane spacing (4. IL person) of the C-type crystal, which means that the a-axis and b-axis were oriented almost parallel to the substrate when unrecorded, but the laser beam After irradiation, the orientation direction of the crystal changed, indicating that a structure in which the C axis was oriented parallel to the substrate was formed, at least in part.

記録された状態は,たとえば顕微鏡,偏光顕微鏡などの
光学的観察手段により確認することができる.特に、こ
のような結晶状態の変化は偏光特性の変化を伴なう場合
が多く、偏光顕微鏡を用いクロスニコル下で明暗のコン
トラストあるいは色調の差として明瞭にw4察できる場
合が多い.したがって,記録された情報の再生(読み出
し)は,記録媒体に集光した偏光を入射させ、その反射
または透過光を入射させた光の振動方向と直交する振動
方向の光を透過するように置かれた偏光子を通して光の
強度を検知することにより行なうことができる,再生に
用いる光の強度は記録および消去に用いる光に比べ十分
に弱めて、記録層の温度が消去温度まで上昇しない程度
とする. このように記録層中の脂肪酸または脂肪酸誘導体を主成
分とする薄膜状結晶の一部に熱を印加し,瞬時に溶融再
結晶化させることにより結晶状態の変化として記録され
た情報は、記録層が記録時の温度より低い温度であり,
記録層の結晶薄膜が溶融しない温度であるが、分子が十
分に熱運動し得る温度に加熱することにより、消去する
ことができる。消去が可能な温度範囲は、記録層の材料
、純度等により変化するが、記録層を形成する薄膜状結
晶の融点より低い温度に存在する.この記録が消去され
る様子は,偏光顕微鏡で観察しながら記録層の温度を上
昇させていくことにより確認できる.たとえば、均一に
明るい状態に見える非記録部の中に暗い記録部が形成さ
れているとすると,ある温度以上で記録部が欠け始め、
おおむね5−20℃程度の温度範囲で記録部が全部なく
なり,全体が非記録部と同じ状態になる。さらに温度を
上げていくと.記録層の結晶薄膜が溶融するため、視野
は完全に暗くなる.したがって、薄膜状結晶中に形成さ
れた結晶状態の変化した微小な記録部の分子が,十分に
熱運動し得る状態になると,その周囲の非記録部の分子
と同様な配列をとるようになり、その温度から室温に戻
ることにより、全体が一様な薄膜状態結晶となって消去
される.消去は具体的には記録媒体全体を上記温度範囲
に加熱し冷却して記録全体を消去することもできるし、
記録ビット部分,あるいは,これより少し広い範囲を局
部的に消去温度まで加熱冷却することによって、記録さ
れた情帽の一部のみを消去することも可能である.後者
の場合には記録時に照射したレーザー光の強度を弱めて
、記録ピット部分の温度が消去温度範囲に入るように調
節して、重ねて照射すればよい.このとき記録層の薄膜
状結晶の記録ビット部分(結晶状態が変化した部分)は
、いったん消去温度まで加熱され、冷却されると、その
結晶状態が元の状態すなわち周囲の非記録部と同じ結晶
状態に戻り,記録ピットは消去される。この消去された
状態は、記録状態と同様、m微鏡、偏光顕微鏡などの光
学的観察手段により確認できる. 本発明の記録媒体は、基本的に熱により記録層に穴をあ
けたり,記録Jdの表面形状を変化させたりするもので
はなく、記録層を形成する薄膜状結晶または記IIa層
中に含まれる薄膜状結晶の一部分の結晶状Illを変化
させることにより記録するものであり、形成された記録
部と非記録部の差をたとえば偏光特性の差として検出す
るものである.この点で本発明の記録媒体は従来の記録
媒体と大きく異っている.たとえば,従来技術の項で示
した樹脂マトリックス中に有機低分子化合物が分散され
た状態で存在し,加熱温度により遮光性が変化する記録
媒体とは全く異なる現象に基づくものである。すなわち
、この例の記録媒体は記録層中に有機低分子化合物が微
粒子状に存在し、記録部そのものも多数の微粒子によっ
て形成され,記録がこの微粒子分散状態による光の散乱
に基づく遮光性の差であるのに対し、本発明の記録媒体
は脂肪酸または脂肪酸誘導体が薄膜状結晶として存在し
、記録がこの薄膜状結晶の一部に結晶状態の変化として
形成され、その結果としての光学的性質の差を検出する
ものである。したがって、両行の違いは明白である. 〔発明の効果〕 本発明の記録媒体の記録と消去は,基本的に記録層を形
成する脂肪酸または脂肪酸誘導体の薄膜状結晶の到達温
度差によるものであり,これは照射するレーザー光の強
度より調節できる。また記録も消去も高速に行なえるた
め,消去しながら記録を行なう.いわゆるオーバーライ
ト(重ね書き)が可能である。また、この記録と消去は
安定して繰り返し行なうことができる。さらに,記録部
は非記録部と同様安定な状態にあるので、記録された情
報は長期間にわたり安定に保存できる.〔実施例〕 以下、実施例により本発明をさらに詳細に説明する。
The recorded state can be confirmed using optical observation means such as a microscope or a polarizing microscope. In particular, such a change in the crystal state is often accompanied by a change in polarization characteristics, which can often be clearly observed as a contrast between light and dark or a difference in color tone under crossed Nicol conditions using a polarizing microscope. Therefore, in order to reproduce (read) recorded information, focused polarized light is incident on the recording medium, and the reflected or transmitted light is placed so that the light in the vibration direction perpendicular to the vibration direction of the incident light is transmitted. The intensity of the light used for reproduction is sufficiently weakened compared to the light used for recording and erasing, so that the temperature of the recording layer does not rise to the erasing temperature. do. In this way, heat is applied to a part of the thin film crystal mainly composed of fatty acids or fatty acid derivatives in the recording layer, and the information recorded as a change in the crystal state is instantaneously melted and recrystallized. is lower than the temperature at the time of recording,
This is a temperature at which the crystal thin film of the recording layer does not melt, but it can be erased by heating to a temperature at which the molecules can undergo sufficient thermal movement. The temperature range in which erasing is possible varies depending on the material and purity of the recording layer, but it exists at a temperature lower than the melting point of the thin film crystal forming the recording layer. The erasure of this record can be confirmed by increasing the temperature of the recording layer while observing it with a polarizing microscope. For example, if a dark recorded area is formed in a non-recorded area that appears uniformly bright, the recorded area will begin to chip at a certain temperature or higher.
In a temperature range of approximately 5 to 20° C., all of the recorded portion disappears, and the entire state becomes the same as the non-recorded portion. If you raise the temperature further. The field of view becomes completely dark as the crystal thin film of the recording layer melts. Therefore, when the molecules in the tiny recording area formed in a thin film crystal with a changed crystal state reach a state where they can undergo sufficient thermal movement, they begin to arrange in the same way as the molecules in the surrounding non-recording area. , by returning from that temperature to room temperature, the whole becomes a uniform thin film state crystal and disappears. Specifically, erasing can be done by heating the entire recording medium to the above temperature range and cooling it to erase the entire recording,
It is also possible to erase only a portion of the recorded information by locally heating and cooling the recorded bit portion or a slightly wider area to the erasing temperature. In the latter case, the intensity of the laser beam irradiated during recording may be weakened, the temperature of the recorded pit area may be adjusted to fall within the erasing temperature range, and irradiation may be repeated. At this time, the recording bit part (the part whose crystal state has changed) of the thin film crystal of the recording layer is heated to the erasing temperature, and when it is cooled, the crystal state is the same as the surrounding non-recording part. The state returns and the recorded pits are erased. This erased state, like the recorded state, can be confirmed by optical observation means such as an m-microscope or a polarizing microscope. The recording medium of the present invention basically does not use heat to make holes in the recording layer or change the surface shape of the recording Jd, but instead to use heat to form holes in the recording layer or change the surface shape of the recording layer Jd, the recording medium contains the thin film-like crystals forming the recording layer or the IIa layer. Recording is performed by changing the crystalline Ill of a portion of a thin film crystal, and the difference between the formed recorded portion and non-recorded portion is detected as, for example, a difference in polarization characteristics. In this respect, the recording medium of the present invention is significantly different from conventional recording media. For example, this is based on a completely different phenomenon from the recording medium described in the prior art section, in which organic low-molecular compounds exist in a dispersed state in a resin matrix, and the light-shielding property changes depending on the heating temperature. In other words, in the recording medium of this example, the organic low-molecular-weight compound exists in the form of fine particles in the recording layer, and the recording section itself is also formed by a large number of fine particles, and the recording is caused by differences in light-shielding properties based on the scattering of light due to the dispersed state of these fine particles. In contrast, in the recording medium of the present invention, the fatty acid or fatty acid derivative exists as a thin film crystal, and the recording is formed as a change in the crystal state in a part of the thin film crystal, resulting in changes in optical properties. It detects the difference. Therefore, the difference between the two banks is obvious. [Effects of the Invention] Recording and erasing on the recording medium of the present invention is basically based on the difference in temperature reached by thin film crystals of fatty acids or fatty acid derivatives that form the recording layer, and this is due to the difference in temperature achieved by the thin film crystals of fatty acids or fatty acid derivatives that form the recording layer. Can be adjusted. Also, since recording and erasing can be performed at high speed, recording is performed while erasing. So-called overwriting is possible. Further, this recording and erasing can be performed repeatedly and stably. Furthermore, since the recording section is in a stable state like the non-recording section, recorded information can be stored stably for a long period of time. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 光学研磨された直径4インチ(101.6ml),厚さ
1.2露一のガラスディスク上に、光反射層であり、か
つ光熱変換層であるクロム層を真空蒸着により設けた.
厚さは約900人であった.このクロム層上に、塩化ビ
ニルー酢酸ビニル共重合体(ユニオンカーバイド社1%
: VY}IH)の5wt%テトラヒド口フラン溶液を
塗布し、乾燥して厚さ約0.2μ量の樹脂層を設けた.
次に、この樹脂層上にステアリン酸(シグマ社製:純度
99%以上)のlowt%テトラヒド口フラン溶液を塗
布し45℃で乾燥した.さらに、その上に前記と同じ塩
化ビニルー酢酸ビニル共重合体の5wt%テトラヒド口
フラン溶液を塗布し,45℃で乾燥した.このディスク
を90℃で約2分間熱処理した後、徐冷した.以上の操
作により、クロム層上にほぼ一様な配向をしたステアリ
ン酸の薄膜状結晶よりなる記録層(厚さ約O.S.)と
、その上に塩化ビニルー酢酸ビニル共重合体よりなる保
護層(厚さ約0.6.)が形成された. このようにして作成した記録媒体を90ORPMで回転
させながら,直径14に集光した波長830nmの半導
体レーザー光を下記(1)および(2)の条件で照射し
,スパイラル状の記録を形成した.このとき、ディスク
上の記録した部分における記録方向の線速度は約350
0−4000mm/seeである.照射条件(1)点灯
条件二周波数200K}lz、デューティ比50% 記録媒体面での強度:5臘V 記録ラインの間隔:約3.54(中心間)(2)点灯条
件:連続点灯 記録媒体面での強度:5Ilw 記録ラインの間隔:約1【(中心間) 上記(1)の条件でレーザー光を照射した記録媒体を反
射偏光顕微鏡を用い直交二コル状態でw4察すると、記
録層のレーザー光照射部分に幅約1paのライン状の記
録部が形成されているのが,明瞭なコントラストで観察
できた。ただし,この記録部は通常の光学顕微manで
は.ほとんど確認できない程度であった.偏光顕微鏡で
観察した例を第8図に写真で示す. この記録した記録媒体の記録層をクロム層から剥雅し、
その表面(クロム層と接していた面)を走査型電子顕微
鏡でll!察すると,レーザー光照射部分は小さな板状
の結晶の集合となっていた.上記(2)の条件でレーザ
ー光を照射した記録媒体を同様に偏光顕微鏡を用いて観
察すると、記録媒体の照射範囲全面にほとんどすき間な
く記録されているのが認められた.この全面記録を行な
った記録媒体について、記録を行なう前と記録後の同一
部分のX線回折を測定した.記録前のX線回折を第6図
,記録後のX線回折を第7図に示す.第6図より、記録
前はステアリン酸のC型結晶の長面間隔に基づく回折線
のみが認められ、a,b軸を平行に配向した構造になっ
ていた.しかし、第7図の記録後では,短面間隔に基づ
く回折線(2 0 =21.6”)が現われ、記録層の
記録部の中にC軸を基板に平行に配向した構造が形成さ
れたことを示している.次に、(1)の条件で記録した
記録媒体について、偏光顕微鏡で観祭しながら,記録媒
体の温度を室温から1℃/分の速度で昇温しでいった。
Example 1 A chromium layer serving as a light reflection layer and a light-to-heat conversion layer was provided by vacuum deposition on an optically polished glass disk having a diameter of 4 inches (101.6 ml) and a thickness of 1.2 mm.
The thickness was approximately 900 people. On this chromium layer, vinyl chloride-vinyl acetate copolymer (Union Carbide Co., Ltd. 1%
A 5 wt % tetrahydrofuran solution of VY}IH) was applied and dried to form a resin layer with a thickness of approximately 0.2 μm.
Next, a low % tetrahydrofuran solution of stearic acid (manufactured by Sigma, purity 99% or higher) was applied onto this resin layer and dried at 45°C. Furthermore, a 5 wt % tetrahydrofuran solution of the same vinyl chloride-vinyl acetate copolymer as above was applied thereon and dried at 45°C. This disk was heat treated at 90°C for about 2 minutes and then slowly cooled. Through the above operations, a recording layer (thickness approximately O.S.) consisting of thin film-like crystals of stearic acid oriented almost uniformly on the chromium layer, and a protective layer made of vinyl chloride-vinyl acetate copolymer on top of the recording layer (approximately O.S. thickness) are formed on the chromium layer. A layer (approximately 0.6 mm thick) was formed. While rotating the thus prepared recording medium at 90 ORPM, it was irradiated with semiconductor laser light with a wavelength of 830 nm focused on a diameter of 14 under the following conditions (1) and (2) to form a spiral record. At this time, the linear velocity in the recording direction of the recorded portion on the disk is approximately 350
0-4000mm/see. Irradiation conditions (1) Lighting conditions: Two frequencies: 200K}lz, duty ratio: 50% Intensity on the recording medium surface: 5 V Recording line spacing: Approximately 3.54 (center distance) (2) Lighting conditions: Continuously lit recording medium Intensity in plane: 5Ilw Distance between recording lines: approx. 1 [(center distance) When the recording medium irradiated with laser light under the conditions (1) above is observed w4 in the orthogonal Nicol state using a reflective polarizing microscope, the recording layer It was observed with clear contrast that a line-shaped recorded portion with a width of about 1 pa was formed in the laser beam irradiated area. However, this recording section cannot be recorded with a normal optical microscope. It was almost impossible to confirm. Figure 8 shows a photograph of an example observed using a polarizing microscope. The recording layer of the recorded recording medium is stripped from the chromium layer,
The surface (the surface that was in contact with the chromium layer) was examined using a scanning electron microscope! When observed, the area irradiated with the laser beam was a collection of small plate-shaped crystals. When a recording medium irradiated with laser light under the conditions (2) above was similarly observed using a polarizing microscope, it was found that recording was performed over the entire irradiated area of the recording medium with almost no gaps. The X-ray diffraction of the same portion of the recording medium on which the entire surface was recorded was measured before and after recording. Figure 6 shows the X-ray diffraction before recording, and Figure 7 shows the X-ray diffraction after recording. From FIG. 6, before recording, only the diffraction lines based on the long-plane distance of the C-type crystal of stearic acid were observed, and the structure was such that the a and b axes were oriented in parallel. However, after recording as shown in Figure 7, a diffraction line (2 0 = 21.6'') based on the short plane spacing appears, and a structure in which the C axis is oriented parallel to the substrate is formed in the recording part of the recording layer. Next, the temperature of the recording medium recorded under the conditions (1) was raised from room temperature at a rate of 1°C/min while observing it under a polarizing microscope. .

すると、明瞭なコントラストで見えていた記録部が,6
0℃位から消えはじめ,約68℃では完全に周囲と同じ
明るさとなり、消去された.また、この温度までは周囲
の非記録部の状態には、変化は認められなかった。さら
に昇温を続けると69.4℃で、視野の一端から完全に
暗くなり、すぐに全体に拡がって、この温度で記録層の
結晶薄膜が完全に溶融したことがわかった. 次に,(1)の条件で記録した記録媒体に対して、直径
5Ijaに集光した波長780nmの半導体レーザー光
を記録媒体面での強度1 . 5mV、2mwおよび3
1lりとなるように連続点灯し、線速50mm/see
の速度で、前の記録部分と重なるように直線状に走査し
た。この記録媒体を偏光顕微鏡で観察したところ,第9
図の写真に示すように、2Ilwおよび3mWの強度で
重ねて照射した部分は,照射強度が強すぎたため、ビー
ム中央部では、薄膜状結晶が溶融温度以上になり,新し
くライン状の記録が形成された.ただし、このラインの
縁の部分,すなわちビームの周辺部が走査した部分では
、前にIgφのレーザー光で記録されていた記録部が消
去された.一方、1.5mWの強度で重ねて照射された
部では,前の1,cowφのレーザー光による記録部が
約2.5−の幅で帯状に消去されていた.以上の結果よ
り.強度1.51の照射で記録層が消去温度範囲に入り
、消去が行なわれることが確認された。
Then, the recording section that was visible with clear contrast changed to 6
It started to disappear at about 0℃, and at about 68℃ it became completely the same brightness as the surrounding area and disappeared. Moreover, no change was observed in the state of the surrounding non-recording area up to this temperature. As the temperature continued to rise further, the field of view became completely dark from one end to 69.4°C, and quickly spread to the entire area, indicating that the crystal thin film of the recording layer had completely melted at this temperature. Next, on the recording medium recorded under the conditions (1), a semiconductor laser beam with a wavelength of 780 nm focused to a diameter of 5 Ija was applied to the recording medium at an intensity of 1. 5mV, 2mw and 3
Continuously lights up at 1l, line speed 50mm/see
It was scanned in a straight line at a speed of When this recording medium was observed with a polarizing microscope, it was found that the 9th
As shown in the photo in the figure, the irradiation intensity was too strong in the area irradiated with 2Ilw and 3mW intensities, so in the center of the beam, the thin film-like crystals reached a temperature higher than the melting temperature, and a new line-shaped record was formed. It was done. However, at the edge of this line, that is, at the area scanned by the peripheral part of the beam, the recorded area previously recorded by the Igφ laser beam was erased. On the other hand, in the area irradiated with an intensity of 1.5 mW, the area recorded by the previous 1, cowφ laser beam was erased in a band shape with a width of about 2.5 mm. based on the above results. It was confirmed that the recording layer entered the erasing temperature range by irradiation with an intensity of 1.51, and erasing was performed.

実施例2 実施例1で用いたものと同様に、光熱変換層としてクロ
ムJケを有するガラスディスクを用意した.また、保護
層となる厚さ0.1mmのガラス板の片面にギャップ材
として直径約14のシリカ粒子を微量付着させた.この
両方を100℃の恒温槽中に入れ加熱した後、同温度で
ガラスディスクのクロム層上にべヘン酸(シグマ社製;
純度99%以上)を少量のせ溶融させた.次に、一方の
ガラス板をギャップ材の付着した面を下にして、べヘン
酸の融液上に一端から静かにかぶせ、融液を全面に拡げ
て,はさみ込んだ.さらに、かぶせたガラス板の上から
均一に荷重をかけ、そのまま恒温槽の温度をゆっくり下
げ、ベヘン酸を結晶化させて,薄膜状の結晶とした.以
上の操作により、クロム層上にほぼ一様な配向をしたべ
ヘン酸の薄膜状結晶よりなる記録層(厚さ約0.8Il
a)と、その上に厚さ0.1mmのガラスよりなる保護
層が形成された. このようにして作成した記録媒体を90ORPMで回転
させ,そこに直径1一に集光した波長830nmの半導
体レーザー光を線速3500〜4000■履/ see
でスバイラル状に照射した.このときの照射条件は実施
例lの場合と同様,(1)および(2)の二つの条件と
した。ただし、照射強度は(1)では3,4,5,6,
8,10,12mνとし,(2)では8■Vとした. 照射条件(1)で記録したものの記録の状態を反射偏光
顕微鏡を用い直交二コル状態でa察すると,記録層のレ
ーザー光照射部分に、強度41以上で記録ができている
ことが明瞭なコントラストで認められた。また,照射し
たレーザー光の強度が大きくなるに従い記録部分、すな
わち溶融再結晶化により結晶状態が変化した部分の幅が
広くなり、41では幅が約0.4−、12m一では約1
.8趨であった,記録部分の偏光顕wl鏡による観察に
おいて、同一部分を試料台上で回転してみると、非記録
部と記録部の明暗のコントラストには、逆転が認められ
た。すなわち,ある角度で明るい非記録部に対して記録
部が暗く見えていたものが同じ部分を45゜回転すると
暗い非記録部の中に明るい記録部がII察された。強度
8mVで記録した部分の偏光顕微鏡写真を第10図(a
)および(b)に示す.なお、(a)と(b)とは同一
部分を45゜回転させて観測したものである. 次に、実施例1と同様に,記録部を偏光顕微鏡で観察し
ながら,記録媒体の温度を上げていくと、明瞭なコント
ラストで見えていた記録部が60℃位から消えはじめ、
約77℃で完全に消去された.またこの温度では非記録
部には変化は認められず、79.5℃まで上昇すると結
晶薄膜全体が溶融した.次に、同様の条件で作成したふ
たつのべヘン酸記録媒体を用意し、その一方に、上記(
2)の条件でレーザー光を照射した。この記録媒体を偏
光顕微鏡でm察すると,記録媒体の照射範囲全面にほと
んどすき間なく記録されているのが認められた。
Example 2 A glass disk having chromium J as a light-to-heat conversion layer was prepared in the same manner as that used in Example 1. In addition, a small amount of silica particles with a diameter of about 14 mm was attached as a gap material to one side of a 0.1 mm thick glass plate to serve as a protective layer. After heating both in a thermostat at 100°C, apply behenic acid (manufactured by Sigma;
(purity of 99% or higher) was placed on top and melted. Next, one glass plate was gently placed over the behenic acid melt from one end with the side with the gap material facing down, and the melt was spread over the entire surface and sandwiched. Furthermore, a load was applied uniformly over the covered glass plate, and the temperature of the thermostat was slowly lowered to crystallize the behenic acid into a thin film of crystals. By the above operations, a recording layer (about 0.8 Il thick
a) and a protective layer made of glass with a thickness of 0.1 mm was formed thereon. The recording medium created in this way is rotated at 90 ORPM, and a semiconductor laser beam with a wavelength of 830 nm focused to a diameter of 1 is heated at a linear velocity of 3500 to 4000 mm/see.
It was irradiated in a spiral pattern. The irradiation conditions at this time were the two conditions (1) and (2) as in Example 1. However, in (1), the irradiation intensity is 3, 4, 5, 6,
8, 10, 12mν, and in (2) it was 8■V. When observing the state of the recording recorded under irradiation condition (1) using a reflective polarizing microscope in the orthogonal Nicol state, there is a clear contrast that shows that recording has been made with an intensity of 41 or higher in the laser beam irradiated area of the recording layer. It was recognized in In addition, as the intensity of the irradiated laser beam increases, the width of the recorded part, that is, the part where the crystal state has changed due to melting and recrystallization, becomes wider.
.. When observing the recorded portion using a polarizing microscope (8 lines), when the same portion was rotated on the sample stage, a reversal was observed in the contrast of brightness between the non-recorded portion and the recorded portion. That is, at a certain angle, the recorded area appeared dark compared to the bright non-recorded area, but when the same area was rotated by 45 degrees, a bright recorded area was detected within the dark non-recorded area. A polarized light micrograph of the area recorded at an intensity of 8 mV is shown in Figure 10 (a
) and (b). Note that (a) and (b) are observations of the same part rotated by 45 degrees. Next, as in Example 1, when the temperature of the recording medium was increased while observing the recorded area with a polarizing microscope, the recorded area that had been visible with clear contrast began to disappear at around 60°C.
It was completely erased at about 77°C. Further, at this temperature, no change was observed in the non-recording area, and when the temperature rose to 79.5°C, the entire crystal thin film melted. Next, two behenic acid recording media prepared under similar conditions were prepared, and one of them was coated with the above (
Laser light was irradiated under the conditions of 2). When this recording medium was observed using a polarizing microscope, it was found that recording was performed over the entire irradiated area of the recording medium with almost no gaps.

これらふたつの記録媒体の保護層のガラス板をはく離し
、全面記録した記録層と未記録の記録層のX線回折を測
定して結晶状態を比較した.さらに、全面記録した記録
媒体を1℃/分の速度で75℃まで昇温した後,室温に
戻し、記録がほとんど消去された状態でのX線回折を測
定した。第12図に記録前,第13図に記録後、第14
図に消去後のX線回折図を示す.これらより,記録後は
一部分子配向が変化し、消去後はほぼ元に戻っているこ
とがわかる. また、上記(1)の条件で1岬φのレーザー光により記
録された記録媒体に,実施例lと同様に51Rφのレー
ザー光をそれぞれ2.5,2,1.5mWとなるように
連続点灯し,線速50mm/seeの速度で記録部分と
重なるように走査した後,偏光顕微鏡で観察すると第1
1図の写真のように. 2o+Vで照射された部分が幅
約3癖の帯状に消去された.また、2.5mW以上では
強度が大きすぎたため新しくライン状の記録ができ、そ
のラインの縁の部分で消去が認められ、1 . 5mW
では記録部が少し細くなる程度であった。
The glass plates of the protective layers of these two recording media were peeled off, and the X-ray diffraction of the fully recorded recording layer and the unrecorded recording layer was measured to compare the crystalline state. Furthermore, the recording medium on which the entire surface had been recorded was heated to 75° C. at a rate of 1° C./min, then returned to room temperature, and X-ray diffraction was measured in a state in which most of the recording had been erased. Figure 12 shows before recording, Figure 13 shows after recording, and 14 shows
The figure shows the X-ray diffraction pattern after erasure. These results show that the molecular orientation partially changes after recording, but almost returns to its original state after erasing. Furthermore, as in Example 1, a laser beam of 51 Rφ was continuously lit at 2.5, 2, and 1.5 mW, respectively, on the recording medium recorded with a laser beam of 1 cape φ under the conditions of (1) above. After scanning at a linear speed of 50 mm/see so as to overlap the recorded part, the first part was observed using a polarizing microscope.
As shown in the photo in Figure 1. The area irradiated with 2o+V was erased in a band shape about 3 squares wide. In addition, at 2.5 mW or more, the intensity was too high and a new line-shaped record was created, and erasure was observed at the edge of the line. 5mW
However, the recording section was only slightly thinner.

実施例3 実施例2と全く同様にして、ガラス基板(5cm X 
5cm、厚さ1.21■)上に、光熱変換層としてクロ
ム層、その上にベヘン酸,薄膜状結晶の記録層、さらに
その上にガラスの保sr!よりなる記録媒体を作成した
.ただし,記録層の厚さは約0.6μ回であった。
Example 3 A glass substrate (5 cm x
5cm, thickness 1.21cm), a chromium layer as a light-to-heat conversion layer, on top of which behenic acid, a recording layer of thin film crystal, and further a glass SR! We created a recording medium consisting of: However, the thickness of the recording layer was approximately 0.6 microns.

この記録媒体に直径5声に集光した波長780n+*の
半導体レーザー光を記録媒体面で強度が7.10.14
mWとなるように連続点灯し線速200mm/secで
直線状に走査した.この記録媒体を偏光顕微鏡でwA察
したところ第15図(a)の写真に示すような明瞭な記
録が認められた.また、この部分を試料台を45゜回転
してamすると,第15図(b)の写真のように非記録
部と記録部の明暗の逆転が認められた。
A semiconductor laser beam with a wavelength of 780n+* is focused on this recording medium to a diameter of 5 tones, and the intensity at the recording medium surface is 7.10.14.
The light was turned on continuously so that the output power was 200 mm/sec, and scanning was performed in a straight line at a linear speed of 200 mm/sec. When this recording medium was observed under a polarizing microscope, clear recording was observed as shown in the photograph in Figure 15(a). Further, when this part was viewed by rotating the sample stage by 45 degrees, it was observed that the brightness of the non-recorded part and the recorded part was reversed, as shown in the photograph in FIG. 15(b).

同様にして作成した記録媒体について、強度を1 2m
Vとし上記と同様の条件で、記録媒体全面にほぼすき間
なく照射した.この記録媒体の保WI層である厚さ0.
1+lmlのガラス板を記録層からはがし、記録層のX
線回折を測定した.また、比較のため同様に作成した記
録媒体をレーザー光の照射を行なわず,そのまま保護層
のガラス板をはがし、X線回折を測定した.記録前(第
16図)と全面記録後(第17図)のX線回折を比較す
ると、いずれもべヘン酸のC型結晶の長面間隔(48.
3人)に基づく回折線が明瞭に認められる.一方,記録
による短面間隔の部分の変化は,同様な記録媒体であり
ながら、照射時間の短かい実施例2の場合とは異なって
いる。しかし、偏光顕微鏡による観察では、非記録部と
記録部のコントラストは明確であることから、この照射
条件と実施例2の場合では、記録による配向方向の変化
の仕方が異なることがわかる(実施例2との照射条件の
差はビーム径と線速度の差に基づく照射時間の差:実施
例2は約0.25μsec、実施例3は約100μse
cである)。
Regarding the recording medium created in the same way, the strength was set to 1 to 2 m.
The entire surface of the recording medium was irradiated almost without gaps under the same conditions as above. The thickness of the WI retaining layer of this recording medium is 0.
Peel off the 1+lml glass plate from the recording layer and
Linear diffraction was measured. For comparison, a similarly prepared recording medium was not irradiated with laser light, the glass plate of the protective layer was removed, and X-ray diffraction was measured. Comparing the X-ray diffraction before recording (Figure 16) and after recording over the entire surface (Figure 17), both show that the long-plane spacing of the C-type crystals of behenic acid (48.
The diffraction lines based on 3 people) can be clearly seen. On the other hand, the change in the short surface interval due to recording is different from that in Example 2, which uses a similar recording medium but has a shorter irradiation time. However, when observed using a polarizing microscope, the contrast between the non-recorded area and the recorded area is clear, so it can be seen that the way the orientation direction changes due to recording is different between this irradiation condition and the case of Example 2 (Example The difference in irradiation conditions between 2 and 2 is the difference in irradiation time based on the difference in beam diameter and linear velocity: approximately 0.25 μsec in Example 2 and approximately 100 μsec in Example 3.
c).

実施例4 実施例1と同様のクロム層を有するガラスディスクを用
意した。このクロム層上にポリイミド樹脂溶液(日本合
成ゴム社製:JIB−1)を塗布し、温度150℃で1
時間乾燥して厚さ約0.1μIのポリイミド層を設けた
.一方、保護層となる厚さ0.1m+aのガラスの片面
にも同様に厚さ約0.1μ−のポリイミド層を設け、さ
らにその上にギャップ材として直径約1μmのシリカ粒
子を微量付着させた。この両方を恒温槽中に入れ、表−
2に示す記録層の材料を溶融させて実施例2と同様には
さみ込んだ。この時の温度はそれぞれの材料の融点より
10〜20℃高い温度とした.融液を全面に拡げた後,
保護層のガラス板の上から均一に荷重をかけ、そのまま
恒温槽の温度をゆっくり下げ、記録層の材料を結晶化さ
せた.以上の操作により,表−2の各材料の薄膜状結晶
を記録層とする記録媒体を作成した。
Example 4 A glass disk having a chromium layer similar to that in Example 1 was prepared. A polyimide resin solution (manufactured by Japan Synthetic Rubber Co., Ltd.: JIB-1) was applied on this chromium layer, and
After drying for a while, a polyimide layer with a thickness of about 0.1 μl was provided. On the other hand, a polyimide layer with a thickness of about 0.1 μm was similarly provided on one side of the glass with a thickness of 0.1 m+a to serve as a protective layer, and a small amount of silica particles with a diameter of about 1 μm was attached on top of it as a gap material. . Place both of these in a thermostatic chamber, and
The recording layer material shown in Example 2 was melted and sandwiched in the same manner as in Example 2. The temperature at this time was 10 to 20°C higher than the melting point of each material. After spreading the melt over the entire surface,
A load was applied uniformly onto the glass plate of the protective layer, and the temperature of the thermostatic chamber was slowly lowered to crystallize the material of the recording layer. By the above operations, recording media having recording layers made of thin film crystals of each material listed in Table 2 were created.

このようにして作成した記録媒体に直径1【に集光した
半導体レーザー光を実施例2と同様の条件で照射した.
ただし、記録光の強度は表−2に示した通りとした。各
記録媒体の偏光顕微鏡で観察したところ、実施例lおよ
び2の記録媒体と同様の記録が形成されているのが確認
された.表−2 実施例5 実施例1と同様のクロム層を有するガラスディスクを用
意した。このクロム層上に塩化ビニルー酢酸ビニル共重
合体(ユニオンカーバイド社製:νY118)の5wt
%テトラヒド口フラン溶液を塗布し,乾燥して厚さ約0
.2.の樹脂層を設けた.次にこの上に、ステアリン酸
(シグマ社製:純度99%以上)の10vt%テトラヒ
ド口フラン溶液中に、ステアリン酸に対して3リt%の
ナフタロシアニン系色素(下記構造式)を溶解した液を
塗布し45℃で乾燥した。
The recording medium thus prepared was irradiated with semiconductor laser light focused to a diameter of 1 mm under the same conditions as in Example 2.
However, the intensity of the recording light was as shown in Table 2. When each recording medium was observed under a polarizing microscope, it was confirmed that records similar to those of the recording media of Examples 1 and 2 were formed. Table 2 Example 5 A glass disk having the same chromium layer as in Example 1 was prepared. On this chromium layer, 5wt of vinyl chloride-vinyl acetate copolymer (manufactured by Union Carbide: νY118) was applied.
% tetrahydrofuran solution and dried to a thickness of approximately 0.
.. 2. A resin layer was provided. Next, a naphthalocyanine dye (the following structural formula) was dissolved on top of this in a 10 vt% tetrahydrofuran solution of stearic acid (manufactured by Sigma, purity 99% or higher) based on the stearic acid. The liquid was applied and dried at 45°C.

さらにその上に、前記と同じ塩化ビニルー酢酸ビニル共
重合体の5wt%テトラヒド口フラン溶液を塗布し45
℃で乾燥した.このディスクを90℃で約2分間熱処理
した後,徐冷して,クロム層上にほぼ一様な配向をした
ナフタロシアニン系色素を含むステアリン酸の薄膜状結
晶からなる記録層と保護層を形成した. このようにして作成した記録媒体に,直径14に集光し
た半導体レーザー光(830n耐を強度が3鳳Vである
以外は実施例1の照射条件(1)の場合と同様に照射し
た。この記録媒体のレーザー光照射部分を偏光顕微鏡で
観察すると、実施例lと同様に記録部が明瞭なコントラ
ストで&察できた。
Furthermore, a 5 wt % tetrahydrofuran solution of the same vinyl chloride-vinyl acetate copolymer as above was applied on top of it.
Dry at ℃. After heat-treating this disk at 90°C for about 2 minutes, it is slowly cooled to form a recording layer and a protective layer made of thin film-like crystals of stearic acid containing a naphthalocyanine dye with almost uniform orientation on the chromium layer. did. The thus produced recording medium was irradiated with semiconductor laser light (830n resistance) focused to a diameter of 14 in the same manner as in the case of irradiation condition (1) of Example 1 except that the intensity was 3V. When the portion of the recording medium irradiated with the laser beam was observed with a polarizing microscope, the recorded portion could be seen with clear contrast as in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明の記録媒体の断面図であり、図
中1は基板、2は脂肪酸または脂肪酸誘導体の記@層、
3は光熱変換層、4は下引き層、5は保護Jr!を示す
. 第6図はステアリン酸の薄膜状結晶を記録層とする記録
媒体の未記録状態のX線回折図,第7図は同じ記録媒体
の記録後のX線回折図である.また、第8図はこの記録
媒体にI!4φのレーザー光照射により記録した部分の
偏光顕微鏡写真であり、第9図はこの記録部に51Rφ
のレーザー光を重ねて照射し部分的に消去を行なった記
録媒体の偏光顕微鏡写真である. 第10図(a)および(b)はべヘン酸の薄膜状結晶を
記録層とする記録媒体にl一φのレーザー光を照射して
記録した部分の偏光顕微鏡写真であり、(a)と(b)
は同一部分を45゜回転して観察したものである。また
、第11図はこの記録部に5−φのレーザー光を重ねて
照射し部分的に消去を行なった記録媒体の偏光顕微鏡写
真である。また、第12図、13図、14図はそれぞれ
ベヘン酸記録媒体の未記録状態、記録後および消去後の
X線回折図である.さらに、第15図(a)および(b
)はベヘン酸の薄膜状結晶を記録層とする記録媒体に5
戸φのレーザー光を照射して記録した部分の偏光顕微鏡
写真であり、(.)と(b)は同一部分を45゜回転し
てa察したものである.また,第16図と第17図はそ
れぞれこの記録媒体の未記録状態および記録後のX線回
折図である. 第1図 第2図 第3図 第4図 第5図 >++ l QQ(i ji,崩φI、})光照射 X1000 第10図 ( a ) ×沢… ( L> ) 第15図 (a ) x,)ミ゛、1 (b) x5oa
1 to 5 are cross-sectional views of the recording medium of the present invention, in which 1 is a substrate, 2 is a layer of fatty acid or fatty acid derivative,
3 is a photothermal conversion layer, 4 is an undercoat layer, and 5 is a protection Jr! is shown. Figure 6 is an X-ray diffraction diagram of a recording medium with a thin film crystal of stearic acid as its recording layer in an unrecorded state, and Figure 7 is an X-ray diffraction diagram of the same recording medium after recording. Also, FIG. 8 shows I! on this recording medium! This is a polarizing micrograph of a portion recorded by 4φ laser beam irradiation, and FIG. 9 shows a 51Rφ laser beam in this recording section.
This is a polarized light micrograph of a recording medium that has been partially erased by being irradiated with multiple laser beams. Figures 10 (a) and (b) are polarized light micrographs of a portion recorded by irradiating a recording medium with a thin film-like crystal of behenic acid as a recording layer with a laser beam of l - φ; (b)
is an observation of the same part rotated 45 degrees. Moreover, FIG. 11 is a polarized light micrograph of a recording medium in which the recording portion was irradiated with a 5-φ laser beam to partially erase the recording portion. Furthermore, FIGS. 12, 13, and 14 are X-ray diffraction diagrams of the behenic acid recording medium in an unrecorded state, after recording, and after erasing, respectively. Furthermore, FIGS. 15(a) and (b)
) is a recording medium with a thin film crystal of behenic acid as a recording layer.
This is a polarized light micrograph of a portion of the door φ recorded by irradiating it with a laser beam, and (.) and (b) are images of the same portion rotated by 45 degrees. Moreover, FIG. 16 and FIG. 17 are the X-ray diffraction diagrams of this recording medium in an unrecorded state and after recording, respectively. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 >++ l QQ (i ji, collapse φI, }) Light irradiation X1000 Figure 10 (a) × Sawa... (L>) Figure 15 (a) x,)mi,1 (b) x5oa

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に記録層を有する記録媒体において、記録
層が脂肪酸または脂肪酸誘導体を主成分とする薄膜状結
晶であるか、またはその薄膜状結晶を含む層であること
を特徴とする記録媒体。
(1) A recording medium having a recording layer on a substrate, characterized in that the recording layer is a thin film crystal whose main component is a fatty acid or a fatty acid derivative, or a layer containing the thin film crystal. .
(2)記録時に照射された光の一部または全部を吸収し
熱に変換する光熱変換層を設けたことを特徴とする請求
項(1)記載の記録媒体。
(2) The recording medium according to claim (1), further comprising a photothermal conversion layer that absorbs some or all of the light irradiated during recording and converts it into heat.
(3)記録層中に記録時に照射された光の一部または全
部を吸収し熱に変換する光熱変換物質が含有されている
ことを特徴とする請求項(1)または(2)記載の記録
媒体。
(3) The recording according to claim (1) or (2), characterized in that the recording layer contains a photothermal conversion substance that absorbs part or all of the light irradiated during recording and converts it into heat. Medium.
JP1094438A 1988-06-07 1989-04-13 recoding media Expired - Lifetime JP2995681B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1094438A JP2995681B2 (en) 1988-06-07 1989-04-13 recoding media
US08/919,424 US6090508A (en) 1988-06-07 1997-08-27 Optically anisotropic recording medium and method of recording and erasing information using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14007388 1988-06-07
JP63-140073 1988-06-07
JP1094438A JP2995681B2 (en) 1988-06-07 1989-04-13 recoding media

Publications (2)

Publication Number Publication Date
JPH02131987A true JPH02131987A (en) 1990-05-21
JP2995681B2 JP2995681B2 (en) 1999-12-27

Family

ID=26435716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094438A Expired - Lifetime JP2995681B2 (en) 1988-06-07 1989-04-13 recoding media

Country Status (1)

Country Link
JP (1) JP2995681B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545447A (en) * 1977-06-14 1979-01-16 Fuji Photo Film Co Ltd Recording material
JPS54149617A (en) * 1978-05-16 1979-11-24 Tomoegawa Paper Co Ltd Light heat recording material
JPS5738190A (en) * 1980-08-20 1982-03-02 Hitachi Ltd Recording member
JPS58104794A (en) * 1981-12-18 1983-06-22 Hitachi Ltd Member for recording

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545447A (en) * 1977-06-14 1979-01-16 Fuji Photo Film Co Ltd Recording material
JPS54149617A (en) * 1978-05-16 1979-11-24 Tomoegawa Paper Co Ltd Light heat recording material
JPS5738190A (en) * 1980-08-20 1982-03-02 Hitachi Ltd Recording member
JPS58104794A (en) * 1981-12-18 1983-06-22 Hitachi Ltd Member for recording

Also Published As

Publication number Publication date
JP2995681B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US5185194A (en) Heat-mode recording medium
US4975358A (en) Immediate write, read, and erase optical storage medium and method of marking and erasing
US6090508A (en) Optically anisotropic recording medium and method of recording and erasing information using the same
JPS63132090A (en) Write-erasing method on optical recording element
CA1192307A (en) Erasable optical recording medium
JPH02131987A (en) Recording medium
JP2617523B2 (en) Optical data storage element
JP3054769B2 (en) Recording / erasing method
Gupta et al. Erasable laser recording in an organic dye‐binder optical disk medium
JP3054770B2 (en) How to play the recording
JPH02289381A (en) Recording medium
JPH0453195B2 (en)
JPH0256746A (en) Information carrier disk
JPH0316786A (en) Recording medium and recording method
JPH02289380A (en) Recording medium
JP2998970B2 (en) recoding media
JP3030436B2 (en) Recording medium and method of manufacturing the same
JPH04211990A (en) Infrared laser beam sensitive recording material
JPH03197086A (en) Recording medium
JPS61134944A (en) Optical information storage medium
JPH03219435A (en) Recording medium
JPH031340A (en) Recording medium and production thereof
JPH03194741A (en) Recording medium and production thereof
JPH03197172A (en) Optical recording medium
JPH03293194A (en) Method for erasing record