JPH02131839A - Automatic control method for vibration cutting device - Google Patents
Automatic control method for vibration cutting deviceInfo
- Publication number
- JPH02131839A JPH02131839A JP28324988A JP28324988A JPH02131839A JP H02131839 A JPH02131839 A JP H02131839A JP 28324988 A JP28324988 A JP 28324988A JP 28324988 A JP28324988 A JP 28324988A JP H02131839 A JPH02131839 A JP H02131839A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- cutting
- vibration
- frequency
- adaptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 15
- 230000007246 mechanism Effects 0.000 abstract description 10
- 238000004891 communication Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 238000003754 machining Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Turning (AREA)
- Automatic Control Of Machine Tools (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
この発明は、工具に振動を与えて切削加工をする振動切
削装置において、切削中の切削状態を検出してその切削
状態に応じて回転速度又は送り条件を適正に変化させる
ようにした自動制御方法に関するものである.
〔従来の技術〕
従来より切削加工中に工具に適当な振動を与えると、切
屑処理や加工精度の向上、又は工具の耐久性の向上など
の優れた効果があることが知られている.
このような振動切削の効果を得るため、本出願人はすで
に、切削加工中に生じる工具の自動振動を有効に利用し
て振動切削を行なうようにした振動切削装置を特願昭6
2−80021号や特願昭62−135658号等によ
り提案している.これらの振動切削装置は、工作機械の
主軸に装着されるツールホルダーに工具取付部を備える
振動部材を切削方向に移動可能に取付け、この振動部材
にそれを定位置に復帰させる弾性力を付与したもので、
切削加工時に工具に加わる切削振動を弾性力によって増
大させて工具に逆伝達するようになっている.
〔発明が解決しようとする課題〕
ところで、近年において各種工作機械の無人化運転が著
しく普及し、これに並行して工作機械の切削工具につい
ても、その寿命のばらつき、損傷等に対する効果的な対
策が強く要望されている.このため以前から、切削中の
切削力を常に検出し、過大又は過小な切削力を検出した
とき即応的に回転速度又は切削送り速度を修正させる各
種の自動制御方法や装置が提案されている.
ところが、従来の自動制御装置における切削力の検出手
段としては、抵抗線歪計、差動変圧器、容量検出計など
の検出器を主軸や切削送り台に取付ける方法がとられて
いるが、これらの検出計は上記の振動切削装置に全く利
用することができない問題がある.すなわち、工具に振
動を与えて加工する振動切削においては、例えば抵抗線
歪計を用いて切削力を計測した場合、その得られる値は
振動量を示すだけで意味をなすものではなく、また機械
的振動が抵抗線歪計等の検出機構を損傷させる原因にな
る.
したがって、振動切削装置において、切削中の切削力を
検出するには従来の検出方法とは違った新しい検出方法
が必要になる.
この発明は、上記の!IIIに解決を与えたもので、振
動切削中における工具の切削杖態を正確に検出し、その
切削状態に応じて切削条件を修正するようにした自動制
御方法を提供するものである.〔課題を解決するための
手段〕
上記の課屈を解決するため、この発明は、切削加工時に
発生する工具の機械的振動を周波数量として検出し、こ
の検出された振動周波数を基準周波数2比較し、この比
較値に基づいて主軸回転数又は切削送り量を変化させる
方法を採用したのである.
切削中の工具に損傷が生じた場合、工具又は工作機械か
ら発生するアコースティックエミッシッン信号(以下A
E信号と云う)は、その裔周波数成分の出力レベルが高
くなることが知られている.また従来より切削中のAE
信号を検出し、その信号中に出力レベルの高い高周波数
成分が現われた際、工作機械の動きを止めるようにした
工具損傷防止装置が存在している.
本発明者等は、上記のようなAE信号の振動周波数と切
削現象との関連が工具の機械的振動と切削現象にも同様
に存在していると考え、この機械的振動を周波数量とし
て検出し、この検出された周波数に基づいて切削条件を
制御するようにしたのである.
また、上記工具の機械的振動は、工具の表面に吹出し口
を向き合せてエアー通路を設け、このエアー通路内の圧
力変動に変換し、この圧力変動を検出して振動周波数を
求めるようにしてもよい.このように振動する工具と非
接触状態で振動周波数を求めることにより、圧電素子等
を用いて接触状態で検出する方法に比べて工具の動きや
形状等に関係なく常に安定した周波数を求めることがで
きる.
(作用)
工具の機械的振動の周波数を検出し、その検出した周波
数【を切削加工の開始からその周波数の変化を時間を追
って表示すると、第4図(a)に示す関係が得られる.
図により、切削の初期の段階においては周波数は著しく
増大し、初期段階を過ぎると周波数は一様な状態で進行
している,また、切削中の工具切刃が被削材中の硬い部
分と接触するか、切込みの過不足が生じた場合(1+時
間)、周波数は一時的に上昇し、上記状態がなくなると
再び定常の周波数に戻る現象を示す.また、周波数は、
工具切刃の摩耗が進行するに伴い、漸次増大するか、或
いは減少する現象を示し、t2時間のように工具切刃に
チッピングや欠けが発生すると周波数fは急激な増大を
示す.
上記現象において切削の初期の段階で周波数が増大する
のは、回転数あるいは送り量が加速杖態にあり、安定す
るまでの過渡的過程であると考えられる.
したがって、制御を行なう場合は切削の初期の段階を除
き、周波数が定常状態になった時点から開始する必要が
ある.また、初期段階経遇した後の定常状態は切削が正
常な状態にあるので、この状態の周波数を基準周波数と
するのが望ましい。Detailed Description of the Invention (Industrial Field of Application) This invention provides a vibration cutting device that performs cutting by applying vibration to a tool, which detects the cutting state during cutting and adjusts the rotational speed according to the cutting state. Or, it relates to an automatic control method that appropriately changes feed conditions. [Prior art] Conventionally, applying appropriate vibration to a tool during cutting can improve chip disposal, improve machining accuracy, or improve tool performance. It is known that vibration cutting has excellent effects such as improved durability.In order to obtain these effects of vibration cutting, the applicant has already developed a method that effectively utilizes the automatic vibration of the tool that occurs during cutting. A patent application was filed in 1983 for a vibration cutting device that performs vibration cutting.
This has been proposed in No. 2-80021 and Japanese Patent Application No. 135658/1983. These vibration cutting devices have a vibrating member with a tool mounting section attached to a tool holder attached to the main shaft of a machine tool so that it can move in the cutting direction, and an elastic force is imparted to this vibrating member to return it to its normal position. Something,
The cutting vibration applied to the tool during cutting is increased by elastic force and transmitted back to the tool. [Problem to be solved by the invention] By the way, in recent years, unmanned operation of various machine tools has become extremely popular, and in parallel with this, effective measures have been taken to prevent variations in the lifespan and damage of cutting tools of machine tools. is strongly requested. For this reason, various automatic control methods and devices have been proposed that constantly detect the cutting force during cutting and immediately adjust the rotational speed or cutting feed rate when excessive or insufficient cutting force is detected. However, the cutting force detection means used in conventional automatic control equipment is to attach detectors such as resistance wire strain gauges, differential transformers, and capacitance detectors to the spindle or cutting feed table. There is a problem that this detector cannot be used at all with the vibration cutting equipment mentioned above. In other words, in vibration cutting, in which machining is performed by applying vibration to the tool, for example, if the cutting force is measured using a resistance wire strain meter, the obtained value only indicates the amount of vibration, and has no meaning; vibration can damage the detection mechanism of resistance wire strain meters, etc. Therefore, in vibration cutting equipment, a new detection method different from the conventional detection method is required to detect the cutting force during cutting. This invention is above! This is a solution to III, and provides an automatic control method that accurately detects the cutting rod state of the tool during vibration cutting and corrects the cutting conditions according to the cutting state. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention detects the mechanical vibration of a tool that occurs during cutting as a frequency quantity, and compares the detected vibration frequency with a reference frequency. However, a method was adopted in which the spindle rotation speed or cutting feed amount was changed based on this comparison value. If damage occurs to the tool during cutting, an acoustic emission signal (hereinafter referred to as A) generated from the tool or machine tool
It is known that the output level of the descendant frequency component of the E signal is high. In addition, conventionally, AE during cutting
There is a tool damage prevention device that detects a signal and stops the movement of the machine tool when a high frequency component with a high output level appears in the signal. The present inventors believe that the above-mentioned relationship between the vibration frequency of the AE signal and the cutting phenomenon also exists in the mechanical vibration of the tool and the cutting phenomenon, and the inventors believe that the above-mentioned relationship between the vibration frequency of the AE signal and the cutting phenomenon also exists in the mechanical vibration of the tool and the cutting phenomenon, and detects this mechanical vibration as a frequency quantity. The cutting conditions were then controlled based on this detected frequency. In addition, the mechanical vibration of the tool is determined by providing an air passage on the surface of the tool with the outlet facing each other, converting it into pressure fluctuation within this air passage, and detecting this pressure fluctuation to determine the vibration frequency. Good too. By determining the vibration frequency in a non-contact state with a vibrating tool in this way, it is possible to always obtain a stable frequency regardless of the tool's movement or shape, compared to methods that use piezoelectric elements to detect it in a contact state. can. (Function) If the frequency of the mechanical vibration of the tool is detected and the change in the detected frequency is displayed over time from the start of cutting, the relationship shown in Figure 4 (a) is obtained.
The figure shows that the frequency increases significantly in the initial stage of cutting, but after the initial stage, the frequency remains uniform. When contact occurs or there is an excess or deficiency in the depth of cut (1+time), the frequency temporarily increases, and when the above condition disappears, the frequency returns to the steady frequency. Also, the frequency is
As the wear of the cutting edge of the tool progresses, the frequency f gradually increases or decreases, and when chipping or chipping occurs on the cutting edge of the tool, as at time t2, the frequency f shows a rapid increase. In the above phenomenon, the increase in frequency at the initial stage of cutting is considered to be a transient process in which the rotational speed or feed rate is in an acceleration mode until it stabilizes. Therefore, when performing control, except for the initial stage of cutting, it is necessary to start from the point when the frequency is in a steady state. Furthermore, since cutting is in a normal state in a steady state after the initial stage has passed, it is desirable to set the frequency in this state as the reference frequency.
上記の操作は、例えばタイマーの作用によって切削初期
段階を検出しないようにして制御範囲から省くことがで
きる.また、基準周波数は、検出開始から基準時間(数
秒間)内で周波数を複数サンプリングし、これを平均演
算して、その平均値を基準周波数rcと設定するように
する.制御は、基準周波数fcと実際の切削加工中に得
られる周波数fとを比較演算し、この比較値に基づいて
工作機械の制御装置に制御信号を出すようにする.
すなわち、基準周波数fcと測定時の周波数1との比f
/f cをとり、この比f / f cが1から一定の
制御幅aを上回るか下回ると、工作機械の制御装置に制
御信号を送り、主軸回転数又は切削送り速度を変化させ
る.
また、上記の場合の制御は、周波数比f / f cの
大きさと、その値の時間的変化により制御内容を分けて
行なうようにする.即ち、第4図(b)に示すように、
周波数比r / f cが上昇し、その変化が一定の時
間の範囲で生じた場合、周波数比f/reの変化量に応
じて主軸回転数か切削送り量を減少させ、振動周波数が
減少して周波数比f/fCが制御輻aより内側に入ると
主軸回転数又は切削送り量を再び設定された値に戻すよ
うにする.一方、周波数比r / f cの変化が掻め
て短い時間内で生じた場合は、切刃の欠損が発生したと
判断し、即座に主軸回転や切削送りを停止させるように
する.
また、周波数比f / f cの変化がゆるやかな時間
変化によって所定値を越えた場合は、切刃の摩耗が一定
の値に達したと判断し、切刃交換の信号を出す.
〔実施例〕
第1図乃至第3図は工具回転式の振動切削装置を示して
いる.
第1図において、1はマニシングセンタなどの工作機械
の主軸、2は機械本体の固定部であり、主軸1は適宜の
駆動手段により駆動される.ツールホルダ3は、回転部
材4と、この回転部材4を支持する非回転部材5とから
なっており、回転部材4の後部には主軸1のテーバ孔に
嵌合するテーパシャンク6が設けられている.このテー
パシャンク6の前部にはATCのマニピエレー夕の爪が
係合するグリップ7が形成されており、その先端に回転
スリーブ8がスクリュー9を介して取付けられている.
上記スリーブ8の内部孔8aには、工具取付部10aを
有する工具アダプタ10と摺動部材11が気密を保って
前後方向に移動可能に取付られている.この工具アダプ
タ10と摺動部材11の間には、摺動部材11の前部に
設けたボール12を工具アダプタ10の後面に当接させ
て若干のすき間13が設けられており、摺動部材11と
スリーブ8内部の途中に設けた隔壁との間には、摺動部
材11と工具アダプタ10を前側に向かつて付勢するコ
イルスプリング14が取付けられている.また、スリー
ブ8の外周には前後の軸受15、16を介して非回転部
材5の支持部17が装着されており、この支持部17の
前後にそれぞれ、スリーブ8と工具アダプタ10を結合
するトルクリミット機構18と、スリーブ8と摺動部材
11を結合するスラストリミット機構19とが設けられ
ている.
上記トルクリミット機構18は、ボール20と、このボ
ールを受けるために工具アダプタ10の外周に形成され
た凹所21と、凹所21にボール20に押し付けるバネ
22及びバネ受23から成っており、バネ受23はスリ
ーブ8前端に装着したトルクアジャスタナット24の内
周面に圧着されている.このアジャスタナット24の内
周面は第2図に示すように、180”位相がずれた位置
で渦巻の一部となるように一端から次第に深くなるよう
に対称形に形成されており、アジャスタナット24を同
図矢印で示すように回していくと、バネ22が次第に圧
縮されて凹所21に対するボール20に加わる力が強く
なり、スリーブ8とアダプタ10間で伝達されるトルク
が増大する。The above operations can be omitted from the control range by, for example, using a timer to prevent detection of the initial stage of cutting. Furthermore, the reference frequency is obtained by sampling a plurality of frequencies within a reference time (several seconds) from the start of detection, calculating the average of these, and setting the average value as the reference frequency rc. The control is performed by comparing the reference frequency fc and the frequency f obtained during actual cutting, and outputs a control signal to the control device of the machine tool based on this comparison value. That is, the ratio f between the reference frequency fc and the frequency 1 at the time of measurement
/f c is taken, and when this ratio f / f c exceeds or falls below a certain control width a from 1, a control signal is sent to the control device of the machine tool to change the spindle rotation speed or cutting feed rate. Furthermore, the control in the above case is performed by dividing the control contents depending on the magnitude of the frequency ratio f/fc and the temporal change in the value. That is, as shown in FIG. 4(b),
When the frequency ratio r/fc increases and the change occurs within a certain time range, the spindle rotation speed or cutting feed amount is decreased according to the amount of change in the frequency ratio f/re, and the vibration frequency is reduced. When the frequency ratio f/fC falls inside the control radius a, the spindle rotation speed or cutting feed rate is returned to the set value. On the other hand, if the frequency ratio r/fc changes sharply and occurs within a short period of time, it is determined that a chipping of the cutting edge has occurred, and the spindle rotation and cutting feed are immediately stopped. Furthermore, if the change in the frequency ratio f/fc exceeds a predetermined value due to a gradual change over time, it is determined that the wear of the cutting blade has reached a certain value, and a signal to replace the cutting blade is issued. [Example] Figures 1 to 3 show a tool rotation type vibration cutting device. In FIG. 1, 1 is the main shaft of a machine tool such as a machining center, 2 is a fixed part of the machine body, and the main shaft 1 is driven by an appropriate driving means. The tool holder 3 consists of a rotating member 4 and a non-rotating member 5 that supports the rotating member 4. A tapered shank 6 that fits into the tapered hole of the main shaft 1 is provided at the rear of the rotating member 4. There is. A grip 7 is formed at the front of the taper shank 6 and engages with a claw of an ATC manipulator, and a rotating sleeve 8 is attached to the tip of the grip 7 via a screw 9. A tool adapter 10 having a tool attachment portion 10a and a sliding member 11 are attached to the inner hole 8a of the sleeve 8 so as to be airtight and movable in the front-rear direction. A slight gap 13 is provided between the tool adapter 10 and the sliding member 11 by making a ball 12 provided at the front of the sliding member 11 come into contact with the rear surface of the tool adapter 10. A coil spring 14 is installed between the sliding member 11 and a partition wall provided halfway inside the sleeve 8 to bias the sliding member 11 and the tool adapter 10 toward the front. Further, a support part 17 for the non-rotating member 5 is attached to the outer periphery of the sleeve 8 via front and rear bearings 15 and 16, and a torque for connecting the sleeve 8 and the tool adapter 10 is applied to the front and rear of the support part 17, respectively. A limit mechanism 18 and a thrust limit mechanism 19 that connects the sleeve 8 and the sliding member 11 are provided. The torque limit mechanism 18 includes a ball 20, a recess 21 formed on the outer periphery of the tool adapter 10 to receive the ball, a spring 22 and a spring receiver 23 that press the ball 20 into the recess 21, The spring receiver 23 is crimped onto the inner peripheral surface of a torque adjuster nut 24 attached to the front end of the sleeve 8. As shown in FIG. 2, the inner circumferential surface of the adjuster nut 24 is formed symmetrically so that it gradually becomes deeper from one end so that it becomes part of a spiral at a position 180" out of phase. 24 as shown by the arrow in the figure, the spring 22 is gradually compressed, the force applied to the ball 20 against the recess 21 becomes stronger, and the torque transmitted between the sleeve 8 and the adapter 10 increases.
スラストリミット機横19の構造は、上記のトルクリミ
ット機構18と基本的に同一であり、スラストアジ中ス
タナット25の内周面と摺動部材11外周の凹所26と
の間に、バネ27とボール28とバネ受を介在させて成
っており、アジ中スタナット25の内周面には、第2図
と同様の調節のための傾斜面が形成されている.
また、非回転部材5の内周には、環状部材29が固定さ
れ、この環状部材29の内面はスリーブ8の連通孔30
を設けた位置の外周面に気密を保って接触している.上
記達通孔30は、工具アダプタ10の外周に形成した周
溝31に連通しており、この周満31は連通路32によ
り工具アダプタ10と摺動部材11の間のすき間13に
連通している.
また、上記環状部材29の内部には連通孔30に通じる
半径方向の連通孔33が設けてある.非回転部材5の一
側には、流体受部34が一体に設けられており、この流
体受部34を上下に貫通する縦孔に保合ピン35が取付
けられている.一方、工作機械の固定部2には、係合ピ
ン35がはまる係合孔36が設けてあり、係合ビン35
が係合孔36に嵌合した状態で保合ピンに移動可能に取
付けた押圧部材37がバネ38の弾性により固定部2に
圧着されるようになっている.上記押圧部材37には逆
止弁39を有する空気導入口40が設けられ、この導入
口40は係合ピン35に設けた連通路41に連通し、又
、流体受部34には連通路41と環状部材29の連通孔
33を連通させる連通路42を設けてある.上記の逆止
弁39は、押圧部材37が固定部2に圧着されたときに
、固定部2の先端から突出しているピン39′によって
押圧されて開放する.一方、工作機械の固定部2には、
上記空気導入口40に通じる空気供給路43が設けてあ
り、この空気供給路43には、逆止弁44と絞り弁45
を介してコンブレッサやレシーバタンク等の圧縮空気源
46が接続している.上記構造において、圧縮空気源4
6から出た空気は、空気供給路43がら空気導入口40
−1通路41−1通路42→連通孔33−4通孔3〇一
周満31一連通路32壱通してすき間13に導入される
ことになり、この空気供給路43から連通路32までを
以下エア一通路56と呼ぶ.
空気供給路43の途中の分岐路には圧カセンサ47が設
けられ、この圧カセンサ47に制御回路48が接続され
ている.上記圧カセンサ47は、圧力スイッチ等が用い
られ空気供給路43内の圧力が変動するとその圧力変動
ごとにスイッチングして電気信号を制御回路48に伝達
する.第3図は制御回路48の構造を示しており、図に
おいて、49は増幅器、50はハンドパスフィルタ、5
1はタイマー、52と53は演算器、54は比較器であ
り、この比較器54が工作機械の主軸回転や刃物台の送
り鼠を制御する制御装M55に接続している.この制御
回路48の作用は後に述べる.
なお、空気供給路43と圧縮空気源46の途中に設けた
絞り弁45は、ツールホルダ3を土軸2に取付けたとき
に所望の圧力に維持するように回路が構成されている.
この実施例は上記のような構造で成っており、次に作用
について説明する.
生軸1にツールホルダ3のテーパシャンク6を嵌め込み
、絞り弁45を開くと、空気供給路43により圧縮空気
がエアー通路56を通して工具アダプタ10と摺動部材
11間のすき間13に供給される.このようにすき間1
3に圧縮空気が入った後、工具アダプタ10と摺動部材
11との間のすき間13の大きさをボール12を介して
小ねじ12′を回すことによって調節する.
次に主軸1が回転し、工具アダプタ10に取付けた工具
により加工が始まると、加工が正常に行なわれている間
は第1図に示すように、トルクリミット機横18とスラ
ストリミット機f! 1 Bのボール20、28がそれ
ぞれ凹所21、28に嵌り、工具アダプタ10とスリー
ブ8が共に回転する。The structure of the thrust limit machine side 19 is basically the same as the torque limit mechanism 18 described above, and a spring 27 and a ball are connected between the inner peripheral surface of the thrust adjusting star nut 25 and the recess 26 on the outer periphery of the sliding member 11. 28 and a spring support interposed therebetween, and an inclined surface for adjustment similar to that shown in FIG. 2 is formed on the inner circumferential surface of the star nut 25. Further, an annular member 29 is fixed to the inner periphery of the non-rotating member 5, and the inner surface of the annular member 29 is connected to the communication hole 30 of the sleeve 8.
It is in airtight contact with the outer circumferential surface at the location where it is provided. The through hole 30 communicates with a circumferential groove 31 formed on the outer circumference of the tool adapter 10 , and this circumferential groove 31 communicates with the gap 13 between the tool adapter 10 and the sliding member 11 through a communication passage 32 . There is. Furthermore, a radial communication hole 33 communicating with the communication hole 30 is provided inside the annular member 29. A fluid receiving portion 34 is integrally provided on one side of the non-rotating member 5, and a retaining pin 35 is attached to a vertical hole passing through the fluid receiving portion 34 vertically. On the other hand, the fixed part 2 of the machine tool is provided with an engagement hole 36 into which an engagement pin 35 is fitted.
A pressing member 37 is movably attached to the retaining pin in a state where the retaining pin is fitted into the engagement hole 36, and is pressed against the fixing portion 2 by the elasticity of the spring 38. The pressing member 37 is provided with an air introduction port 40 having a check valve 39, and this introduction port 40 communicates with a communication path 41 provided in the engagement pin 35. A communication passage 42 is provided for communicating the communication hole 33 of the annular member 29 with the communication hole 33 of the annular member 29. When the pressing member 37 is pressed against the fixed part 2, the check valve 39 is pressed open by a pin 39' protruding from the tip of the fixed part 2. On the other hand, in the fixed part 2 of the machine tool,
An air supply path 43 communicating with the air inlet 40 is provided, and this air supply path 43 includes a check valve 44 and a throttle valve 45.
A compressed air source 46 such as a compressor or receiver tank is connected via the. In the above structure, the compressed air source 4
The air coming out from the air supply path 43 is transferred to the air inlet 40 from the air supply path 43.
-1 passage 41-1 passage 42 → communication hole 33-4 communication hole 30 Complete passage 31 passage 32 will be introduced into gap 13, and from this air supply passage 43 to communication passage 32 is as follows. It is called the air passage 56. A pressure sensor 47 is provided at a branch path in the middle of the air supply path 43, and a control circuit 48 is connected to this pressure sensor 47. The pressure sensor 47 uses a pressure switch or the like, and when the pressure inside the air supply path 43 fluctuates, it switches and transmits an electric signal to the control circuit 48 every time the pressure fluctuates. FIG. 3 shows the structure of the control circuit 48, in which 49 is an amplifier, 50 is a hand-pass filter, and 5
1 is a timer, 52 and 53 are computing units, and 54 is a comparator, and this comparator 54 is connected to a control device M55 that controls the rotation of the main shaft of the machine tool and the feed of the tool rest. The operation of this control circuit 48 will be described later. Note that a circuit is configured for a throttle valve 45 provided between the air supply path 43 and the compressed air source 46 so as to maintain a desired pressure when the tool holder 3 is attached to the soil shaft 2. This embodiment has the structure described above, and its operation will be explained next. When the taper shank 6 of the tool holder 3 is fitted onto the raw shaft 1 and the throttle valve 45 is opened, compressed air is supplied from the air supply path 43 through the air path 56 to the gap 13 between the tool adapter 10 and the sliding member 11. Gap 1 like this
After compressed air is introduced into 3, the size of the gap 13 between the tool adapter 10 and the sliding member 11 is adjusted by turning the machine screw 12' via the ball 12. Next, when the main spindle 1 rotates and machining begins with the tool attached to the tool adapter 10, while machining is being performed normally, the torque limiter side 18 and thrust limiter f! 1B balls 20, 28 fit into the recesses 21, 28, respectively, and the tool adapter 10 and sleeve 8 rotate together.
この場合、工具アダプタ10とスリーブ8とは一定の位
置関係を保っているので、工具アダプタ10の周溝31
とスリーブ8の連通孔30の位置は一致しており、すき
間13とエアー通路56内には圧縮空気が所定の圧力で
滞留した状態になっている.
この状態で工具により切削が行なわれると、工具切刃に
加わる切削振動により工兵アダプタ10は前後方向に微
小振動する.この振動はトルクリミット機構18のバネ
22で増大されて工具アダプタ10に逆伝達され、振動
切削が行なわれる.このように切削中工具アダプタ10
が振動すると、すき間13の間隔が変動し、この変動に
合わせてすき間13とエアー通路56内の圧縮空気の圧
力が変動する.
この圧力変動は、空気供給路43に設けた圧力センサ4
7において電気信号に変換されて周波数としてとらえら
れ、この検出信号は制御回路48において増幅器49に
より増幅される.増幅された周波数信号は次のハンドパ
スフィルタ50において、切削加工により発生する周波
数成分以外の周波数成分が除去される.
周波数が分別された出力信号は、先ずタイマー51の作
用により切削の初期部分が除かれる.次に定常加工状態
になると検出が開始される(to時間).検出が開始さ
れると、最初の所定時間で複数の周波数値がサンプリン
グされ、演算器52に送られる.演算器52では、この
サンプリングされた周波数の平均値が計算されて基準周
波数fCが決定され、それを次の演算器53に出力する
.この演算器53においては、基準周波数fcとハンド
パスフィルタ50から連続して入力される振動周波数f
とが割算され、その比r / f cが求められる.
次の比較器54においては、第5図に示すように、上記
のように求めた比f / f cが任意に設定される制
御量aと比較され、比f / f cが制御量aを越え
た場合、その比f / f cの変化の時間的変化が測
定され、その測定結果に基づいて工作機械の制御装置5
5に制御信号が出力される.これは、比f/fcが制御
量aを逸脱した場合、比f/fcの上昇分Δfと時間量
Δtとの割合Δf/Δtが計算され、この割合Δf/Δ
【の大きさに基づいて(急)、(中間)、(緩)の3つ
の制御技が選択され、その選択に基づいて制御信号が出
力されるものである.
すなわち、いま第4図(a)において、時間【,のよう
に切込みの過不足等が生じて周波数fが一定の割合内で
上昇すると、(中間)の制御技が選択され、比f /
r cの上昇の割合に応じて主軸回転数又は切削送り量
を減少させる制御信号が出力される.これにより切削力
が減少し、工具の折損や切込み異常が未然に防止される
.また、切削力が減少して周波数比f / r cが制
御量a内に入ると、上記制御信号は解除され、主軸回転
や送り量は元の条件に復帰する.
一方、時間(.のように工只の欠損が発生すると、周波
数rすなわち周波数比f / f cが急激に上昇する
ので、(急)の制御技が選択され、主軸回転や機械送り
を即座に停止する制御信号が出力される.これにより、
工作機械は即座に停止される.
また、第4図(a)に破線で示すように工具切刃が摩耗
すると周波数fが緩やかに上昇するため、これを検知す
ると(緩)の制御技が選択され、工具交換を知らせる警
報が発するか、工作機械を停止させる信号が出力される
.
なお、この実施例では、上記のような原因以外に、工具
選定不良や切屑詰まりなどの原因で切削抵抗が一定値以
上に増大した場合にも機械作動を停止させる構造がとら
れている.すなわち、切削トルクやスラスト力が一定以
上に増大すると、第1図に示す工具アダプタ10外周の
凹所21と摺動部材11外周に設けた凹所26からそれ
ぞれボール20、28がはずれ、工具アダプタ10がス
リーブ80回転に追随しなくなると共に、スリーブ8内
部を後方に移動し、工具アダプタ10の周溝31とスリ
ーブ8の連通孔30の位置がずれる.こうして連通孔3
0が遮断されると、エアー通路56内の空気圧が急上昇
し、圧カセンサ47がこれを惑知して制御回路48で増
幅され、工具欠損の場合と同様に機械作動を停止させる
信号が制御装置55に出力されるようになっている.第
6図は他の実施例を示すもので、これは旋盤等の外径加
工用工具に適用した例を示している.図において57は
工具チップ58を先端に固定したチップホルダであり、
このチップホルダ57は板バネ59と座金60を介して
その後端がツールシャンク61の先端に締付け固定され
る.また、ツールシャンク61の先端には、開口62a
をチップホルダ57の下面に向き合せたエアノズル62
が取付けられており、このエアノズル62に、シャンク
61内に設けたエアー通路63が連通し、このエアー通
路63に空気供給路64が接続するようになっている.
上記空気供給路64には、上述した実施例と同様に圧縮
空気源46が接続すると共に、分岐路に圧カセンサ47
を介して制御回路48が接続している.
上記構造の振動切削装置ではエアノズル46がら空気を
吹き出させた状態で切削加工を始めると、加工時の切削
振動によってチップホルダ57が上下に振動し、振動切
削を行なう.そして、この振動によって、エアノズル6
2の開口62aも開閉を繰り返す.こうしてチップホル
ダー57の下面がエアノズル62の開口を塞いだり開放
したりすることによりエアー通路63内のエア圧力が変
動し、この圧力変動が圧カセンサ47で検出されて制御
回路48に送られる.この制御回路48における制御は
上述した実施例の場合と同じ方法で行なわれる.
〔発明の効果〕
以上のように、この発明は、工具の機械的振動を周波数
量として検出し、この振動周波数をもとに切削条件を制
御するようにしたものであるから、振動切削を行なって
いる工具の切削状態を正確に検出することができ、精度
よく適確な制御を行なうことができる.
また、上記工具の機械的振動をエアー通路内の圧力変動
に変換して検出するようにすると、工具の振動を非接触
で検出できるので、工具形状が変化しても同一状態で検
出できると共に、圧電素子などの接触型の振動検出器を
使用した場合のように、検出器の耐久性から検出精度が
悪化する欠点がなく、常に正確な検出ができる利点があ
る.In this case, since the tool adapter 10 and the sleeve 8 maintain a constant positional relationship, the circumferential groove 31 of the tool adapter 10
The positions of the communication hole 30 of the sleeve 8 and the sleeve 8 are aligned, and compressed air is retained at a predetermined pressure in the gap 13 and the air passage 56. When cutting is performed with the tool in this state, the engineer adapter 10 slightly vibrates in the front-rear direction due to cutting vibrations applied to the cutting edge of the tool. This vibration is amplified by the spring 22 of the torque limit mechanism 18 and transmitted back to the tool adapter 10, thereby performing vibration cutting. In this way, the tool adapter 10 during cutting
When the air passage 56 vibrates, the distance between the gaps 13 changes, and the pressure of the compressed air in the gaps 13 and the air passage 56 changes in accordance with this change. This pressure fluctuation is caused by a pressure sensor 4 installed in the air supply path 43.
7, the detection signal is converted into an electrical signal and captured as a frequency, and this detection signal is amplified by an amplifier 49 in a control circuit 48. The amplified frequency signal is then passed through a hand-pass filter 50, where frequency components other than those generated by cutting are removed. First, the initial part of cutting is removed from the frequency-separated output signal by the action of a timer 51. Next, when the steady machining state is reached, detection starts (to time). When detection is started, a plurality of frequency values are sampled at the first predetermined time and sent to the arithmetic unit 52. The arithmetic unit 52 calculates the average value of the sampled frequencies, determines the reference frequency fC, and outputs it to the next arithmetic unit 53. In this calculator 53, the reference frequency fc and the vibration frequency f continuously inputted from the hand-pass filter 50 are
is divided, and the ratio r/fc is obtained. In the next comparator 54, as shown in FIG. 5, the ratio f/fc obtained as described above is compared with the arbitrarily set control amount a, and the ratio f/fc If the ratio f/fc is exceeded, the temporal change in the change in the ratio f/fc is measured, and the control device 5 of the machine tool is controlled based on the measurement result.
A control signal is output to 5. This means that when the ratio f/fc deviates from the control amount a, the ratio Δf/Δt between the increase Δf of the ratio f/fc and the time amount Δt is calculated, and this ratio Δf/Δ
Three control techniques (sudden), (medium), and (slow) are selected based on the magnitude of [, and a control signal is output based on the selection. That is, in FIG. 4(a), when the frequency f increases within a certain rate due to excessive or insufficient depth of cut as shown in time [,, the (intermediate) control technique is selected and the ratio f /
A control signal is output that reduces the spindle rotation speed or cutting feed rate in accordance with the rate of increase in r c. This reduces cutting force and prevents tool breakage and abnormal cutting depth. Furthermore, when the cutting force decreases and the frequency ratio f/rc falls within the control amount a, the control signal is canceled and the spindle rotation and feed amount return to their original conditions. On the other hand, when a defect occurs in the workpiece as shown in time (.), the frequency r, that is, the frequency ratio f/fc, rises rapidly, so a (sudden) control technique is selected, and the spindle rotation and machine feed are immediately controlled. A control signal to stop is output.This causes
The machine tool will be stopped immediately. Furthermore, as shown by the broken line in Fig. 4(a), when the tool cutting edge wears out, the frequency f gradually increases, so when this is detected, the (gentle) control technique is selected and an alarm is issued to notify tool replacement. Or a signal is output to stop the machine tool. In addition to the causes mentioned above, this embodiment also has a structure in which the machine operation is stopped if the cutting resistance increases beyond a certain value due to causes such as poor tool selection or chip clogging. That is, when the cutting torque or thrust force increases beyond a certain level, the balls 20 and 28 come off from the recess 21 on the outer periphery of the tool adapter 10 and the recess 26 provided on the outer periphery of the sliding member 11, respectively, as shown in FIG. 10 no longer follows the rotation of the sleeve 80, and moves backward inside the sleeve 8, causing the positions of the circumferential groove 31 of the tool adapter 10 and the communication hole 30 of the sleeve 8 to shift. In this way, the communication hole 3
0 is cut off, the air pressure in the air passage 56 rises rapidly, the pressure sensor 47 senses this and the control circuit 48 amplifies it, and a signal to stop the machine operation is sent to the control device in the same way as in the case of a missing tool. 55. Fig. 6 shows another embodiment, in which it is applied to an outside diameter machining tool such as a lathe. In the figure, 57 is a tip holder with a tool tip 58 fixed to its tip;
The tip holder 57 is fastened at its rear end to the tip of the tool shank 61 via a leaf spring 59 and a washer 60. Further, an opening 62a is provided at the tip of the tool shank 61.
The air nozzle 62 faces the bottom surface of the chip holder 57.
An air passage 63 provided in the shank 61 communicates with this air nozzle 62, and an air supply passage 64 is connected to this air passage 63.
A compressed air source 46 is connected to the air supply path 64 as in the above embodiment, and a pressure sensor 47 is connected to the branch path.
A control circuit 48 is connected through the . In the vibration cutting device having the above structure, when cutting is started with air being blown out from the air nozzle 46, the tip holder 57 vibrates up and down due to cutting vibrations during processing, thereby performing vibration cutting. This vibration causes the air nozzle 6 to
The opening 62a of No. 2 also repeats opening and closing. As the lower surface of the chip holder 57 closes or opens the opening of the air nozzle 62, the air pressure within the air passage 63 fluctuates, and this pressure fluctuation is detected by the pressure sensor 47 and sent to the control circuit 48. Control in this control circuit 48 is performed in the same manner as in the embodiment described above. [Effects of the Invention] As described above, the present invention detects the mechanical vibration of a tool as a frequency quantity and controls the cutting conditions based on this vibration frequency. It is possible to accurately detect the cutting state of the tool being used, and to perform precise and accurate control. Furthermore, if the mechanical vibration of the tool is detected by converting it into pressure fluctuations in the air passage, the vibration of the tool can be detected without contact, so even if the shape of the tool changes, it can be detected in the same state. Unlike when using a contact-type vibration detector such as a piezoelectric element, this method does not have the drawback of deteriorating detection accuracy due to the durability of the detector, and has the advantage of always being able to provide accurate detection.
第1図はこの発明を実施する振動切削装置のー例を一部
を切欠いて示す図、第2図は第1図の■−n線に添った
断面図、第3図は同上の制御回路を示すブロック図、第
4図(a)は振動周波数と時間との関係を示す図、第4
図(ロ)は制御状態を示す図、第5図は周波数比と時間
との関係を示す図、第6図は振動切削装置の他の実施例
を示す図である.1・・・・・・主軸、3・・・・・・
ツールホルダ、8・・・・・・回転スリーブ、10・・
・・・・工具アダプタ、11・・・・・・摺動部材、
13・・・・・・すき間、18・・・・・・トルクリミ
ット機構、19・・・・・・スラストリミット機構、4
3・・・・・・空気供給路、46・・・・・・圧縮空気
源、47・・・・・・圧カセンサ、48・・・・・・制
御回路、55・・・・・・制御装置、 56・・・・・
・エアー通路、57・・・・・・チップホルダ、
61・・・・・・ツーノレシャンク、
62・・・・・・エアノズル、63・・・・・・エアー
通路、64・・・・・・空気供給路.
一292−Fig. 1 is a partially cutaway diagram showing an example of a vibration cutting device embodying the present invention, Fig. 2 is a sectional view taken along line ■-n in Fig. 1, and Fig. 3 is a control circuit of the same. Fig. 4(a) is a block diagram showing the relationship between vibration frequency and time.
Figure (b) is a diagram showing the control state, Figure 5 is a diagram showing the relationship between frequency ratio and time, and Figure 6 is a diagram showing another embodiment of the vibration cutting device. 1... Main shaft, 3...
Tool holder, 8...Rotating sleeve, 10...
...Tool adapter, 11...Sliding member,
13...Gap, 18...Torque limit mechanism, 19...Thrust limit mechanism, 4
3... Air supply path, 46... Compressed air source, 47... Pressure sensor, 48... Control circuit, 55... Control Device, 56...
・Air passage, 57... Chip holder, 61... Tool shank, 62... Air nozzle, 63... Air passage, 64...・Air supply path. 1292-
Claims (2)
装置において、切削加工時に発生する工具の機械的振動
を周波数量として検出し、この検出された振動周波数を
基準周波数と比較し、この比較値に基づいて主軸回転数
又は切削送り量を変化させることを特徴とする振動切削
装置の自動制御方法。(1) In a vibration cutting device that performs cutting while applying vibration to the tool, the mechanical vibration of the tool that occurs during cutting is detected as a frequency quantity, the detected vibration frequency is compared with a reference frequency, and this comparison is made. An automatic control method for a vibration cutting device, characterized by changing the spindle rotation speed or cutting feed amount based on a value.
路内の圧力変動に変換し、その圧力変動から振動周波数
を得ることを特徴とする請求項(1)に記載の振動切削
装置の自動制御方法。(2) The vibration cutting device according to claim (1), wherein mechanical vibration of the tool is converted into pressure fluctuation in an air passage provided in the tool, and a vibration frequency is obtained from the pressure fluctuation. Automatic control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28324988A JPH0722874B2 (en) | 1988-11-08 | 1988-11-08 | Automatic control method for vibration cutting equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28324988A JPH0722874B2 (en) | 1988-11-08 | 1988-11-08 | Automatic control method for vibration cutting equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02131839A true JPH02131839A (en) | 1990-05-21 |
JPH0722874B2 JPH0722874B2 (en) | 1995-03-15 |
Family
ID=17663014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28324988A Expired - Lifetime JPH0722874B2 (en) | 1988-11-08 | 1988-11-08 | Automatic control method for vibration cutting equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0722874B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100610786B1 (en) * | 2004-07-07 | 2006-08-08 | 현대자동차주식회사 | Nut runner |
US7134818B2 (en) * | 2001-10-09 | 2006-11-14 | Sumen Italia S.R.L. | Tool-holding system for high-accuracy calibration of holes |
JP2012187656A (en) * | 2011-03-09 | 2012-10-04 | Saitama Prefecture | Cutting work device, vibration condition presenting apparatus, and vibration condition presenting method |
JP5163838B1 (en) * | 2011-09-14 | 2013-03-13 | 株式会社ジェイテクト | Machining error calculation device, machining error calculation method, machining control device, and machining control method |
CN107024943A (en) * | 2016-02-02 | 2017-08-08 | 中国气动工业股份有限公司 | Torsion control method and torsion control system of pneumatic impact type torsion tool |
JP2021066005A (en) * | 2018-11-29 | 2021-04-30 | ファナック株式会社 | Numerical control apparatus, program and control method |
CN114555291A (en) * | 2019-10-18 | 2022-05-27 | 日本Nt工程技术株式会社 | Method and system for monitoring machining state of working machine |
US11541500B2 (en) | 2019-06-25 | 2023-01-03 | Fanuc Corporation | Numerical control device, program recording medium, and control method |
-
1988
- 1988-11-08 JP JP28324988A patent/JPH0722874B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7134818B2 (en) * | 2001-10-09 | 2006-11-14 | Sumen Italia S.R.L. | Tool-holding system for high-accuracy calibration of holes |
KR100610786B1 (en) * | 2004-07-07 | 2006-08-08 | 현대자동차주식회사 | Nut runner |
JP2012187656A (en) * | 2011-03-09 | 2012-10-04 | Saitama Prefecture | Cutting work device, vibration condition presenting apparatus, and vibration condition presenting method |
JP5163838B1 (en) * | 2011-09-14 | 2013-03-13 | 株式会社ジェイテクト | Machining error calculation device, machining error calculation method, machining control device, and machining control method |
WO2013038529A1 (en) * | 2011-09-14 | 2013-03-21 | 株式会社ジェイテクト | Machining error computation device, machining error computation method, machining control device and machining control method |
US9599979B2 (en) | 2011-09-14 | 2017-03-21 | Jtekt Corporation | Machining error calculation apparatus, machining error calculation method, machining control apparatus and machining control method thereof |
CN107024943A (en) * | 2016-02-02 | 2017-08-08 | 中国气动工业股份有限公司 | Torsion control method and torsion control system of pneumatic impact type torsion tool |
JP2021066005A (en) * | 2018-11-29 | 2021-04-30 | ファナック株式会社 | Numerical control apparatus, program and control method |
US11541500B2 (en) | 2019-06-25 | 2023-01-03 | Fanuc Corporation | Numerical control device, program recording medium, and control method |
CN114555291A (en) * | 2019-10-18 | 2022-05-27 | 日本Nt工程技术株式会社 | Method and system for monitoring machining state of working machine |
Also Published As
Publication number | Publication date |
---|---|
JPH0722874B2 (en) | 1995-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2645665C (en) | Chuck body for a chuck, chuck and method for determining a clamping force on such a chuck | |
US4478538A (en) | Device for detecting tool abnormality | |
US8950507B2 (en) | Device for preventing vibrations in a tool spindle | |
US4786220A (en) | Cutting tool wear monitor | |
US4694686A (en) | Cutting tool wear monitor | |
AU545733B2 (en) | Rotating tool wear monitoring apparatus | |
US5072550A (en) | Grinding method and grinding machine with controlled grinding force | |
US6910839B2 (en) | Internal, active, and compensatory method and device for the rotational main-shaft of a cutting tool with axial bias-and-swing | |
US4991475A (en) | Method and apparatus for sawing bar-shaped workpieces into slices | |
JPH02131839A (en) | Automatic control method for vibration cutting device | |
US3897659A (en) | Ultrasonic-acoustic grinding wheel setting station for automatic numerically-controlled machines | |
US20010047219A1 (en) | Method of machining a multi-layer workpiece | |
US4802274A (en) | Method of determining worn rotary tool | |
JP5356816B2 (en) | Tool condition monitoring system | |
JP2530959B2 (en) | Method and device for precision polishing of ring on outer surface or inner surface of ring | |
CN111093898B (en) | Method and device for finishing cylindrical workpiece surfaces | |
US4820092A (en) | Touch sensing method and apparatus | |
US5571040A (en) | Method and device for detecting blade flexure and blade flexure control device for use with a slicing machine | |
JP2021041509A (en) | Position measurement device and position measurement method | |
US4154024A (en) | Electric control device for an automatic grinding machine | |
JPH0818208B2 (en) | Method for determining static pressure of air semi-floating sliding surface of machine tool and its control device | |
JPH07256507A (en) | Detector for abnormality of tool | |
KR100542206B1 (en) | Machining Force Controlled Machining Equipment | |
Hahn | Adaptive Control in Grinding | |
SU1037141A2 (en) | Method of estimating critical wear of cutting tool |