JPH11103858A - Dna transfer by electroporation - Google Patents

Dna transfer by electroporation

Info

Publication number
JPH11103858A
JPH11103858A JP9286066A JP28606697A JPH11103858A JP H11103858 A JPH11103858 A JP H11103858A JP 9286066 A JP9286066 A JP 9286066A JP 28606697 A JP28606697 A JP 28606697A JP H11103858 A JPH11103858 A JP H11103858A
Authority
JP
Japan
Prior art keywords
dna
plant
pulse
fluorescence intensity
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9286066A
Other languages
Japanese (ja)
Inventor
Tomoaki Matsuo
友明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKIWA SCIENCE KK
TR TEC KK
Original Assignee
TOKIWA SCIENCE KK
TR TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKIWA SCIENCE KK, TR TEC KK filed Critical TOKIWA SCIENCE KK
Priority to JP9286066A priority Critical patent/JPH11103858A/en
Publication of JPH11103858A publication Critical patent/JPH11103858A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Abstract

PROBLEM TO BE SOLVED: To transfer a DNA into a plant cell in a state close to a plant living body without forming a protoplast by dipping a plant tissue, an organ, a plant body or the like with an intactly remaining cell wall in a DNA vector-containing buffer solution or the like and then applying a DC pulse thereto. SOLUTION: A plant tissue, an organ or a plant body 6 with an intactly remaining cell wall such as a section of a carrot tuberous root, a section of a cabbage leaf, a section of a potato tuberous root or a section of a petunia stem is dipped in a buffer solution 5 containing a DNA or a DNA vector filled in a cuvette 1 composed of a transparent plastic and a DC pulse is then applied to the buffer solution 5 with a means 7 for applying square waves connected to electrodes 3 and 4 to transfer the DNA or DNA vector into the plant cell constituting the plant cell, organ or plant body 6 by electroporation. Thereby, the DNA is transferred into the plant cell in a state close to a plant living body without forming a protoplast.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エレクトロポレー
ションによる植物組織へのDNA導入方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a method for introducing DNA into plant tissue by electroporation.

【0002】[0002]

【従来の技術】植物細胞に、DNAを導入する方法に
は、間接法と直接法とがあり、さらに、この直接法のう
ち、電気パルスを利用するものとして、エレクトロポレ
ーション法が知られている。
2. Description of the Related Art There are an indirect method and a direct method for introducing DNA into plant cells. Among these direct methods, an electroporation method is known as a method utilizing electric pulses. I have.

【0003】さて、植物細胞は、動物細胞と異なり、細
胞膜の外側にセルロースからなる細胞壁を有する。した
がって、細胞壁に包まれた植物細胞内に、DNAを導入
しようとするなら、DNAを、細胞膜だけでなく、細胞
壁をも通過させなければならない。そして、従来、電気
パルスのみによって、DNAを、細胞膜と細胞壁とを一
度に通過させることはできないものと信じられていた。
[0003] Unlike animal cells, plant cells have a cell wall made of cellulose outside the cell membrane. Therefore, if DNA is to be introduced into a plant cell wrapped in the cell wall, the DNA must pass not only through the cell membrane but also through the cell wall. It has been conventionally believed that DNA cannot pass through a cell membrane and a cell wall at the same time only by an electric pulse.

【0004】このため、従来のエレクトロポレーション
法では、まず、DNAを導入したい植物細胞をプロトプ
ラストにした上で、電気パルスを印加していた。即ち、
従来のエレクトロポレーション法では、プロトプラスト
再分化系が必須のものとなっていた。これにより、形質
転換を植物で作製することが可能になる。
[0004] Therefore, in the conventional electroporation method, first, a plant cell into which DNA is to be introduced is converted into a protoplast and then an electric pulse is applied. That is,
In the conventional electroporation method, a protoplast regeneration system has been essential. This allows the transformation to be made in plants.

【0005】ここで、プロトプラストとは、細胞をばら
ばらにし、植物細胞から細胞壁を取り除き(ペクチナー
ゼ、セルラーゼを用いる)、外部に細胞膜を露呈させた
ものである。そして、このプロトプラストは、植物細胞
が生命活動を維持できる最小の単位である。
[0005] Here, the protoplasts are obtained by disintegrating cells, removing cell walls from plant cells (using pectinase and cellulase), and exposing cell membranes to the outside. And this protoplast is the smallest unit that enables plant cells to maintain vital activity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな技術では、プロトプラストにするための装置や手間
がかかるだけでなく、植物生体の本来の姿から、遠くか
け離れた形態(プロトプラスト)でないと、DNAを導
入できないことになる。
However, such a technique requires not only a device and labor for producing protoplasts, but also a DNA (protoplast) that is far from the original form of the plant organism (protoplast). Cannot be introduced.

【0007】そこで本発明者は、植物生体の本来の姿に
近い状態で、DNA導入を行うことができないものか
と、鋭意研究の結果、本発明を完成するに至ったもので
ある。即ち、本発明は、プロトプラスト化せずに、植物
細胞にDNAを導入できるエレクトロポレーションによ
るDNA導入方法を提供することを目的とする。
The inventors of the present invention have made intensive studies as to whether DNA can be introduced in a state close to the original state of a plant organism, and as a result, have completed the present invention. That is, an object of the present invention is to provide a DNA introduction method by electroporation that can introduce DNA into plant cells without forming protoplasts.

【0008】[0008]

【課題を解決するための手段】本発明のエレクトロポレ
ーションによるDNA導入方法では、細胞壁を残したま
まの植物組織、器官又は植物体を、DNA又はDNAの
ベクターを含ませた緩衝液に浸漬し、緩衝液にDCパル
スを印加しDNA又はDNAのベクターを植物組織、器
官又は植物体を構成する植物細胞内に導入する。この構
成により、プロトプラスト化せずに、植物細胞にDNA
を導入できる。
In the method of introducing DNA by electroporation according to the present invention, a plant tissue, organ or plant with cell walls remaining is immersed in a buffer containing DNA or a DNA vector. A DC pulse is applied to the buffer to introduce DNA or a DNA vector into plant cells constituting a plant tissue, organ or plant. With this configuration, plant cells can be made into DNA without protoplast formation.
Can be introduced.

【0009】[0009]

【発明の実施の形態】請求項1記載のエレクトロポレー
ションによるDNA導入方法では、細胞壁を残したまま
の植物組織、器官又は植物体を、DNA又はDNAのベ
クターを含ませた緩衝液に浸漬し、緩衝液にDCパルス
を印加しDNA又はDNAのベクターを植物組織、器官
又は植物体を構成する植物細胞内に導入する。この構成
により、細胞壁を残し、より植物生体に近い状態で、植
物細胞にDNAを導入できる。
DETAILED DESCRIPTION OF THE INVENTION In the method for transfecting DNA by electroporation according to the first aspect, a plant tissue, organ or plant with cell walls left is immersed in a buffer containing DNA or a DNA vector. A DC pulse is applied to the buffer to introduce DNA or a DNA vector into plant cells constituting a plant tissue, organ or plant. With this configuration, the DNA can be introduced into the plant cells in a state closer to the plant body while leaving the cell wall.

【0010】請求項2記載のエレクトロポレーションに
よるDNA導入方法では、DCパルスは、パルス幅と電
圧が設定された矩形波である。この構成により、DCパ
ルスのパルス幅と電圧を調整することにより、緩衝液の
成分や植物組織の性質に合わせたパルスを印加できる。
In the method of introducing DNA by electroporation according to the second aspect, the DC pulse is a rectangular wave having a pulse width and a voltage set. With this configuration, by adjusting the pulse width and voltage of the DC pulse, it is possible to apply a pulse that matches the components of the buffer solution and the properties of the plant tissue.

【0011】請求項3記載のエレクトロポレーションに
よるDNA導入方法では、DCパルスを印加する前後に
おいて、緩衝液のインピーダンスを計測する。この構成
により、インピーダンスの変化を調べて、DCパルスの
最適化を図ることができる。
In the method for introducing DNA by electroporation according to the third aspect, the impedance of the buffer solution is measured before and after the DC pulse is applied. With this configuration, a change in impedance can be examined to optimize the DC pulse.

【0012】次に図面を参照しながら、本発明の実施の
形態について説明する。図1は、本発明の一実施の形態
におけるDNA導入装置の概念図である。図1におい
て、1は、透明プラスチックからなるキュベットであ
り、角柱状をなす。2は、キュベット1の上端開口部を
封鎖するふたであり、キュベット1の対向面には、一対
の電極3、4(本形態では、アルミニウム板)が設けて
ある。5は、キュベット1に入れられる緩衝液であり、
通常、20〜800μl程度の体積で、例えば、マニト
ールやNaCl液を主材とする。そして、この緩衝液5
には、DNA又はDNAのベクターが所定量浸漬され
る。ここで、本形態では、pBI221を添加してい
る。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a DNA introduction device according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a cuvette made of transparent plastic, which has a prismatic shape. Reference numeral 2 denotes a lid for closing the opening at the upper end of the cuvette 1, and a pair of electrodes 3 and 4 (in this embodiment, an aluminum plate) are provided on the facing surface of the cuvette 1. 5 is a buffer solution to be put into the cuvette 1,
Usually, the volume is about 20 to 800 μl, and for example, mannitol or NaCl solution is used as a main material. And this buffer 5
Is immersed in a predetermined amount of DNA or a DNA vector. Here, in this embodiment, pBI221 is added.

【0013】6は、細胞壁を残したままの(プロトプラ
ストではない)植物組織である。本形態では、後述する
ように、植物体の器官の切片を用いている。植物組織6
は、少なくともDCパルスを印加する前に、キュベット
1の緩衝液5に浸漬される。なお、同様に、植物組織、
器官又は植物体について、本発明を適用できる。7は、
矩形波印加手段である。矩形波印加手段7は、電極3、
4に接続され、緩衝液5にDCパルスを印加するもので
あって、100μs〜1000msecのパルス幅、1
〜500vの電圧、パルス回数を設定可能なものが望ま
しい。8は、インピーダンス測定手段であり、DCパル
ス印加前後において、電極3、4間(緩衝液5)のイン
ピーダンスを測るものである。
Numeral 6 is a plant tissue with cell walls remaining (not protoplasts). In this embodiment, as described later, a section of a plant organ is used. Plant tissue 6
Is immersed in the buffer solution 5 of the cuvette 1 at least before applying a DC pulse. In addition, similarly, plant tissue,
The present invention can be applied to an organ or a plant. 7 is
This is a rectangular wave applying means. The rectangular wave applying means 7 includes the electrode 3,
4, a DC pulse is applied to the buffer 5 and has a pulse width of 100 μs to 1000 msec.
It is desirable that the voltage and the number of pulses of up to 500 V can be set. Reference numeral 8 denotes impedance measuring means for measuring the impedance between the electrodes 3 and 4 (the buffer 5) before and after the application of the DC pulse.

【0014】さて、後述するように、本発明者の実験に
より明らかになった点であるが、細胞壁を残したままの
状態でも、緩衝液5にDCパルスを印加すると、少なく
とも植物細胞の細胞膜に、微細な小孔があき、この小孔
を介して、細胞外から細胞内へ分子量の大きな物質(例
えば、DNAやDNAのベクター)の導入が可能にな
る。
As will be described later, as has been clarified by the experiments of the present inventor, when a DC pulse is applied to the buffer solution 5 even when the cell wall is left, at least the cell membrane of the plant cell is exposed. Fine pores are formed, and a substance having a large molecular weight (for example, DNA or a DNA vector) can be introduced from outside the cell into the cell through the small pore.

【0015】ここで、この小孔があくということは、細
胞に損傷が起こることに他ならないが、細胞の損傷が過
大でなければ、DCパルスの印加後、細胞の自己修復機
能によって小孔が塞がれて、細胞は生存し続ける。しか
し、DCパルスを強くしてゆくと、ある条件以上では、
細胞の損傷が無視できない程度となり、DCパルスの印
加後に小孔が残ったままの状態となる。その結果、細胞
内の物質が緩衝液5に滲出し、滲出量次第では、細胞が
死に至ることになる。ここで、細胞内の物質が緩衝液5
に滲出すると、緩衝液5の電気化学的特性が変化し、イ
ンピーダンスにも変化があらわれる。
[0015] Here, the formation of the pores is nothing but damage to the cells. However, unless the cells are damaged excessively, the pores are self-repaired by the cells after the application of the DC pulse. Once blocked, the cells continue to survive. However, as the DC pulse is increased, above a certain condition,
Cell damage is not negligible, and the pore remains after application of the DC pulse. As a result, the substance in the cells exudes to the buffer solution 5, and depending on the amount of exudation, the cells die. Here, the substance in the cell is buffer 5
, The electrochemical characteristics of the buffer solution 5 change, and the impedance also changes.

【0016】さて、細胞内にDNAなどを導入しやすく
するには、DCパルスを強くする方が良いが、せっかく
細胞にDNAを導入しても、過大なDCパルスによって
細胞が死滅してしまうのでは、本末転倒になってしま
う。そこで、本形態では、DCパルスの印加前後におい
て、インピーダンス測定手段8を用いて、インピーダン
スの変化を繰り返し計測することにより、細胞が死なな
い範囲において、できるだけ大きなDCパルスを印加で
きる最適な条件を探している。
In order to easily introduce DNA or the like into cells, it is better to use a strong DC pulse. However, even if DNA is introduced into cells, cells may be killed by excessive DC pulses. Then, it will be overturned. Therefore, in the present embodiment, the impedance measurement means 8 is used to repeatedly measure the change in impedance before and after the application of the DC pulse, so as to find the optimum conditions for applying the largest possible DC pulse within a range where the cells do not die. ing.

【0017】以上の前提をふまえた上で、本発明者は、
以下の実験を行った。因みに、DNA自体が細胞に導入
されたかどうかを直接測ることは困難であるので、導入
したDNAから細胞内で合成される酵素の活性、GUS
酵素活性を示す蛍光強度(3試料の平均値)を計測し
た。また、この蛍光強度は、DNAが全く導入できてい
なければゼロとなり、導入されたDNAの量が増える
と、より大きな値となる。
Based on the above assumptions, the present inventor
The following experiment was performed. Incidentally, since it is difficult to directly determine whether or not the DNA itself has been introduced into the cell, the activity of the enzyme synthesized in the cell from the introduced DNA, GUS
The fluorescence intensity indicating the enzyme activity (average value of three samples) was measured. The fluorescence intensity becomes zero if no DNA has been introduced, and becomes larger as the amount of introduced DNA increases.

【0018】(実験1)植物組織6として、ニンジン塊
根切片を用いた。また、導入するDNAは、pBI22
1であり、300μlのHCKMの緩衝液5に40μg
浸漬した。また、パルス回数を5とした。そして、導入
を試みた後、3日間培養し蛍光強度を測定した。なお、
電極3、4には、極性を入れ替えた電圧を2回かけた。
ここで、HCKMとは、10mM HEPES + 5
mM CaCl2 +80mM KCl + 0.42
5mM Mannitol(pH7.2)である。
(Experiment 1) A carrot tube root section was used as the plant tissue 6. The DNA to be introduced is pBI22
1, 40 μg in 300 μl of HCKM buffer 5
Dipped. The number of pulses was set to 5. After attempting the introduction, the cells were cultured for 3 days and the fluorescence intensity was measured. In addition,
The electrodes 3 and 4 were subjected to twice the voltage whose polarity was switched.
Here, HCKM means 10 mM HEPES + 5
mM CaCl2 +80 mM KCl + 0.42
5 mM Mannitol (pH 7.2).

【0019】パルス幅(msec)と電圧(v)をパラ
メータとした結果は、以下の通りである。 パルス幅 80 電圧 50 蛍光強度 11 パルス幅 80 電圧 70 蛍光強度 95 パルス幅 80 電圧 110 蛍光強度 148 パルス幅 80 電圧 150 蛍光強度 37 パルス幅 40 電圧 50 蛍光強度 7 パルス幅 40 電圧 70 蛍光強度 52 パルス幅 40 電圧 110 蛍光強度 85 パルス幅 40 電圧 150 蛍光強度 81
The results using the pulse width (msec) and voltage (v) as parameters are as follows. Pulse width 80 Voltage 50 Fluorescence intensity 11 Pulse width 80 Voltage 70 Fluorescence intensity 95 Pulse width 80 Voltage 110 Fluorescence intensity 148 Pulse width 80 Voltage 150 Fluorescence intensity 37 Pulse width 40 Voltage 50 Fluorescence intensity 7 Pulse width 40 Voltage 70 Fluorescence intensity 52 Pulse width 40 voltage 110 fluorescence intensity 85 pulse width 40 voltage 150 fluorescence intensity 81

【0020】(実験2)植物組織6として、キャベツ葉
切片を用いた。また、導入するDNAは、pBI221
であり、300μlのHCKMの緩衝液5に40μg浸
漬した。また、パルス回数を5とした。そして、導入を
試みた後、3日間培養し蛍光強度を測定した。なお、電
極3、4には、極性を入れ替えた電圧を2回かけた。
(Experiment 2) A cabbage leaf section was used as the plant tissue 6. The DNA to be introduced was pBI221.
And 40 μg was immersed in 300 μl of buffer 5 of HCKM. The number of pulses was set to 5. After attempting the introduction, the cells were cultured for 3 days and the fluorescence intensity was measured. It should be noted that the electrodes 3 and 4 were applied twice with the voltages whose polarities were switched.

【0021】パルス幅(msec)と電圧(v)をパラ
メータとした結果は、以下の通りである。 パルス幅 80 電圧 50 蛍光強度 9 パルス幅 80 電圧 70 蛍光強度 29 パルス幅 80 電圧 110 蛍光強度 53 パルス幅 80 電圧 150 蛍光強度 46 パルス幅 40 電圧 50 蛍光強度 7 パルス幅 40 電圧 70 蛍光強度 12 パルス幅 40 電圧 110 蛍光強度 16 パルス幅 40 電圧 150 蛍光強度 21
The results using the pulse width (msec) and voltage (v) as parameters are as follows. Pulse width 80 Voltage 50 Fluorescence intensity 9 Pulse width 80 Voltage 70 Fluorescence intensity 29 Pulse width 80 Voltage 110 Fluorescence intensity 53 Pulse width 80 Voltage 150 Fluorescence intensity 46 Pulse width 40 Voltage 50 Fluorescence intensity 7 Pulse width 40 Voltage 70 Fluorescence intensity 12 Pulse width 40 voltage 110 fluorescence intensity 16 pulse width 40 voltage 150 fluorescence intensity 21

【0022】(実験3)植物組織6として、ニンジン塊
根切片を用いた。また、導入するDNAは、pBI22
1であり、緩衝液5に40μg浸漬した。また、パルス
回数を5とした。そして、導入を試みた後、3日間培養
し蛍光強度を測定した。なお、電極3、4には、極性を
入れ替えた電圧110(v)をパルス幅80(mse
c)で、2回かけ、日数毎の経時変化を調べた。
(Experiment 3) A carrot tube root section was used as the plant tissue 6. The DNA to be introduced is pBI22
1, which was immersed in Buffer 5 at 40 μg. The number of pulses was set to 5. After attempting the introduction, the cells were cultured for 3 days and the fluorescence intensity was measured. The electrodes 3 and 4 are supplied with a voltage 110 (v) having the reversed polarity and a pulse width of 80 (msec).
In c), the change with time for each number of days was examined twice.

【0023】結果は、以下の通りである。 日数 0 蛍光強度 2.5 日数 1 蛍光強度 7 日数 2 蛍光強度 37 日数 3 蛍光強度 84 日数 4 蛍光強度 92 日数 5 蛍光強度 61The results are as follows. Days 0 Fluorescence intensity 2.5 Days 1 Fluorescence intensity 7 Days 2 Fluorescence intensity 37 Days 3 Fluorescence intensity 84 Days 4 Fluorescence intensity 92 Days 5 Fluorescence intensity 61

【0024】(実験4)植物組織6として、ジャガイモ
塊根切片を用いた。また、導入するDNAは、pBI2
21である。また、パルス回数を5とした。そして、導
入を試みた後、3日間培養し蛍光強度を測定した。な
お、電極3、4には、極性を入れ替えた電圧110
(v)をパルス幅80(msec)で、2回かけ、DN
Aの量(μg)を変化させて蛍光強度を測定した。
(Experiment 4) A potato tuber root section was used as the plant tissue 6. The DNA to be introduced is pBI2
21. The number of pulses was set to 5. After attempting the introduction, the cells were cultured for 3 days and the fluorescence intensity was measured. The electrodes 3 and 4 have a voltage of 110
(V) is applied twice with a pulse width of 80 (msec) and DN
The fluorescence intensity was measured by changing the amount (μg) of A.

【0025】結果は、以下の通りである。 DNA量 10 蛍光強度 6 DNA量 20 蛍光強度 19 DNA量 40 蛍光強度 43 DNA量 80 蛍光強度 96The results are as follows. DNA amount 10 Fluorescence intensity 6 DNA amount 20 Fluorescence intensity 19 DNA amount 40 Fluorescence intensity 43 DNA amount 80 Fluorescence intensity 96

【0026】(実験5)植物組織6として、ペチュニア
茎切片を用いた。導入するDNAは、pBI221であ
り、緩衝液5に40μg浸漬した。また、電極3、4に
は、極性を入れ替えた電圧110(v)をパルス幅80
(msec)で、2回かけ、緩衝液5の種類に対する蛍
光強度の変化を調べた。
(Experiment 5) As the plant tissue 6, a petunia stem section was used. The DNA to be introduced was pBI221, and was immersed in Buffer 5 at 40 μg. The electrodes 3 and 4 are supplied with a voltage 110 (v) whose polarity has been switched and a pulse width of 80.
(Msec), the change in the fluorescence intensity with respect to the type of buffer 5 was examined twice.

【0027】結果は、以下の通りである。 緩衝液 蒸留水 蛍光強度 22 緩衝液 TE 蛍光強度 25 緩衝液 HCMK 蛍光強度 73 緩衝液 HCMK+PEG 蛍光強度 77 緩衝液 TENA 蛍光強度 44The results are as follows. Buffer distilled water Fluorescence intensity 22 Buffer TE fluorescence intensity 25 Buffer HCCM fluorescence intensity 73 Buffer HCCM + PEG fluorescence intensity 77 Buffer TENA fluorescence intensity 44

【0028】但し、 TE : 10mM Tris + 1mM ED
TA(pH8.0) PEG : Polyethylene glyco
l 8000 TENA : 1mM Tris + 25uM ED
TA+ 150mM NaCl
However, TE: 10 mM Tris + 1 mM ED
TA (pH 8.0) PEG: Polyethylene glyco
l 8000 TENA: 1 mM Tris + 25 uM ED
TA + 150 mM NaCl

【0029】以上の実験結果から、与えられた植物組織
6に対して、適切な電圧とパルス幅を組み合わせて選択
することにより、細胞壁を残したままの植物組織6中
に、DNAを導入でき、それが発現して酵素活性が生じ
ることがわかった。また、発現する酵素活性の強さは、
添加するDNAの量と組織の培養時間に依存して増加
し、緩衝液5の種類に、かなり影響されることもわかっ
た。
From the above experimental results, it is possible to introduce DNA into the plant tissue 6 with the cell wall remaining by selecting an appropriate voltage and pulse width in combination with the given plant tissue 6, It was found that it was expressed to produce enzyme activity. Also, the strength of the expressed enzyme activity is
It was also found that the amount increased depending on the amount of DNA to be added and the culture time of the tissue, and was significantly affected by the type of buffer 5.

【0030】即ち、エレクトロポレーション法を改善し
た本発明の方法を用いて、条件を適切に選べば、細胞壁
を残したまま、即ち、植物生体に近い状態において、効
率的にDNA導入を行える。
That is, by using the method of the present invention in which the electroporation method is improved, if the conditions are appropriately selected, DNA can be efficiently introduced while leaving the cell wall, that is, in a state close to a plant organism.

【0031】[0031]

【発明の効果】本発明は、以上のように構成したので、
植物生体に近い形態で、DNA導入を行うことができ
る。
The present invention is configured as described above.
DNA can be introduced in a form similar to a plant organism.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態におけるDNA導入装置
の概念図
FIG. 1 is a conceptual diagram of a DNA introduction device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 キュベット 2 ふた 3、4 電極 5 緩衝液 6 植物組織 7 矩形波印加手段 8 インピーダンス測定手段 REFERENCE SIGNS LIST 1 cuvette 2 lid 3, 4 electrode 5 buffer solution 6 plant tissue 7 rectangular wave applying means 8 impedance measuring means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】細胞壁を残したままの植物組織、器官又は
植物体を、DNA又はDNAのベクターを含ませた緩衝
液に浸漬し、前記緩衝液にDCパルスを印加し前記DN
A又はDNAのベクターを前記植物組織、器官又は植物
体を構成する植物細胞内に導入することを特徴とするエ
レクトロポレーションによるDNA導入方法。
1. A method of immersing a plant tissue, organ or plant body with a cell wall remaining in a buffer containing DNA or a DNA vector, applying a DC pulse to the buffer, and
A method for introducing DNA by electroporation, comprising introducing an A or DNA vector into a plant cell constituting the plant tissue, organ or plant.
【請求項2】前記DCパルスは、パルス幅と電圧が設定
された矩形波であることを特徴とする請求項1記載のエ
レクトロポレーションによるDNA導入方法。
2. The method according to claim 1, wherein the DC pulse is a rectangular wave having a pulse width and a voltage set.
【請求項3】前記DCパルスを印加する前後において、
前記緩衝液のインピーダンスを計測することを特徴とす
る請求項1記載のエレクトロポレーションによるDNA
導入方法。
3. Before and after applying the DC pulse,
2. The DNA according to claim 1, wherein the impedance of the buffer is measured.
Introduction method.
【請求項4】前記植物組織は、ニンジン塊根切片、キャ
ベツ葉切片、ジャガイモ塊根切片又はペチュニア茎切片
のいずれかであることを特徴とする請求項1記載のエレ
クトロポレーションによるDNA導入方法。
4. The method for introducing DNA by electroporation according to claim 1, wherein the plant tissue is any one of a carrot tuber section, a cabbage leaf section, a potato tuber section and a petunia stem section.
JP9286066A 1997-10-01 1997-10-01 Dna transfer by electroporation Pending JPH11103858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9286066A JPH11103858A (en) 1997-10-01 1997-10-01 Dna transfer by electroporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9286066A JPH11103858A (en) 1997-10-01 1997-10-01 Dna transfer by electroporation

Publications (1)

Publication Number Publication Date
JPH11103858A true JPH11103858A (en) 1999-04-20

Family

ID=17699520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286066A Pending JPH11103858A (en) 1997-10-01 1997-10-01 Dna transfer by electroporation

Country Status (1)

Country Link
JP (1) JPH11103858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070875A2 (en) * 2002-02-20 2003-08-28 Amaxa Gmbh Container with at least one electrode
WO2005035755A1 (en) * 2003-10-08 2005-04-21 Kyoto University Method of introducing nucleic acid
US8263756B2 (en) * 2001-04-06 2012-09-11 Chugai Seiyaku Kabushiki Kaisha Method of gene transfer via vascular system or ureter
JP2013198637A (en) * 2012-03-26 2013-10-03 Toshiyuki Moriizumi Power source for electroporator
WO2020075399A1 (en) * 2018-10-12 2020-04-16 国立研究開発法人産業技術総合研究所 Method for introducing protein in nuclei of plant cells

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263756B2 (en) * 2001-04-06 2012-09-11 Chugai Seiyaku Kabushiki Kaisha Method of gene transfer via vascular system or ureter
WO2003070875A2 (en) * 2002-02-20 2003-08-28 Amaxa Gmbh Container with at least one electrode
WO2003070875A3 (en) * 2002-02-20 2004-01-08 Amaxa Gmbh Container with at least one electrode
KR100852288B1 (en) 2002-02-20 2008-08-14 아막사 아게 Container with at least one electrode
US7678564B2 (en) 2002-02-20 2010-03-16 Lonza Cologne Ag Container with at least one electrode
WO2005035755A1 (en) * 2003-10-08 2005-04-21 Kyoto University Method of introducing nucleic acid
JP2013198637A (en) * 2012-03-26 2013-10-03 Toshiyuki Moriizumi Power source for electroporator
WO2020075399A1 (en) * 2018-10-12 2020-04-16 国立研究開発法人産業技術総合研究所 Method for introducing protein in nuclei of plant cells
JPWO2020075399A1 (en) * 2018-10-12 2021-09-09 国立研究開発法人産業技術総合研究所 Method of introducing protein into the nucleus of plant cells

Similar Documents

Publication Publication Date Title
US8465955B2 (en) Method for electroporation of biological cells
Gabriel et al. Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane
Williams et al. A preliminary assessment of poly (pyrrole) in nerve guide studies
Chang Cell poration and cell fusion using an oscillating electric field
Gould-Somero et al. Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo.
Mcneil Incorporation of macromolecules into living cells
Teruel et al. Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells
JP2008545415A (en) Controlled electroporation and mass transfer across cell membranes in tissues
Gillespie The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos.
Tien et al. The bilayer lipid membrane (BLM) under electrical fields
Henriksen et al. Laser microsurgery of higher plant cell walls permits patch-clamp access
ATE214735T1 (en) METHOD FOR PRODUCING GENETIC VECTORS FOR EXPRESSING NERVE GROWTH FACTOR IN EUKARYOTIC CELLS
Miller et al. Ion currents associated with root tips, emerging laterals and induced wound sites in Nicotians tabacum: spatial relationship proposed between resulting electrical fields and phytophthoran zoospore infection
JPH11103858A (en) Dna transfer by electroporation
Beatty et al. FLP site-specific recombinase of yeast 2-μm plasmid: topological features of the reaction
Yaoita et al. Potential-controlled morphological change and lysis of HeLa cells cultured on an electrode surface
Clark Polar transport of auxin and electrical polarity in coleoptile of Avena
van Iterson et al. BASAL BODIES OF BACTERIAL FLAGELLA IN PROTEUS MIRABILIS: I. Electron Microscopy of Sectioned Material
Kurischko et al. 883—Electrofusion of rat and mouse blastomeres
Miller et al. 60 Hz electric field parameters associated with the perturbation of a eukaryotic cell system
Ashman et al. Intercellular electrical coupling at a forming membrane junction in a dividing cell
JPH02131584A (en) Method and device for electrically boring cell
Hyde Differences in electrical potential in developing eggs
Kinosita Jr et al. Submicrosecond imaging under a pulsed-laser fluorescence microscope
Meier Effect of direct current on cells of root tip of Canada field pea