JPH02131585A - Method and device for electrically boring hole - Google Patents

Method and device for electrically boring hole

Info

Publication number
JPH02131585A
JPH02131585A JP63284178A JP28417888A JPH02131585A JP H02131585 A JPH02131585 A JP H02131585A JP 63284178 A JP63284178 A JP 63284178A JP 28417888 A JP28417888 A JP 28417888A JP H02131585 A JPH02131585 A JP H02131585A
Authority
JP
Japan
Prior art keywords
cell
cells
electric field
medium
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63284178A
Other languages
Japanese (ja)
Other versions
JPH0687783B2 (en
Inventor
Hiroyasu Ito
博康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP63284178A priority Critical patent/JPH0687783B2/en
Publication of JPH02131585A publication Critical patent/JPH02131585A/en
Publication of JPH0687783B2 publication Critical patent/JPH0687783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Abstract

PURPOSE:To selectively and readily take a taking-in material in a specific site of a cell by positioning a taking-in part of cell on either one side of direction of line of electric force, heating a cell part on other side and applying direct current pulse electric field in providing small hole for taking-in material in the cell by an electrically boring method. CONSTITUTION:A medium liquid 17 containing a cell 16 is put in a recessed part 11 formed in the central part of a substrate 11 and DNA taking-in part of the cell 16 is positioned on one side in the direction of line of electric force by a method rotating and moving the substrate 11 while observing using an optical microscope 3. Then a part of cell 16 on other side in the direction of line of electric force is irradiated with laser beam L1 from laser light source 4 and selectively heated. At the same time, electricity is sent to electrodes 13a and 13b from a direct current pulse electric source 2 and direct current pulse electric field is applied to the medium liquid 17 to form small holes. Thereby DNA, etc., is taken in from the small holes for a long period, since repair of small holes in unheated position of cell 16 is slow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は細胞を含む媒液に高圧パルス電場を印加し、細
胞膜に小孔を形成することによってDNAなどを細胞中
に取り込む細胞電気穿孔法と、これに用いられる細胞電
気穿孔装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cell electroporation method in which DNA and the like are taken into cells by applying a high-voltage pulsed electric field to a medium containing cells and forming small pores in the cell membrane. This invention relates to a cell electroporation device used for this purpose.

〔従来の技術〕[Conventional technology]

バイオテクノロジーの進展に伴ない、細胞中にDNAな
どの被取込物を取り込むことが重要になっている。この
ような操作を行なうためには、細胞膜に小孔を形成する
ことが必要になるが、この技術の第1のものとして、レ
ーザ光による穿孔法である。これは、細胞の特定の部位
にレーザビームを照射して加熱し、細胞膜に小孔を形成
するものがある。これによれば、DNAはこの小孔を介
して細胞中に取り込まれることになるが、この方法では
小孔は加熱形成されるため、細胞膜が傷つきやすく、D
NAの取り込み後も小孔が残存することになる。
With the progress of biotechnology, it has become important to incorporate substances such as DNA into cells. In order to carry out such operations, it is necessary to form small holes in the cell membrane, and the first technique for this is a perforation method using laser light. Some methods involve heating a specific part of a cell by irradiating it with a laser beam to form small pores in the cell membrane. According to this method, DNA is taken into the cell through this small pore, but since the small pore is formed by heating in this method, the cell membrane is easily damaged, and the D
Small pores will remain even after NA uptake.

これに対して、従来技術の第2のものとしての電気穿孔
法によれば、細胞を含む媒液に直流パルス電場を印加す
ることにより細胞膜に小孔が形成され、この小孔を介し
てDNAなどが取り込まれる。この電気穿孔法によれば
細胞膜が特に傷つけられることがなく、また直流パルス
電場の印加を中止すれば小孔は修復される。
On the other hand, according to the electroporation method, which is the second conventional technique, small pores are formed in the cell membrane by applying a DC pulsed electric field to a medium containing cells, and DNA is transferred through the small pores. etc. will be imported. According to this electroporation method, the cell membrane is not particularly damaged, and the small hole is repaired when the application of the DC pulsed electric field is stopped.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、電気穿孔法による場合には、原則として
直流パルス電場中の全ての細胞の細胞膜に小孔が形成さ
れるため、多数の細胞中の特定の細胞のみにDNAを取
り込ませることはできない。
However, in the case of electroporation, in principle, small pores are formed in the cell membranes of all cells in the DC pulsed electric field, so it is not possible to incorporate DNA into only a specific cell among a large number of cells.

また、この小孔は直流パルス電場の電気力線方向の一方
および他方の端部に等しく形成されるので、1個の細胞
の特定の部位、例えば細胞の核あるいはこの近傍にのみ
DNAを取り込ませることは困難である。
In addition, since these small holes are formed equally at one end and the other end in the direction of the electric field lines of the DC pulsed electric field, DNA can be taken into only a specific part of one cell, for example, the nucleus of the cell or its vicinity. That is difficult.

そこで本発明は、媒液中の複数の細胞中の特定の細胞あ
るいは1個の細胞の特定の部位にのみ、DNAの如き被
取込物を取り込むことのできる細胞電気穿孔法と、この
ために用いられる装置を提供することを目的とする。
Therefore, the present invention provides a cell electroporation method that allows the incorporation of a substance such as DNA into only a specific cell among a plurality of cells in a medium or a specific site of a single cell, and a cell electroporation method for this purpose. The purpose is to provide a device for use.

〔諜題を解決するための手段〕[Means for solving intelligence problems]

本発明に係る細胞電気穿孔法は、媒液中に含まれた細胞
の細胞膜に直流パルス電場を印加することで小孔を形成
し、この小孔を介して媒液中にあらかしめ含まれている
DNAなどの被取込物を前記細胞中の取込部分に取り込
む細胞電気穿孔法において、直流パルス電場の電気力線
方向の一方側に細胞の取込部分(例えば核の近傍部分)
を位置せしめる第1のステップと、上記電気力線方向の
他方側の細胞部分を選択的にレーザビームなどで加熱す
ると共に、直流パルス電場を印加する第2のステップと
を備えることを特徴とする。
In the cell electroporation method according to the present invention, a small pore is formed by applying a direct current pulsed electric field to the cell membrane of a cell contained in a medium, and through this small hole, the cell membrane of the cell contained in the medium is In the cell electroporation method, in which a target material such as DNA is taken into the uptake area of the cell, the uptake area of the cell (e.g. near the nucleus) is placed on one side in the direction of the electric field lines of the DC pulsed electric field.
and a second step of selectively heating the cell portion on the other side in the direction of the electric lines of force with a laser beam or the like and applying a DC pulsed electric field. .

また、本発明に係る細胞電気穿孔法は、媒液中に複数の
細胞が含まれている場合において、直流パルス電場を印
加することで形成した小孔を介して複数の細胞中の所定
の細胞に被取込物を取りむに際し、上記所定の細胞以外
の細胞をレーザビームなどで選択的に加熱すると共に、
直流パルス電場を印加するステップを備えることを特徴
としてもよい。
In addition, in the cell electroporation method according to the present invention, when a plurality of cells are included in the medium, a predetermined cell among the plurality of cells is transferred through a small hole formed by applying a DC pulsed electric field. When taking the target material, cells other than the above-mentioned predetermined cells are selectively heated with a laser beam or the like, and
The method may also include a step of applying a DC pulsed electric field.

さらに、本発明に係る細胞電気穿孔装置は、細胞を含む
媒液を入れるための凹部が形成され、かつ媒液に電場を
印加するための一対の電極が凹部に設けられた基体と、
上記の一対の電極に直流パルス電圧を印加する電源と、
基体の凹部に入れられた媒液中の細胞を観察するための
顕微鏡と、基基体の凹部に入れられた媒液中の細胞加熱
するためのレーザ光源とを備えることを特徴とする。
Furthermore, the cell electroporation device according to the present invention includes a base body in which a recess is formed for containing a medium containing cells, and a pair of electrodes for applying an electric field to the medium are provided in the recess;
a power source that applies a DC pulse voltage to the pair of electrodes;
It is characterized by comprising a microscope for observing cells in a medium placed in a recess in a base, and a laser light source for heating cells in a medium placed in a recess in a base.

〔作用〕[Effect]

本発明の構成によれば、媒液中の1個の細胞の特定の部
位、もしくは複数の細胞中の一部の細胞のみが選択的に
加熱され、この条件下で直流パルス電場による電気穿孔
がなされる。ここで、電気穿孔された細胞膜の小孔の修
復は加熱条件下では速くなされるため、小孔の開状態の
時間は相対的に短くなっている。これに対し、加熱され
ていない特定の部位もしくは特定の細胞の細胞膜の小孔
は遅く修復されることになり、小孔の開状態の時間は相
対的に長くなるので、この部分では長い時間にわたって
DNAなどが取り込まれることになる。このため、細胞
の特定の部位もしくは特定の細胞にDNAを選択的に取
り込むことが可能になる。
According to the configuration of the present invention, only a specific part of a single cell in a medium or a part of a plurality of cells is selectively heated, and under this condition, electroporation by a DC pulsed electric field is performed. It will be done. Here, since the electroporated pores in the cell membrane are repaired quickly under heating conditions, the time the pores remain open is relatively short. On the other hand, the small pores in the cell membrane of specific areas or specific cells that are not heated will be repaired slowly, and the time that the pores remain open will be relatively long. DNA etc. will be taken in. Therefore, it becomes possible to selectively incorporate DNA into a specific site of a cell or a specific cell.

〔実施例〕〔Example〕

以下、添付図面を参照して、本発明の実施例を説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係る細胞電気穿孔法の実施例を適用し
た装置の基本構成図であり、第2図は第1図中の基体1
の斜視図である。第2図の通り、基体1は例えば石英ガ
ラス製の基板11を有し、この基板11の中央部には平
面形状が四辺形の凹部12が形成されている。凹部12
の対向する側壁には一対の電極13a,13bが例えば
プラチナ(Pi )で形成され、これにはリード線14
a,14bが接続されている。この基板11の凹部12
には細胞16を含む媒液17が所定量だけ入れられ、第
1図のようにセットされる。
FIG. 1 is a basic configuration diagram of an apparatus to which an embodiment of the cell electroporation method according to the present invention is applied, and FIG.
FIG. As shown in FIG. 2, the base body 1 has a substrate 11 made of, for example, quartz glass, and a recess 12 having a quadrilateral planar shape is formed in the center of the substrate 11. Recess 12
A pair of electrodes 13a and 13b are formed of, for example, platinum (Pi) on opposing side walls of the
a and 14b are connected. Recessed portion 12 of this substrate 11
A predetermined amount of the medium 17 containing the cells 16 is put into the container, and the container is set as shown in FIG.

すなわち、第1図に示すように、リード線14a,14
bは直流パルス電源2に接続され、これによって媒液1
7に直流パルス電場が印加されるようになっている。細
胞16の状態は光学顕微鏡3により観察され、かつレー
ザ光源4からのレーザビームL1が光学顕微鏡3を介し
て媒液17中の細胞16に照射されるようになっている
That is, as shown in FIG.
b is connected to the DC pulse power source 2, which causes the medium 1
A DC pulse electric field is applied to 7. The state of the cells 16 is observed using an optical microscope 3, and the cells 16 in the medium 17 are irradiated with a laser beam L1 from a laser light source 4 via the optical microscope 3.

一方、基体1の下方にはリレーレンズ5を介して白色光
源6が設けられ、ここからの光は細胞16を通って光学
顕微鏡3で拡大され、観察者7に観察光L2として届く
ようになっている。なお、図中のMは全反射ミラーであ
り、BSはビームスプリツタである。
On the other hand, a white light source 6 is provided below the substrate 1 via a relay lens 5, and the light from this source passes through the cells 16 and is magnified by the optical microscope 3, and reaches the observer 7 as observation light L2. ing. Note that M in the figure is a total reflection mirror, and BS is a beam splitter.

次に、第3図により上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained with reference to FIG.

第3図において、図示しない媒液中に含まれた細胞16
は核16aを有しているものとする。いま、第3図の状
態で電極13a,13bの間に直流パルス電場を印加す
ると、細胞16の電気力線方向の一方および他方側の端
部P  ,P  に、電気穿孔による小孔が形成される
。この小孔は、直流パルス電場を加えることで開状態と
なり、直流パルス電場を解除すると修復していく。
In FIG. 3, cells 16 contained in a medium (not shown)
is assumed to have a nucleus 16a. Now, when a DC pulsed electric field is applied between the electrodes 13a and 13b in the state shown in FIG. Ru. This small hole becomes open by applying a DC pulsed electric field, and repairs itself when the DC pulsed electric field is removed.

ところで、この小孔の形成および修復速度は、その部分
の温度により異なり、高温のときには形成および修復が
共に速くなり、低温のときには形成および修復が共に遅
くなる。そこで、第3図中の記号LAで示す部分にのみ
レーザ光を照射し、この部分を加熱した状態で直流パル
ス電場を印加すると、レーザ光加熱された部分LA中の
細胞部分Ptの小孔は開状態となっている合計時間が相
対的に短く、加熱されていない他方の細胞部分P2の小
孔は開状態となっている合計時間が相対的に長くなる。
Incidentally, the rate of formation and repair of these small pores varies depending on the temperature of the part; when the temperature is high, both the formation and repair are rapid, and when the temperature is low, the formation and repair are both slow. Therefore, when a laser beam is irradiated only to the part indicated by the symbol LA in Fig. 3 and a DC pulse electric field is applied while heating this part, the small pores of the cell part Pt in the part LA heated by the laser beam are The total time that the pores are in the open state is relatively short, and the total time that the small pores in the other unheated cell portion P2 are in the open state is relatively long.

その結果、加熱されていない細胞部分P2の小孔を介し
て、媒液17中のDNAがより多く取り込まれることに
なる。
As a result, more DNA in the medium 17 is taken in through the small pores of the unheated cell portion P2.

DNAの具体的な取り込み手順としては、次のようなも
のがある。
Specific procedures for incorporating DNA include the following.

まず、電気穿孔されるのは直流パルス電場の電気力線方
向端部の細胞膜であるので、DNAを取り込むべき取込
部を上記直流パルス電場の電気力線方向に位置決めする
。この具体的方法としては、例えば基体1を光学顕微鏡
3で観察しながら回転、移動させればよい。また、例え
ば高周波電場を印加することで公知のバールチェーン現
象を生起させ、細胞16を特定方向に向けるようにして
もよ%NO 次に、複数の細胞中の特定細胞もしくは1個の細胞の特
定部位の加熱は、レーザ光照射により行なうが、このレ
ーザ光照射に先立って細胞16を染色することが望まし
い。色素としては細胞16に対する毒性の少ない低発光
性のものを用いる。
First, since what is electroporated is the cell membrane at the end in the direction of the lines of electric force of the DC pulsed electric field, the uptake part where DNA is to be taken in is positioned in the direction of the lines of electric force of the DC pulsed electric field. As a specific method for this, for example, the substrate 1 may be rotated and moved while being observed with an optical microscope 3. Alternatively, for example, by applying a high frequency electric field, a well-known crowbar chain phenomenon may be caused to direct the cells 16 in a specific direction.Next, the identification of a specific cell or a single cell among multiple cells Heating of the site is performed by laser light irradiation, but it is desirable to stain the cells 16 prior to this laser light irradiation. As the dye, a low luminescent dye that is less toxic to the cells 16 is used.

このようにすれば、パルスレーザあるいはCWレーザを
用いることにより、特定部分のレーザ光照射でここを選
択的に加熱することができる。なお、選択的なレーザ光
照射は、光学顕徹鏡3で細胞16の位置や向きを確認し
ながら、レーザビームを走査することで行なう。一方、
1個の細胞の加熱したい部分あるいは複数の細胞中の加
熱したい特定の細胞のみ染色しておけば、全体にレーザ
光照射しても選択的な加熱ができる。
In this way, by using a pulse laser or a CW laser, a specific portion can be selectively heated by irradiating the laser beam. The selective laser beam irradiation is performed by scanning the laser beam while checking the position and orientation of the cells 16 using the optical microscope 3. on the other hand,
By staining only the part of a single cell to be heated or a specific cell to be heated among multiple cells, selective heating can be performed even if the entire area is irradiated with laser light.

次に、上記のような加熱条件下で、直流パルス電場を印
加して電気穿孔する。この直流パルス電場は1〜数μs
ecのパルス幅、1〜数secのパルス間隔で数回行な
う。なお、直流パルス電場の印加タイミングとレーザ光
の照射タイミングについては、細胞膜の形成あるいは修
復過程で選択的に加熱できるものであれば、いかなるタ
イミングであってもよい。以上のようにして電気穿孔す
ると、媒液17に含まれたDNAが細胞16中に選択的
に取り込まれることになる。
Next, under the heating conditions described above, a DC pulsed electric field is applied to perform electroporation. This DC pulse electric field is 1 to several μs
This is repeated several times with a pulse width of ec and a pulse interval of 1 to several seconds. Note that the application timing of the DC pulsed electric field and the irradiation timing of the laser beam may be any timing as long as it can selectively heat the cell membrane during the formation or repair process. When electroporation is performed as described above, the DNA contained in the medium 17 is selectively taken into the cells 16.

第4図はDNAの取り込みのいくつかの例を具体的に示
している。同図において、記号Eは直流パルス電場によ
る電気力線の方向であり、記号LAはレーザ光照射によ
り加熱される部分である。
FIG. 4 specifically shows some examples of DNA uptake. In the figure, symbol E indicates the direction of electric lines of force due to the DC pulsed electric field, and symbol LA indicates a portion heated by laser beam irradiation.

また、図中の斜線で示した部分は、相対的に開状態の大
きな小孔が形成される部分である。同図(a)によれば
、核16aの近傍にのみ制御性よ( DNAを取り込む
ことができる。同図(b)の例によれば、レーザビーム
のスキャンを簡単にしながら、核16aの近傍にのみD
NAを取り込むことができる。同図(C)の例によれば
、7個の細胞中の2個の細胞のみに選択的にDNAを取
り込むことができる。また、同図(d)の例によれば、
4個の分裂した細胞中の1個の細胞についてのみ、選択
的にDNAを取り込むことができる。
Further, the hatched portion in the figure is a portion where a relatively open large hole is formed. According to the example in the figure (a), it is possible to controllably (DNA) only be taken into the vicinity of the nucleus 16a. Only in D
NA can be taken in. According to the example shown in FIG. 4(C), DNA can be selectively taken into only two cells out of seven cells. Also, according to the example in figure (d),
DNA can be selectively taken up by only one cell among four divided cells.

次に、本発明者による具体的な実施例を説明する。Next, a specific example by the present inventor will be described.

まず、一辺が1clI1で深さが3 mmの凹部を中央
に形成した石英ガラス板を用意し、この凹部に第2図の
ような電極対を白金(Pi )で形成した。そして、電
極対には電圧およびパルス幅が可変でパルス間隔が1秒
の直流パルス電源を接続した。更に、石英ガラスからな
る基板の下方には白色光源を置き、凹部の上方に光学顕
微鏡の対物レンズを対向させた。さらに、アルゴン(A
r )レーザ装置をセットし、レーザビーム照射できる
ようにした。上記装置を用いて、カロチン系色素で染色
されたウニの卵および人間の赤血球による実験を行なっ
た。
First, a quartz glass plate was prepared in which a concave portion having a side of 1 clI1 and a depth of 3 mm was formed in the center, and an electrode pair as shown in FIG. 2 was formed in this concave portion using platinum (Pi). A DC pulse power source with variable voltage and pulse width and a pulse interval of 1 second was connected to the electrode pair. Furthermore, a white light source was placed below the substrate made of quartz glass, and an objective lens of an optical microscope was placed above the recess. Furthermore, argon (A
r) The laser device was set up to enable laser beam irradiation. Using the above device, we conducted experiments using sea urchin eggs and human red blood cells stained with carotene dyes.

実施例1 海水と略同一濃度のシヨ糖水溶液を1 ml用意し、こ
の中に生きたウニの卵を50個程度入れ試料液とした。
Example 1 1 ml of a sucrose aqueous solution having approximately the same concentration as seawater was prepared, and approximately 50 live sea urchin eggs were placed therein to serve as a sample solution.

次に、この試料液を石英ガラス板の凹部に1〜2 mm
の深さになるまで垂らし、顕微鏡で確認して処理対象の
ウニの卵を選び出した。次に、スポット径が5μmのA
rレーザビームを選び出した細胞の一方の側のみにスキ
ャンして照射し、パルス幅が5μsec,パルス間隔が
1.0secの直流パルス電場を、1.5KV/co+
の強さで10回印加した。その結果、加熱されていない
ウニの卵の細胞部分には加熱された部分に対して5倍の
量で、シヨ糖水溶液中のDNAが取り込まれた。
Next, apply this sample solution to the recess of the quartz glass plate by 1 to 2 mm.
The sea urchin eggs were dropped to a depth of 100 cm and checked under a microscope to select the sea urchin eggs to be treated. Next, A with a spot diameter of 5 μm
The r laser beam is scanned and irradiated on only one side of the selected cell, and a DC pulsed electric field with a pulse width of 5 μsec and a pulse interval of 1.0 sec is applied at 1.5 KV/co+.
It was applied 10 times with a strength of . As a result, five times as much DNA in the sucrose aqueous solution was incorporated into the unheated sea urchin egg cells as compared to the heated part.

比較例1 実施例1において、A『レーザビームの照射以外を全く
同一条件にして、DNAの取込実験を行なった。その結
果、DNAの取込量は直流パルス電場の電気力線方向に
おいて略同一であった。
Comparative Example 1 In Example 1, a DNA uptake experiment was conducted under exactly the same conditions except for the laser beam irradiation. As a result, the amount of DNA taken in was approximately the same in the direction of the electric lines of force of the DC pulsed electric field.

実施例2 人間の血液と略同一濃度のシヨ糖水溶液を1 ml用意
し、この中に生きた赤血球を50個程度入れ試料液とし
た。次に、この試料液を石英ガラス板の凹部に1〜2I
II+の深さになるまで垂らし、顕微鏡で確認して処理
対象の赤血球を6個だけ選び出した。次に、スポット径
が5μmのArレーザビムを選び出した6個の細胞のう
ちの4個のみにスキャンして照射し、パルス幅が1、5
μsec,パルス間隔が1.0secの直流パルス電場
を、1.5V/cmの強さで10回印加した。その結果
、加熱されていない2個の赤血球には加熱された4個の
赤血球に対して5倍の量で、シヨ糖水溶液中のDNAが
取り込まれた。
Example 2 1 ml of a sucrose aqueous solution having approximately the same concentration as human blood was prepared, and approximately 50 live red blood cells were placed therein to form a sample solution. Next, apply this sample solution to the concave part of the quartz glass plate for 1 to 2 I
The solution was dropped to a depth of II+ and confirmed under a microscope to select only 6 red blood cells to be treated. Next, an Ar laser beam with a spot diameter of 5 μm was scanned and irradiated onto only 4 of the 6 selected cells, and the pulse width was 1, 5 μm.
A DC pulsed electric field of μsec and a pulse interval of 1.0 sec was applied 10 times at an intensity of 1.5 V/cm. As a result, five times as much DNA in the sucrose aqueous solution was incorporated into two unheated red blood cells as compared to four heated red blood cells.

比較例2 実施例1において、A『レーザビームの照射以外を全く
同一条件にして、DNAの取込実験を行なった。その結
果、DNAの取込量は6個の赤血球において略同一であ
った。
Comparative Example 2 In Example 1, a DNA uptake experiment was conducted under exactly the same conditions except for the laser beam irradiation. As a result, the amount of DNA uptake was approximately the same in the six red blood cells.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り本発明では、、媒液中の1個
の細胞の特定の部位、もしくは複数の細胞中の特定の細
胞のみが選択的に加熱され、この条件下で直流パルス電
場による電気穿孔がなされるので、加熱されていない細
胞の特定の部位もしくは特定の細胞の細胞膜の小孔は遅
く修復されることになり、ここから長い時間にわたって
DNAなどが取り込まれることになる。このため、細胞
の特定の部位もしくは特定の細胞にDNAを選択的に取
り込むことが可能になる。
As explained above in detail, in the present invention, only a specific part of a single cell in a medium or a specific cell among a plurality of cells is selectively heated, and under this condition, a DC pulsed electric field is applied. Since electroporation is performed, specific parts of cells that have not been heated or small pores in the cell membrane of specific cells will be repaired slowly, and DNA etc. will be taken in from here over a long period of time. Therefore, it becomes possible to selectively incorporate DNA into a specific site of a cell or a specific cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る細胞電気穿孔装置の基
本構成図、第2図は、第1図に示す基体の斜視図、第3
図は、実施例の作用を説明する図、第4図は、実施例に
よるDNAの取り込み例を説明する図である。 1・・・基体、12・・・凹部、13a.13b・・・
電極、2・・・直流パルス電源、3・・・光学顕微鏡、
4・・・レーザ光源、5・・・リレーレンズ、6・・・
白色光源、7・・・観察者 特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷川  芳  樹第1図の蟇体の#+視図 第2図 実境イクリにイ息る装1の築本填原 第1図 実加例の作用と説明すう図 第3図 r
FIG. 1 is a basic configuration diagram of a cell electroporation device according to an embodiment of the present invention, FIG. 2 is a perspective view of the base shown in FIG. 1, and FIG.
The figure is a diagram for explaining the effect of the embodiment, and FIG. 4 is a diagram for explaining an example of DNA uptake according to the embodiment. DESCRIPTION OF SYMBOLS 1... Base body, 12... Recessed part, 13a. 13b...
Electrode, 2... DC pulse power supply, 3... Optical microscope,
4... Laser light source, 5... Relay lens, 6...
White light source, 7... Observer patent applicant Hamamatsu Photonics Co., Ltd. Representative patent attorney
Yoshiki Hasegawa Figure 1: #+ perspective view of the toad body Figure 2: The original structure of the 1st part that breathes into the actual situation Figure 1: Action and explanatory diagram of the actual example Figure 3: r

Claims (1)

【特許請求の範囲】 1、媒液中に含まれた細胞の細胞膜に直流パルス電場を
印加することで小孔を形成し、この小孔を介して前記媒
液中にあらかじめ含まれている被取込物を前記細胞中の
取込部分に取り込む細胞電気穿孔法において、 前記直流パルス電場の電気力線方向の一方側に前記細胞
の取込部分を位置せしめる第1のステップと、 前記電気力線方向の他方側の前記細胞部分を選択的に加
熱すると共に、前記直流パルス電場を印加する第2のス
テップとを備えることを特徴とする細胞電気穿孔法。 2、前記細胞はあらかじめ染色され、前記第2のステッ
プは前記電気力線方向の他方側の細胞部分を選択的にレ
ーザ光照射して加熱することを特徴とする請求項1記載
の細胞電気穿孔法。 3、前記電気力線方向の他方側の細胞部分はあらかじめ
染色され、前記第2のステップは前記細胞全体をレーザ
光照射して前記染色部分を加熱することを特徴とする請
求項1記載の細胞電気穿孔法。 4、媒液中に含まれた複数の細胞の細胞膜に直流パルス
電場を印加することで小孔を形成し、この小孔を介して
前記複数の細胞中の所定の細胞に前記媒液中にあらかじ
め含まれた被取込物を取りむ細胞電気穿孔法において、 前記所定の細胞以外の細胞を選択的に加熱すると共に、
前記直流パルス電場を印加するステップを備えることを
特徴とする細胞電気穿孔法。 5、前記選択的な加熱は、前記所定の細胞以外の細胞を
選択的にレーザ光照射することにより行なうことを特徴
とする請求項4記載の細胞電気穿孔法。 6、前記選択的な加熱は、前記所定の細胞以外の細胞を
選択的に染色してレーザ光照射することにより行なうこ
とを特徴とする請求項4記載の細胞電気穿孔法。 7、細胞を含む媒液を入れるための凹部が形成され、か
つ前記媒液に電場を印加するための一対の電極が前記凹
部に設けられた基体と、 前記一対の電極に直流パルス電圧を印加するための電源
手段と、 前記基体の凹部に入れられた媒液中の細胞を観察するた
めの顕微鏡と、 前記基体の凹部に入れられた媒液中の細胞を加熱するた
めのレーザ光源とを備えることを特徴とする細胞電気穿
孔装置。
[Scope of Claims] 1. A small pore is formed by applying a direct current pulsed electric field to the cell membrane of the cell contained in the medium, and the material previously contained in the medium is passed through the small pore. In a cell electroporation method in which a substance is taken into an uptake part in the cell, a first step of locating the uptake part of the cell on one side in the direction of the lines of electric force of the DC pulsed electric field; A cell electroporation method comprising a second step of selectively heating the cell portion on the other side in the linear direction and applying the DC pulsed electric field. 2. Cell electroporation according to claim 1, wherein the cells are dyed in advance, and the second step includes selectively irradiating and heating the cell portion on the other side in the direction of the lines of electric force with a laser beam. Law. 3. The cell according to claim 1, wherein the cell portion on the other side of the electric force line direction is dyed in advance, and the second step includes heating the dyed portion by irradiating the entire cell with a laser beam. Electroporation. 4. A small pore is formed by applying a DC pulse electric field to the cell membrane of a plurality of cells contained in the medium, and a predetermined cell among the plurality of cells is introduced into the medium through this small pore. In the cell electroporation method in which pre-incorporated substances are taken, cells other than the predetermined cells are selectively heated, and
A cell electroporation method comprising the step of applying the DC pulsed electric field. 5. The cell electroporation method according to claim 4, wherein the selective heating is performed by selectively irradiating cells other than the predetermined cells with laser light. 6. The cell electroporation method according to claim 4, wherein the selective heating is performed by selectively staining cells other than the predetermined cells and irradiating them with laser light. 7. A base having a recess formed therein for containing a medium containing cells, and a pair of electrodes provided in the recess for applying an electric field to the medium, and applying a DC pulse voltage to the pair of electrodes. a microscope for observing the cells in the medium placed in the recess of the base; and a laser light source for heating the cells in the medium placed in the recess of the base. A cell electroporation device comprising:
JP63284178A 1988-11-10 1988-11-10 Cell electroporation and device Expired - Fee Related JPH0687783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284178A JPH0687783B2 (en) 1988-11-10 1988-11-10 Cell electroporation and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284178A JPH0687783B2 (en) 1988-11-10 1988-11-10 Cell electroporation and device

Publications (2)

Publication Number Publication Date
JPH02131585A true JPH02131585A (en) 1990-05-21
JPH0687783B2 JPH0687783B2 (en) 1994-11-09

Family

ID=17675187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284178A Expired - Fee Related JPH0687783B2 (en) 1988-11-10 1988-11-10 Cell electroporation and device

Country Status (1)

Country Link
JP (1) JPH0687783B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720921A (en) * 1995-03-10 1998-02-24 Entremed, Inc. Flow electroporation chamber and method
US6074605A (en) * 1995-03-10 2000-06-13 Entremed, Inc. Flow electroporation chamber and method
KR20030012995A (en) * 2001-08-06 2003-02-14 주식회사 토이랩 Electroporator using dc power supply
US6773669B1 (en) 1995-03-10 2004-08-10 Maxcyte, Inc. Flow electroporation chamber and method
US7029916B2 (en) 2001-02-21 2006-04-18 Maxcyte, Inc. Apparatus and method for flow electroporation of biological samples
US7141425B2 (en) 2001-08-22 2006-11-28 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7771984B2 (en) 2004-05-12 2010-08-10 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720921A (en) * 1995-03-10 1998-02-24 Entremed, Inc. Flow electroporation chamber and method
US6074605A (en) * 1995-03-10 2000-06-13 Entremed, Inc. Flow electroporation chamber and method
US6773669B1 (en) 1995-03-10 2004-08-10 Maxcyte, Inc. Flow electroporation chamber and method
US7029916B2 (en) 2001-02-21 2006-04-18 Maxcyte, Inc. Apparatus and method for flow electroporation of biological samples
KR20030012995A (en) * 2001-08-06 2003-02-14 주식회사 토이랩 Electroporator using dc power supply
US7141425B2 (en) 2001-08-22 2006-11-28 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7186559B2 (en) 2001-08-22 2007-03-06 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7771984B2 (en) 2004-05-12 2010-08-10 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber
US9546350B2 (en) 2004-05-12 2017-01-17 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber

Also Published As

Publication number Publication date
JPH0687783B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
AU2012255988B2 (en) Photothermal substrates for selective transfection of cells
Steubing et al. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap
Valley et al. Parallel single-cell light-induced electroporation and dielectrophoretic manipulation
ATE242315T1 (en) DEVICE FOR ELECTROPORATION IN WHICH THE TEMPERATURE IS CONTROLLED DURING THIS PROCESS
WO2009017695A1 (en) A single cell surgery tool and a cell transfection device utilizing the photothermal properties of thin films and/or metal nanoparticles
JPH02131585A (en) Method and device for electrically boring hole
KR20060120178A (en) Method and apparatus for cell permeabilization
WO2006037236A1 (en) Laser apparatus and method for manipulating cells
KR100686633B1 (en) Apparatus and method for machining microchamber for cell culture
WO2009140701A2 (en) Delivery into cells using ultra-short pulse lasers
KR101555069B1 (en) Method for preparing an acellular organic tissue
JPH02131584A (en) Method and device for electrically boring cell
Smith et al. Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses
JP2003254932A (en) Method and device for measuring electric signal from biological membrane body, method for measuring biological activity of membrane-integrated type polypeptide and identifying active material, identified pharmaceutical, use of the pharmaceutical, screening method of material library, inhibitor and activator found by the method and use thereof
Liu et al. Noncontact and nondestructive identification of neural circuits with a femtosecond laser
US8507258B2 (en) Apparatus for perforating membrane
Korkotian et al. Confocal microscopic imaging of fast UV-laser photolysis of caged compounds
JP2006515758A (en) Highly controllable electroporation and its applications
JPH03297385A (en) Cell fusion using light trapping by laser
JPS60164487A (en) Method for cell fusion
KR101672399B1 (en) Method for localized electroporation using optical microscope with ion current measurement and device for the localized electroporation
JPH11103858A (en) Dna transfer by electroporation
Beloso et al. Fabrication of a cell electrostimulator using pulse laser deposition and laser selective thin film removal
Kajiyama et al. A novel microsurgery method for intact plant tissue at the single cell level using ArF excimer laser microprojection
JPH04248985A (en) Method for cell fusion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees