JPH02131694A - Yc separator circuit - Google Patents

Yc separator circuit

Info

Publication number
JPH02131694A
JPH02131694A JP28605488A JP28605488A JPH02131694A JP H02131694 A JPH02131694 A JP H02131694A JP 28605488 A JP28605488 A JP 28605488A JP 28605488 A JP28605488 A JP 28605488A JP H02131694 A JPH02131694 A JP H02131694A
Authority
JP
Japan
Prior art keywords
signal
correction coefficient
color
coefficient
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28605488A
Other languages
Japanese (ja)
Other versions
JP2686115B2 (en
Inventor
Masami Ebara
江原 正己
Tadashi Amino
忠 網野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28605488A priority Critical patent/JP2686115B2/en
Publication of JPH02131694A publication Critical patent/JPH02131694A/en
Application granted granted Critical
Publication of JP2686115B2 publication Critical patent/JP2686115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To utilize the YC separation system of moving adaptive type even with a nonstandard signal by generating a correction coefficient correcting a data of a luminance signal or a color signal in the nonstandard signal and multiplying the coefficient with the data of the luminance signal and color signal. CONSTITUTION:A composite signal is delayed by two line memories 1, 1 for 1H and 2H and the original signal and the 2H delay signal are multiplied with a coefficient of -1/4 at coefficient devices 2, 3 and the 1H delay signal is multiplied with 1/2 at a coefficient device 4 and they are added respectively at an adder 5. Then the output of the adder is inputted to a multiplier 7 and the correction coefficient generated from a correction coefficient generator 8 is multiplied Then the result is outputted as a color signal CL. On the other band, a color signal is subtracted from the output of a line memory 1 at a subtractor 6 and a luminance signal YL is outputted. Thus, the movement adaptive type YC separator system is used for the nonstandard signal, then the picture quality at the input of the nonstandard signal is considerably improved.

Description

【発明の詳細な説明】 (イ)産業上の!If用分野 本発明は複合カラーテレビジョン信号から輝度信号及び
色信号を分離する輝度、色信号分離回路に関する。
[Detailed description of the invention] (a) Industrial! FIELD OF THE INVENTION This invention relates to a luminance and chrominance signal separation circuit for separating luminance and chrominance signals from a composite color television signal.

(口)従来の技術 複合カラーテレビジョン信号から輝度信号及び色信号を
分離する方法として、入力信号をA/D変換した後、動
きに応じてライン相関及びフレーム相関を利用する動き
適応型YC分離回路を用いることによりI DTV等の
デジタルTVにおいて画質を向上させることができ、例
えば、特公昭61一15635号公報(HO4N 9/
78 )で提案されている。
(Example) Conventional technology As a method of separating luminance signals and color signals from a composite color television signal, after A/D converting the input signal, motion-adaptive YC separation uses line correlation and frame correlation depending on the motion. By using circuits, the image quality can be improved in digital TVs such as IDTVs.
78).

一方、VTR再生信号のように色信号に対して輝度信号
が時間軸上で揺れており、再生時に基準となる水平同期
信号と色副搬送波信号との位相関係( r s c =
455/2x f H ただしfscは色副搬送波、f
Hは水平周波数)が厳密に守られていない非標準信号に
対して上述のフレーム相関を利用したYC分離を行うと
大きな画質劣化を招いていた。
On the other hand, like a VTR playback signal, the luminance signal fluctuates on the time axis with respect to the color signal, and the phase relationship between the horizontal synchronization signal and the color subcarrier signal, which serves as a reference during playback ( r sc =
455/2x f H However, fsc is the color subcarrier, f
If YC separation using the above-mentioned frame correlation is performed on a non-standard signal in which the horizontal frequency (H is a horizontal frequency) is not strictly observed, a large deterioration in image quality has been caused.

また、IDTV等においては動き適用型YC分離の他に
動き適用型走査線補間を行っている。そして、これらの
処理は標準信号に対してはバースト信号にロックした夕
ロック(バーストロッククロック)をシステムクロック
として用いると好適に動作する。ところが、非標準信号
の場合、走査線補間はフィールド間の画素位置やライン
間の画素位置を正確に合わせる必要があり、このために
は水平周波数にロックしたクロック(Hロッククロノク
)を使用しなければならない。
Furthermore, in IDTV and the like, motion adaptive scanning line interpolation is performed in addition to motion adaptive YC separation. These processes are preferably performed for standard signals by using a burst lock clock locked to the burst signal as the system clock. However, in the case of non-standard signals, scanning line interpolation requires accurate alignment of pixel positions between fields and lines, and for this purpose a clock locked to the horizontal frequency (H-lock clock) is used. There must be.

一方、YC分離はH口ッククロックを用いると後述する
ようにドット妨害が発生するために都合が悪く、バース
トロノククロックを用いる必要がある。
On the other hand, YC separation is inconvenient if an H clock is used because dot interference occurs as will be described later, and a burst clock clock must be used.

以下、非標準信号受信時、YC分離をH口ッククロック
で行うことによる不都合の理由を説明する。
The reason for the inconvenience caused by performing YC separation using the H clock when receiving a non-standard signal will be explained below.

今、第8図に示すような輝度成分のない映像信号即ち、
色副搬送波(周波数fscの正弦波)を周波数IsのH
ロソククロックでサンプリングする場合を考える。ここ
でfs=4fscとすると、前記映像信号が標準信号で
あれば正確にfs=4fscとなるが、非標準信号であ
ればその関係は正確に保たれずfsミ4fscとなる。
Now, a video signal without a luminance component as shown in FIG.
The color subcarrier (sine wave of frequency fsc) is converted to H of frequency Is.
Consider the case of sampling with a candle clock. Here, if fs=4fsc, if the video signal is a standard signal, fs=4fsc will be accurate, but if it is a non-standard signal, the relationship will not be maintained accurately and fs=4fsc.

そして、−F記サンプリングした結果は下式で与えられ
る。
Then, the result of sampling -F is given by the following formula.

今、サンプリングして得られた信号に対して、第9図に
示す2次元YC分離回路でYC分離をおこなう。尚、同
図において、(1)は信号を1水千走〃ル1間遅延する
ラインメモリで910クロノクの遅延時間を有する。そ
して、分離後の色信号(CI.)は下式で示される。
Now, the signal obtained by sampling is subjected to YC separation using a two-dimensional YC separation circuit shown in FIG. In the figure, (1) is a line memory that delays the signal by 1 hour, and has a delay time of 910 chronok. The color signal (CI.) after separation is expressed by the following formula.

CL=g(a)sin(  an) 史に、輝度信号(Y L)は YL=fn−CL=sin(−on)一g(a)sin
(−on)=I1−g(a)lsi口(−an)  ・
・・・・・・・・・・・・・ ・・・・・・・・・・・
・(2)となる。
CL=g(a)sin(an) Historically, the luminance signal (YL) is YL=fn-CL=sin(-on)-g(a)sin
(-on)=I1-g(a)lsi口(-an)・
・・・・・・・・・・・・・・・・・・・・・・・・・・・
・(2) becomes.

そして、前記第8図に示した映像信号には輝度成分は含
まれないので(2)式の値はOにならなければならない
Since the video signal shown in FIG. 8 does not include a luminance component, the value of equation (2) must be O.

しかしながら、標準信号時YL=Oとなるが非標準時に
はYL≠0となり、輝度信号に色信号かられてドlト妨
害が発生し、大きな画質劣化となる。
However, when the standard signal is used, YL=O, but when the signal is not standard, YL≠0, and dot interference occurs in the luminance signal from the color signal, resulting in a large deterioration in image quality.

促って、従来は、rl987年テレビジョン学会全国大
会J P309〜P310に示されている々l《、入力
信号が標準信号が非標準信号がを検出して標準信号の場
合、バースト口ッククロックを採用し、非標準信号の場
合はシステムとしてl系統のクロノクで動作させるため
Hロッククロックでシステムを動作させ、Y/C分離は
このためにアナログくし型フィルタを採用せざるを得な
かった。
Conventionally, as shown in RL987 National Conference of the Television Society JP 309-310, when the input signal is a standard signal or a non-standard signal is detected and the input signal is a standard signal, the burst clock is activated. In the case of non-standard signals, the system is operated with an H-lock clock, so an analog comb filter had to be used for Y/C separation.

よって、非標準信号に対しては動き適用型YC分離を行
うことができず、満足な画質が得られなかった。
Therefore, motion-adaptive YC separation cannot be performed on non-standard signals, and satisfactory image quality cannot be obtained.

(ハ)発明が解決しようとする課題 +−発明は上述の点に鑑み為されたものであり、非標準
信号にJ.tLてら動き適応撃のYC分離方式が利用で
きるYC分離回路を提供するものである。
(c) Problems to be Solved by the Invention +- The invention has been made in view of the above points, and is based on J. This invention provides a YC separation circuit that can utilize the YC separation method of tL motion-adaptive attack.

(二)課題を解決するための手段 +発明は複合映像信号をA/D変換した後、ライン相関
若しくはフレーム相関を利用して輝度信号とを分離する
YC分離回路において、前記複合映像信号が非標準信号
のとき、前記輝度信号及び若しくは色信号のデータを補
正する補1[一係数を発生する補正係数発生手段と、こ
の補正係数を前記輝信号及び若しくは色信号のデータに
.Jli!算する乗算手段とを備え、前記補正係数乗算
後のデータを輝度信号及び色信号として出力することを
特徴とするYC分離回路。
(2) Means for solving the problem + the invention is a YC separation circuit that separates a composite video signal from a luminance signal using line correlation or frame correlation after A/D converting the composite video signal. When the standard signal is a standard signal, a correction coefficient generating means for generating a complementary coefficient for correcting the luminance signal and/or color signal data; Jli! A YC separation circuit, comprising: a multiplier for calculating the correction coefficient, and outputs the data after being multiplied by the correction coefficient as a luminance signal and a color signal.

(ホ)作 用 本発明は非標準信号受信時、YC分離された輝度信号及
び若しくは色信号のデータに補正係数が乗算された後、
YC分離出力として出力されるため輝度信号に色信号が
もれることがない。
(e) Effect When receiving a non-standard signal, the present invention multiplies YC-separated luminance signal and/or color signal data by a correction coefficient, and then
Since it is output as a YC separated output, no color signal is leaked into the luminance signal.

(へ)実施例 まず、本発明の原理について説明する。(f) Example First, the principle of the present invention will be explained.

1ri述の(2)式において非標準時にYL=Oとなら
ないのは(l)′式においてg(α)≠1となり、右辺
がsin(’on)とならないからである。従って、g
(α)を求めてその逆数1/g(a)を補正係数として
(1)゛式の右辺に乗ずれば 係数が乗ぜられ加算5(5)で夫々加算される。そして
、この加L5出力は乗算!(7)に入力され、補正係数
発生部(8)で発生した補正係数が乗算される。即ち、
前記加算器(5)出力は g(a)  sin  (  −an)であり、これに
補正係数1 / g (*)が乗算されると、 となり(2)式は \LJn−CL=sin(−on)−sin(−on)
=Uとなる。
The reason why YL=O does not hold in the non-standard time in equation (2) described in 1ri is because g(α)≠1 in equation (l)', and the right side does not become sin('on). Therefore, g
(α) is calculated and multiplied by its reciprocal 1/g(a) as a correction coefficient on the right side of equation (1). And this addition L5 output is multiplication! (7) and is multiplied by the correction coefficient generated by the correction coefficient generation section (8). That is,
The output of the adder (5) is g(a) sin (-an), and when this is multiplied by the correction coefficient 1/g (*), the equation (2) becomes \LJn-CL=sin(- on)-sin(-on)
=U.

次に本発明の一実施例におけるYC分離回路を第1図に
示す。即ち、同図において、コンポジノント信号は2つ
のラインメモリ(1)(1)により夫々、IH及び2H
遅延され、元信号及び2H遅延信号は夫々、係数器(2
)(3)で−174の係数が乗ぜられ、IH遅延信号は
係数器(4)で1/2のとなり、これが色信号(CL)
として出力される。
Next, FIG. 1 shows a YC separation circuit according to an embodiment of the present invention. That is, in the same figure, the composite signal is sent to IH and 2H by two line memories (1) and (1), respectively.
The original signal and the 2H delayed signal are each passed through a coefficient multiplier (2
)(3), the IH delay signal is multiplied by a coefficient of -174, and the IH delay signal becomes 1/2 in the coefficient multiplier (4), which becomes the color signal (CL).
is output as

一方、減$5(6)において、前記ラインメモリ(1)
出力から色信号が減算され輝度信号(YL)が出力され
る。
On the other hand, in the reduction $5 (6), the line memory (1)
The color signal is subtracted from the output and a luminance signal (YL) is output.

従って、色副搬送波をH口ッククロックでサンプリング
した信号fnに対して本実施例のYC分離回路で分離し
た輝度信号は S’L=fn−CL=sin(−an)一sin(−a
n)−0となり、非標準信号に対しても良好なYC分離
が行える。
Therefore, the luminance signal separated by the YC separation circuit of this embodiment from the signal fn obtained by sampling the color subcarrier with the H clock is S'L=fn-CL=sin(-an)-sin(-a
n)-0, and good YC separation can be performed even for non-standard signals.

次に、補正係数発生部(8)の具体例を第2図に示す。Next, a specific example of the correction coefficient generating section (8) is shown in FIG.

(8l)はバーストにロックした正弦波を発生させるバ
ーストロックPLL回路、(82)は水平同期信一j−
に口・ノクした9 1 0 fHのパルスを発生するH
口lクPLL回路、(83)は前記バーストロックP[
. 1、回路(8l)出力を前記HロックPLL回路(
82)出力でサンプリングしてA/D変換するA/D変
換器である。
(8l) is a burst lock PLL circuit that generates a sine wave locked to burst, and (82) is a horizontal synchronous signal generator.
H that generates a pulse of 9 1 0 fH
The output lock PLL circuit (83) is the burst lock P[
.. 1. The circuit (8l) output is connected to the H-lock PLL circuit (
82) An A/D converter that samples the output and performs A/D conversion.

第3図にそのサンプリングの様子を示す。Figure 3 shows the sampling process.

即ち、黒丸がサンプリング点を示し、このサンプリング
されたデータは位相検出手段(84)でそのデータに対
応した位相θ(n)を検出して出力する。この位相検出
手段(84)はROM等を使用しテーブルルックアンプ
方式により実現できる。
That is, the black circles indicate sampling points, and the phase detection means (84) detects the phase θ(n) corresponding to the sampled data and outputs it. This phase detection means (84) can be realized by a table look amplifier method using a ROM or the like.

そして,この位相検出手段(84)出力は周波数比横出
手段(85)へ供給される。この周波数比検出手段(8
5)は前記(1)式におけるa =4fsc/fsを検
出するらのであり、第3図におけるP点及びq点の位相
を検出し、C−{θ(n)J(n−1)lを計算するこ
とにより求めることができる。第4図にこの周波数比検
出手段(85)の具体例を示す。(851 )は1ドッ
ト分の遅延手段であり、この遅延手段(851)の入出
力は減算器(852)で減算された後、L P F (
853)でノイズが除去され、周波数比が検出される。
The output of this phase detection means (84) is then supplied to the frequency ratio extraction means (85). This frequency ratio detection means (8
5) is to detect a = 4fsc/fs in the above equation (1), detect the phase of point P and point q in Fig. 3, and calculate C-{θ(n)J(n-1)l It can be obtained by calculating. FIG. 4 shows a specific example of this frequency ratio detection means (85). (851) is a delay means for one dot, and after the input and output of this delay means (851) is subtracted by a subtracter (852), L P F (
853), the noise is removed and the frequency ratio is detected.

更に、この周波数比検出手段(85)出力は補正係数演
算手段(86)に供給され、補正係数γはの演算式によ
り演算される。
Further, the output of the frequency ratio detection means (85) is supplied to the correction coefficient calculation means (86), and the correction coefficient γ is calculated using the following calculation formula.

ここでaミlであるのでγミ1となる。尚、このT段は
ROM等を使用したテープルルックアソブ方式で実現さ
れる。
Here, since it is amil, it becomes γmi1. Incidentally, this T-stage is realized by a table-look-associative method using a ROM or the like.

次に補正係数発生部の他の実施例を第5図に示す。Next, another embodiment of the correction coefficient generating section is shown in FIG.

同図において、コンポジットビデオ信号は第1バースト
ゲート回路(90)にてバースト信号が抜き取られ第1
ピーク検波回路(91)で検波され、更に第I L P
 F(92)で直流化され除算回路(93)へ供給され
る。
In the figure, the burst signal is extracted from the composite video signal by the first burst gate circuit (90) and the first burst signal is extracted from the composite video signal.
The peak detection circuit (91) detects the wave, and further the I L P
It is converted into a direct current by F (92) and supplied to a division circuit (93).

一方、YC分離後の色信号(CL)が第2バーストゲー
ト回路(94)にてバースト信号が抜き取られ、前述と
同様に第2ピーク検波回路(95)及び第2 1. P
 F (95)を経て除算回路(93)の他入力となる
。そして、この除算回路(93)の出力が補正係数γ=
1/g (a)となる。
On the other hand, the burst signal of the color signal (CL) after YC separation is extracted by the second burst gate circuit (94), and the burst signal is extracted by the second peak detection circuit (95) and the second 1. P
It passes through F (95) and becomes another input to the division circuit (93). Then, the output of this division circuit (93) is the correction coefficient γ=
It becomes 1/g (a).

即ち、コンポジットビデオ信号中のバースト信両者の振
巾比K/Kg(a)=1/g(a)を演算することによ
り補正係数が得られるわけである。
That is, the correction coefficient can be obtained by calculating the amplitude ratio K/Kg(a)=1/g(a) of both burst signals in the composite video signal.

以上の説明・はいずれも2次元YC分離についてのらの
であったが、フレーム相関を利用した3次元YC分離に
も適用できる。
Although the above explanations are all about two-dimensional YC separation, they can also be applied to three-dimensional YC separation using frame correlation.

即ち、前記(101)’式に相当する式は次式のように
なる。
That is, the equation corresponding to the above equation (101)' is as follows.

l CF− 11−cos(910X525X−a)lsi
n(?n)−−・−・= (3)CF=gF(*)si
nぴal)・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・(3)従って、2次元の場
合と同様に補正係数γ=gF (a)を求めることがで
きる。
l CF-11-cos(910X525X-a)lsi
n(?n)−−・−・=(3)CF=gF(*)si
npial)・・・・・・・・・・・・・・・・・・
(3) Therefore, the correction coefficient γ=gF (a) can be obtained in the same way as in the two-dimensional case.

第6図は本発明を動き適用型YC分離回路に適用した例
を示し、第1図と同一の2次元YC分離回路の他にフレ
ームメモリ(10)(10)、係数器(1l)(+2)
(13)、加算器(14)、乗算器(15)及び減算器
(16)より構成される3次元YC分離回路を備え、輝
度信号(YF)及び色信号(CF)が導出される。そし
て、2次元処理された各信号とともに混合回路(17)
に供給され、周知のフレーム間差信号による動き検出部
(18)の動き検出出力によりその混合比が可変され輝
度信号(Y)及び色信号(C)が導出される。
FIG. 6 shows an example in which the present invention is applied to a motion adaptive YC separation circuit, in which, in addition to the same two-dimensional YC separation circuit as in FIG. )
(13), an adder (14), a multiplier (15), and a subtracter (16), which derive a luminance signal (YF) and a chrominance signal (CF). Then, a mixing circuit (17) is provided along with each two-dimensionally processed signal.
A luminance signal (Y) and a color signal (C) are derived by varying the mixing ratio by the motion detection output of a motion detection section (18) using a well-known interframe difference signal.

そして、補正係数発生部(8)′は2次元YC分離回路
に対する補正係数(γL)の他に3次元YC分離回路及
び動き検出部(18)に対する補正係数(γF)及び(
γM)を発生させる。
In addition to the correction coefficient (γL) for the two-dimensional YC separation circuit, the correction coefficient generation unit (8)' also generates a correction coefficient (γF) and (
γM) is generated.

尚、補正係数発生部(8)′は第7図に示す如く、3個
の補正係数演算部(86)(87)(88)を有するが
他の部分はl系統でよい。
As shown in FIG. 7, the correction coefficient generating section (8)' has three correction coefficient calculating sections (86), (87), and (88), but the other parts may be of l system.

(ト)発明の効果 上述の如く本発明によれば、非標準信号に対してら動き
適応型のYC分離方式が利用できるため、非標準信号入
力時の画質が大幅に向上する。
(g) Effects of the Invention As described above, according to the present invention, since a motion adaptive YC separation method can be used for non-standard signals, the image quality when the non-standard signals are input is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるYC分離回路のブロ
ック図、第2図は第1図の補正係数発生部のブロック図
、第3図はサンプリング動作を示す図、第4図は周波数
比検出手段のブロック図、第5図は補正係数発生部の他
の実施例を示すブロック図、第6図は本発明の他の実施
例におけるYC分離回路のブロック図、第7図は第6図
の補正係数発生部のブロック図である。 第8図は色副搬送波を示す図、第9図は従来のYC分離
回路のブロック図である。 (1)・・・ラインメモリ、(10)・・・フレームメ
モリ、(7)(15)・・・乗算器、(8)(8)’・
・・補正係数発生部、(17)・・・混合回路、(18
)・・・動き検出部。
FIG. 1 is a block diagram of a YC separation circuit according to an embodiment of the present invention, FIG. 2 is a block diagram of the correction coefficient generation section of FIG. 1, FIG. 3 is a diagram showing the sampling operation, and FIG. 4 is a diagram showing the frequency ratio. A block diagram of the detection means, FIG. 5 is a block diagram showing another embodiment of the correction coefficient generation section, FIG. 6 is a block diagram of a YC separation circuit in another embodiment of the present invention, and FIG. FIG. 2 is a block diagram of a correction coefficient generating section of FIG. FIG. 8 is a diagram showing color subcarriers, and FIG. 9 is a block diagram of a conventional YC separation circuit. (1)... Line memory, (10)... Frame memory, (7) (15)... Multiplier, (8) (8)'.
・・Correction coefficient generation unit, (17) ・・Mixing circuit, (18
)...Motion detection section.

Claims (1)

【特許請求の範囲】[Claims] (1)複合映像信号をA/D変換した後、ライン相関若
しくはフレーム相関を利用して輝度信号とを分離するY
C分離回路において、 前記複合映像信号が非標準信号のとき、前記輝度信号及
び若しくは色信号のデータを補正する補正係数を発生す
る補正係数発生手段と、この補正係数を前記輝信号及び
若しくは色信号のデータに乗算する乗算手段とを備え、
前記補正係数乗算後のデータを輝度信号及び色信号とし
て出力することを特徴とするYC分離回路。
(1) After A/D converting the composite video signal, it is separated from the luminance signal using line correlation or frame correlation.
In the C separation circuit, when the composite video signal is a non-standard signal, a correction coefficient generating means for generating a correction coefficient for correcting data of the luminance signal and/or chrominance signal; and a multiplication means for multiplying the data of
A YC separation circuit characterized in that the data after being multiplied by the correction coefficient is output as a luminance signal and a color signal.
JP28605488A 1988-11-11 1988-11-11 YC separation circuit Expired - Fee Related JP2686115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28605488A JP2686115B2 (en) 1988-11-11 1988-11-11 YC separation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28605488A JP2686115B2 (en) 1988-11-11 1988-11-11 YC separation circuit

Publications (2)

Publication Number Publication Date
JPH02131694A true JPH02131694A (en) 1990-05-21
JP2686115B2 JP2686115B2 (en) 1997-12-08

Family

ID=17699362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28605488A Expired - Fee Related JP2686115B2 (en) 1988-11-11 1988-11-11 YC separation circuit

Country Status (1)

Country Link
JP (1) JP2686115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078924A1 (en) * 2004-02-16 2005-08-25 Neuro Solution Corp. Frequency component isolation filter, method, and program
WO2005078923A1 (en) * 2004-02-16 2005-08-25 Neuro Solution Corp. Dc component removal filter, method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078924A1 (en) * 2004-02-16 2005-08-25 Neuro Solution Corp. Frequency component isolation filter, method, and program
WO2005078923A1 (en) * 2004-02-16 2005-08-25 Neuro Solution Corp. Dc component removal filter, method, and program

Also Published As

Publication number Publication date
JP2686115B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JPWO2002060188A1 (en) Y / C separation circuit and method
JPH0229178A (en) Video signal processing circuit
JP3457034B2 (en) Adaptive two-dimensional luminance / color signal separation device
US4939572A (en) Video signal processing apparatus
JPH06327030A (en) Motion detecting circuit
US4609938A (en) Digital TV receiver with digital video processing circuit
JP2617622B2 (en) Motion adaptive color signal synthesis method and circuit
JPH02131694A (en) Yc separator circuit
JPH043594A (en) Signal interpolation device
JPH04233888A (en) Intensity/chromaticity separating apparatus and method therefor
JPH02108390A (en) Luminance signal and chrominance signal separating circuit for pal color television signal
JP2601601B2 (en) Luminance and chrominance signal separation system
JP3932164B2 (en) Video signal processing device
JPH0638541Y2 (en) Digital processing circuit for television signals
JPH0132716B2 (en)
JPH02223290A (en) Television receiver
JP3355975B2 (en) Color signal processing circuit
JPH08140110A (en) Image signal processor
JPH0338991A (en) Luminance signal/chrominance signal separating circuit
JP3253482B2 (en) Color signal demodulation circuit
JPS63233696A (en) Y/c separator
JPH04315392A (en) Vertical false signal suppression system in color camera
JPS58182385A (en) Luminance signal separating circuit
JPS63111772A (en) Noise reduction circuit
JPH0220991A (en) Color difference signal demodulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees