JPH02131442A - Production of trans-1,4-cyclohexanedimethanol and powder thereof - Google Patents

Production of trans-1,4-cyclohexanedimethanol and powder thereof

Info

Publication number
JPH02131442A
JPH02131442A JP8799189A JP8799189A JPH02131442A JP H02131442 A JPH02131442 A JP H02131442A JP 8799189 A JP8799189 A JP 8799189A JP 8799189 A JP8799189 A JP 8799189A JP H02131442 A JPH02131442 A JP H02131442A
Authority
JP
Japan
Prior art keywords
trans
isomer
alkali
cis
chdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8799189A
Other languages
Japanese (ja)
Other versions
JP2537401B2 (en
Inventor
Yoshiaki Tateno
立野 芳明
Susumu Yoneda
進 米田
Naoki Okamoto
岡本 直記
Yoshifumi Ishii
石井 良文
Kazuaki Kato
和昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Towa Chemical Industry Co Ltd
Original Assignee
Towa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Chemical Industry Co Ltd filed Critical Towa Chemical Industry Co Ltd
Priority to US07/375,493 priority Critical patent/US4999090A/en
Priority to DE68919576T priority patent/DE68919576T2/en
Priority to EP89307803A priority patent/EP0353990B1/en
Publication of JPH02131442A publication Critical patent/JPH02131442A/en
Application granted granted Critical
Publication of JP2537401B2 publication Critical patent/JP2537401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain trans-1, 4-cyclohexanedimethanol in high yield by distilling a mixture of cis form and trans form of 1,4-cyclohexanedimethanol in the presence of an alkali or heating in the presence of an alkali and distilling and to obtain readily handleable trans form by powdering the trans form. CONSTITUTION:A mixture of cis form and trans form of 1,4- cyclohexanedimethanol(CHDM) is distilled in the presence of an alkali or heated in the presence of an alkali (preferably at 160-200 deg.C) to prepare a substance having a high content of trans-1, 4-cyclohexanedimethanol, which is distilled to give trans-1, 4-cyclohexanedimethanol. Dried granular trans-1,4- cyclohexanedimethanol powder is readily obtained by kneading 1, 4-CHDM having a high content of trans form while cooling and molding or by cooling, solidifying and opening.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリエステル系塗料、繊維、樹脂などの原料又
は化学中間体として有用なトランス−14−シクロヘキ
サリンメタノール及びその粉末の製造方法に関する. [従来の技術] 1,4−シクロヘキサリンメタノール(以下、1.4−
CHDMと略することがある)の工業的な製造は、通常
の蒸留による方法として、例えcf、1.4−シクロヘ
キサンジカノレボン酸ジメチルエステルを銅クロム触媒
の存在下で水素化した後蒸留して得る方法がある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing trans-14-cyclohexaline methanol and its powder, which is useful as a raw material or chemical intermediate for polyester paints, fibers, resins, etc. [Prior art] 1,4-cyclohexalinemethanol (hereinafter referred to as 1.4-
The industrial production of CHDM (sometimes abbreviated as CHDM) is carried out by a conventional distillation method, for example, by hydrogenating cf, 1,4-cyclohexane dicanoleboic acid dimethyl ester in the presence of a copper chromium catalyst and then distilling it. There is a way to get it.

このようにして得られた1.4−CHDMは、通常トラ
ンス体が約70%及びシス体が約30%から成り、室温
で蝋状又はマスキット状の物質である. このシス体とトランス体の性質を比較すると、高純度の
シス体の融点は室温以下であり、通常は液体として存在
するのに対して、高純度のトランス体の融点は60〜6
4℃であり、室温では固体として存在する. また、その誘導体については、トランス体から製造した
ポリエステル樹脂のほうがガラス点や軟化点が高く、性
質が優れていることが判明している.従って、原料とし
てはトランス−1.4−CHDMが望まれ、その需要増
大が期待されている.このようなトランス−1.4−C
HDMの従来の製造例としては、例えば、下記のような
方法があった. ■ アクタ・ファーマシューテイ力・スウエチ力(Ac
ta Pharmaceutica SuetLca)
 5 ( 5 ) , 4 49−456頁(1968
)に紹介されているような、l,4−CHDMのシス・
トランス混合物をトリメチルシリル化してジグリセロー
ル力ラムでクロマト分離する方法、 ■ ジャーナル・オブ・リキッド・クロマトグラフィ−
 (Journal of Liquid Chrom
atography)  IO (6)1077−10
84頁(1987)に紹介されているような1.4−C
HDMのシス トランス混合物をシクロデキストリン結
合型シリカゲル力ラムを使用してクロマト分離する方法
、■ ジャーナル・オブ・ザ・ケミカル・ソサエティ 
(Journal  of  Chemical  S
ociety>  4  0  4  −  407頁
(1953年)に紹介されているような、1  4−C
HDMのシス・トランス混合物をジベンゾエートにして
結晶性の差を利用して還択的に結晶化してから再度加水
分解してトランス−1.4 − C H D Mを得る
方法. [発明が解決しようとする課題] しかしながら、通常の蒸留を行うことによる工業的生産
により得たものは、トランス体が高純度で留出する量が
極めて少なく、大部分がシス体を約30%程度含有して
いる混合物となる.このように、シス体を約30%含有
している混合物は、その融点が約40゜C前後であり、
そのため取扱上多くの課題を抱えていた。
The 1,4-CHDM thus obtained usually consists of about 70% trans isomer and about 30% cis isomer, and is a waxy or maskite-like substance at room temperature. Comparing the properties of the cis-isomer and trans-isomer, the melting point of the high-purity cis-isomer is below room temperature and usually exists as a liquid, whereas the melting point of the high-purity trans-isomer is 60 to 60%.
4°C, and exists as a solid at room temperature. Regarding its derivatives, it has been found that polyester resins produced from trans-isomers have higher glass points and softening points, and have superior properties. Therefore, trans-1,4-CHDM is desired as a raw material, and demand for it is expected to increase. Such trans-1.4-C
Examples of conventional HDM manufacturing methods include the following. ■ Acta Pharmaceuty Power/Sweat Power (Ac
ta Pharmaceutica SuetLca)
5 (5), 4 pp. 49-456 (1968
) of l,4-CHDM, as introduced in
A method for trimethylsilylation of a trans mixture and chromatographic separation on a diglycerol column, ■ Journal of Liquid Chromatography
(Journal of Liquid Chrom
IO (6) 1077-10
1.4-C as introduced on page 84 (1987)
Chromatographic separation of cis-trans mixtures of HDM using a cyclodextrin-bonded silica gel column, ■ Journal of the Chemical Society
(Journal of Chemical S
14-C, as introduced on page 404-407 (1953)
A method of converting a cis-trans mixture of HDM into a dibenzoate, reductively crystallizing it using the difference in crystallinity, and then hydrolyzing it again to obtain trans-1.4-CHDM. [Problems to be Solved by the Invention] However, in the case of products obtained through industrial production through ordinary distillation, the amount of trans isomer distilled out with high purity is extremely small, and the majority is about 30% of cis isomer. The result is a mixture containing a certain amount of Thus, a mixture containing about 30% cis isomer has a melting point of about 40°C,
Therefore, there were many problems in handling.

例えば、商業的に流通するときには、そのものが蛾状又
はマスキット状であるために高価なドラム容器を必要と
すること、そのものを使用する前には予め50〜60℃
の温度で加熱溶解しておく手間が必要であること、その
加熱・溶解の際に分解や着色が生ずるので用途が限定さ
れてしまうこと、更には加熱・溶解に要する費用がかさ
み、ひいてはこれを原料として製造される品物が高価に
なってしまうことなどの課題があった。
For example, when distributed commercially, it requires an expensive drum container because it is moth-shaped or muskit-shaped, and it must be heated to 50 to 60°C before use.
It takes time and effort to heat and melt at a temperature of There were issues such as the high cost of the products manufactured as raw materials.

また、上記の■〜■で示した従来のトランス1.4−C
HDMの製造方法は、分析学的な方法あるいは実験室的
な方法であって、低収率、高コスト、繁雑な製造操作な
どの課題を抱えており、商業生産に耐えるものではなく
,トランス−1.4−CHDMまたはその粉末の製造方
法として満足し得るものではなかった。
In addition, the conventional transformer 1.4-C shown in ■~■ above
HDM manufacturing methods are analytical or laboratory methods, which have problems such as low yield, high cost, and complicated manufacturing operations, and are not suitable for commercial production. This was not a satisfactory method for producing 1.4-CHDM or its powder.

このような背景から、商業的に有利なトランス1.4−
CHDM及びその粉末の製造方法の開発が強く望まれて
いた。
Against this background, the commercially advantageous transformer 1.4-
There has been a strong desire to develop a method for producing CHDM and its powder.

[課題を解決するための手段コ 本発明者等は、上記課題を解決するために鋭意研究を重
ねた結果、1,4−シクロヘキサリンメタノールのシス
体及びトランス体混合物をアルカリの存在下で蒸留する
こと、又はアルカリの存在下で加熱した後、蒸留するこ
とにより高純度のトランス−1.4−CHDMを高い収
率で得ることに成功し、更に、これを粉末化することに
より極めて取り扱い易いトランス−1.4−CHDM粉
末を得ることに成功し、本発明を完成ずるに至った. 以下に本発明の内容を詳細に説明する.本発明で使用す
る1.4−CHDMはシス体とトランス体の混合物であ
れば良く、製法は問われない. 溶媒は有ってもよく、例えば水、メタノール、エタノー
ルなどが使用でき、1.4−CHDMの濃度は50〜1
00重量%が好適であるが、無溶媒での反応の方が後に
余分な操作を必要としないので好ましい. 本発明で使用可能なアルカリには、例えばナトリウム、
カリウム、リチウム等のアルカリ金属又はアルカリ土類
金属の水酸化物やナトリウムメトキシド、ナトリウムエ
トキシドなどの各種アルコラート、エタノールアミン等
のアミン類などがある. アルカリの使用量は、1.4−CHDMに対して、0.
1〜5重量%が好ましい. なぜなら、アルカリの使用量が0.1重量%未満の場合
にはトランス体の生成量が少なく、5重量%を超えて使
用したときはエーテル結合の重合体を生成するなどの不
都合を生じるので好ましくないからである。
[Means for Solving the Problems] As a result of extensive research in order to solve the above problems, the present inventors have distilled a mixture of cis and trans forms of 1,4-cyclohexaline methanol in the presence of an alkali. We succeeded in obtaining highly pure trans-1,4-CHDM in a high yield by heating it in the presence of an alkali or distilling it, and furthermore, by pulverizing it, it is extremely easy to handle. We succeeded in obtaining trans-1.4-CHDM powder and completed the present invention. The content of the present invention will be explained in detail below. The 1,4-CHDM used in the present invention may be a mixture of cis and trans forms, and the manufacturing method is not critical. A solvent may be used, for example, water, methanol, ethanol, etc., and the concentration of 1.4-CHDM is 50 to 1
00% by weight is preferable, but reaction without a solvent is preferable since no extra operations are required afterwards. The alkali that can be used in the present invention includes, for example, sodium,
These include hydroxides of alkali metals or alkaline earth metals such as potassium and lithium, various alcoholates such as sodium methoxide and sodium ethoxide, and amines such as ethanolamine. The amount of alkali used is 0.4-CHDM.
1 to 5% by weight is preferred. This is because if the amount of alkali used is less than 0.1% by weight, the amount of trans isomer produced is small, and if it is used in excess of 5% by weight, problems such as the formation of a polymer with ether bonds occur, so it is preferable. That's because there isn't.

アルカリを添加する形態は、アルカリを粉末状にして添
加することもできるが、アルカリの1.4−CHDMに
対する溶解度が一般に低いので少量の水又は有機溶媒に
溶解して添加するか、スはアルコラートなどの液状の形
で添加することが好ましい. アルカリを添加する時期は、蒸留する前に予め添加して
おき蒸留することも、加熱後に蒸留することも、蒸留中
に添加することもできる.アルカリを蒸留の途中で添加
するときは、トランス体の比率の高い留分が留出した後
にアルカリを添加して更にトランス体を生成させながら
蒸留することもできる. 一方、アルカリを蒸留前に添加して加熱する場合、設定
条件は次のようにする. 加熱温度 150〜250℃更に好ましくは160〜200℃とす
る. 温度150℃未溝のときはトランス体の生成景が最大に
達するまでの反応時間が長いので好ましくなく、250
℃を超えて実施したときはエーテル結合の副生成物量が
増加するなどの不都合があるので好ましくない. 時間 温度とアルカリの添加量や種類により異なるが、例えば
160”Cでアルカリ添加量が2重量%の場合には1時
間程度で、200℃でアルカリの添加量が0 5%の時
には30分間程度とすることで、トランス体の生成量が
頂点に達する. また、蒸留条件としては、温度150℃〜200℃、減
圧度1〜5 0 m m H g程度が好ましい.なぜ
なら、この範囲を外れても本発明を実施することはでき
るが、減圧度1mmHg未満の場合は工業的に設備や動
力に高い費用を要することから不利であり、50mmH
gを超えて実施した場合は蒸留温度が高くなり過ぎてし
まうため、異性化は進むが、分解反応やエーテル化反応
が派生し好ましくないからである。
The alkali can be added in the form of powder, but since the solubility of alkali in 1,4-CHDM is generally low, it is added after being dissolved in a small amount of water or an organic solvent, or the alkali is added in the form of an alcoholate. It is preferable to add it in liquid form. The alkali can be added in advance before distillation, after heating, or during distillation. When adding an alkali during distillation, it is also possible to add the alkali after a fraction with a high proportion of trans isomers has been distilled out and distill while producing more trans isomers. On the other hand, if alkali is added and heated before distillation, set conditions are as follows. The heating temperature is 150 to 250°C, more preferably 160 to 200°C. When the temperature is 150℃, it is not preferable because the reaction time until the formation of trans isomer reaches the maximum is unfavorable.
It is not preferable to carry out the test at temperatures exceeding ℃ because there are disadvantages such as an increase in the amount of by-products of ether bonds. Time varies depending on the temperature and the amount and type of alkali added, but for example, if the amount of alkali added is 2% by weight at 160"C, it will take about 1 hour, and if the amount of alkali added is 0.5% at 200"C, it will take about 30 minutes. By doing this, the amount of trans isomer produced reaches its peak. Also, as the distillation conditions, it is preferable to have a temperature of 150°C to 200°C and a degree of vacuum of 1 to 50 mm Hg. However, if the degree of pressure reduction is less than 1 mmHg, it is disadvantageous because it requires high costs for industrial equipment and power;
This is because if the distillation temperature is exceeded, the distillation temperature will become too high, and although isomerization will proceed, decomposition reactions and etherification reactions will occur, which is undesirable.

例えば、1,4−シクロヘキサンジカルボン酸ジメチル
エステルを銅クロム触媒の存在下で還元した後、1.4
−CHDMを主成分とする反応物を得た場合、通常トラ
ンス体を70%程度含有するが、これを水酸化ナトリウ
ム0.5重量%(対上記反応物重量)の存在下で180
℃に加熱し約60分間保持することにより、シス体をト
ランス体へと異性化することでトランス体の含有量を8
5%程度に上昇させることができる. しかし、この異性化だけではトランス体の含有量が、8
0%程度と低い割合に留まる場合もあるので、次いで蒸
留操作を行うが、これにより、トランス体の含有量が8
5%以上のものを、少なくとも90%程度の含有量で得
ることができる.一方、蒸留する際にアルカリを添加し
た場合には、1.4−CHDMを主成分とする反応物か
ら純度95%以上のトランス体を反応物に対して収率9
5重量%程度で得ることができる.なお、蒸留の方法は
回分式でも連続式でも可能であるが、トランス体とシス
体との微妙な差を区別してトランス体を多く含有した留
分を得るには理論段数が大きい方が好ましく、少なくと
も理論段数10〜20段の蒸留条件が好ましい.このよ
うにして得られるトランス体の含有量がおよそ85%以
上であるトランス体高含有1.4−CHDMの融点は、
トランス体の含有量によって変化するが概ね60℃前後
である. 従って、トランス体高含有1.4−CHDMは冷却する
ことによって比較的硬い固形物を形成するので、冷却し
ながら混練した後成形する方法や冷却固化した後切削す
る方法などを採用することによって容易に、サラサラし
た粒状のトランス=1.4−CHDM粉末を得ることが
できる.このトランス−1.4−CHDM又はトランス
−l,4−CHDM粉末を用いることにより、ガラス点
が高く、性質の優れたポリエステル樹脂などの誘導体を
製造することが可能になり、ひいては1.4−CHDM
やそれを用いて製造した誘導体の用途範囲を拡大するこ
とになる. 例えば、トランス体含有量が80%以上の1.4−CH
DM、更に好ましくはトランス体含有量が90%以上の
1.4−CHDMをグリコール成分として50〜97モ
ル%含有し、他のグリコール成分としてエチレングリコ
ールを3〜50モル%含有したものと、テレフタル酸等
のジカルボン酸成分とを反応させて得られるポリエステ
ル共重合体は、従来品、即ちトランス体含有量が80%
未満の1.4−CHDMを用いて同様に反応させて製造
したものに較べて、著しく耐熱性が向上したものになる
のである. 更に、上記ポリエステル共重合体を製造する際に、所望
により繊維状強化剤や難燃剤、着色防止剤、制電剤、耐
熱剤、耐候剤などの各種改良剤を添加することによって
一層各種性質を強化することも可能である. 従って、本発明の方法により得られたトランス−1.4
−CHDM又はトランス−1.4−CHDM粉末を用い
ることにより、また、それに各種改良削を添加して用い
ることにより、耐熱、耐火、耐候、耐変形、制電等の各
種効果に優れたポリエステル樹脂などの誘導体を製造す
ることも可能になる. し実施例] 以下、本発明の実施例を詳細に説明する.1 4−CH
DMの 1.4−シクロヘキサンジカルボン酸ジメチルエステル
250kgと銅クロム触媒[C−5.1化学■製] 2
5kgを550リットル容オートクレープに入れ、26
0℃で攪拌し、水素の吸収が終了した後ろ過して触媒を
除去し、得られたろ液を蒸留して、原料■及び原料■を
得た.原料■及び原料■をガスクロマトグラフ法にて分
析した結果、原料■は、シス体が45%でトランス体が
55%であり、原料■は、シス体が26%でトランス体
が74%であった. また、原料■はモチ状で粉砕不可能であり、原1%,ト
ランス体96.9%であった.料■は軟化点が約40℃
でベトついた固体状く蝋状)であって、粉砕は不可能で
あった.夾1』1二よ 50gの原料■と濃度50%の水酸化ナトリウム水溶液
2gとを混合し、100mlのナス形フラスコに入れ、
攪拌しながらオイル浴で180℃、30分間加熱した後
室温まで冷却し、トランス−1.4−シクロヘキサリン
メタノール高含有物である物質Aを得た. 該物質Aをガスクロマトグラフ法により分析した結果、
組成は、シス体15.4%、トランス体84.6%であ
った. 次に、物質Aを、理論段数20段、減圧度10mmHg
、留出温度152〜163℃の条件で蒸留することによ
り、30gの留分Aaを得た.該留分Aaを分析した結
果、組成はシス体3.夾1』1二2 50gの原料■と濃度50%の水酸化ナトリウム水溶液
0.2gとを混合し、100mlのナス形フラスコに入
れ、攪拌しながらオイル浴で200℃、3時間加熱した
後室温まで冷却し、トランス−1,4−シクロヘキサリ
ンメタノール高含有物である物質Bを得た. 該物質Bを分析した結果、組成は、シス体17.7%、
トランス体82.3%であった.次に、物質Bを、減圧
度4 0 mmHg、留出温度185〜188℃に変え
た以外は実施例−1で示した条件と同条件で蒸留するこ
とにより、30gの留分Baを得た. 該留分Baを分析した結果、組成は、シス体3.9%.
トランス体96.1%であった。
For example, after reducing 1,4-cyclohexanedicarboxylic acid dimethyl ester in the presence of a copper chromium catalyst, 1.4
- When a reaction product containing CHDM as a main component is obtained, it usually contains about 70% trans isomer, but it is mixed with 180% by weight of sodium hydroxide in the presence of 0.5% by weight (based on the weight of the above reactant)
By heating to ℃ and holding for about 60 minutes, the content of trans isomer is reduced to 8 by isomerizing the cis isomer to trans isomer.
It can be increased to about 5%. However, with this isomerization alone, the content of trans isomer is 8
In some cases, the proportion remains as low as around 0%, so a distillation operation is then performed, which reduces the trans isomer content to 8%.
5% or more, it is possible to obtain a content of at least about 90%. On the other hand, when an alkali is added during distillation, a trans isomer with a purity of 95% or more is obtained from a reactant containing 1.4-CHDM at a yield of 9.
It can be obtained at about 5% by weight. Note that the distillation method can be either batchwise or continuous, but in order to differentiate the subtle differences between trans and cis isomers and obtain a fraction containing a large amount of trans isomers, it is preferable to have a large number of theoretical plates. Distillation conditions with at least 10 to 20 theoretical plates are preferred. The melting point of 1.4-CHDM with a high trans isomer content of about 85% or more obtained in this way is:
Although it varies depending on the content of trans isomer, it is generally around 60°C. Therefore, since 1.4-CHDM with a high trans isomer content forms a relatively hard solid by cooling, it can be easily processed by using methods such as kneading while cooling and then molding, or cutting after cooling and solidifying. , it is possible to obtain smooth granular trans=1.4-CHDM powder. By using this trans-1.4-CHDM or trans-1,4-CHDM powder, it is possible to produce derivatives such as polyester resins with high glass points and excellent properties, and even 1.4- CHDM
This will expand the range of applications for this material and the derivatives produced using it. For example, 1.4-CH with a trans isomer content of 80% or more
DM, more preferably 1.4-CHDM with a trans isomer content of 90% or more, containing 50 to 97 mol% as a glycol component, and 3 to 50 mol% of ethylene glycol as another glycol component, and terephthal. The polyester copolymer obtained by reacting with a dicarboxylic acid component such as an acid is a conventional product, that is, the trans isomer content is 80%.
Compared to products produced in the same manner using less than 1.4-CHDM, the heat resistance is significantly improved. Furthermore, when producing the above polyester copolymer, various properties can be further improved by adding various improving agents such as fibrous reinforcing agents, flame retardants, anti-coloring agents, antistatic agents, heat resistant agents, and weathering agents, if desired. It is also possible to strengthen it. Therefore, trans-1.4 obtained by the method of the present invention
- Polyester resin with excellent heat resistance, fire resistance, weather resistance, deformation resistance, anti-static properties, etc. by using CHDM or trans-1.4-CHDM powder or by adding various types of improved cutting to it. It is also possible to produce derivatives such as Examples] Examples of the present invention will be described in detail below. 1 4-CH
250 kg of DM's 1,4-cyclohexanedicarboxylic acid dimethyl ester and copper chromium catalyst [manufactured by C-5.1 Chemical Company] 2
Put 5 kg into a 550 liter autoclave,
The mixture was stirred at 0°C, and after hydrogen absorption was completed, it was filtered to remove the catalyst, and the resulting filtrate was distilled to obtain raw materials (1) and (2). As a result of analyzing raw material (■) and raw material (2) by gas chromatography, it was found that raw material (■) contained 45% cis form and 55% trans form, and raw material (2) contained 26% cis form and 74% trans form. Ta. In addition, raw material (2) was chewy and could not be crushed, and contained 1% raw material and 96.9% trans form. The softening point of material ■ is approximately 40℃.
It was a sticky solid (waxy) and could not be crushed. Mix 50g of raw material ■ with 2g of 50% sodium hydroxide aqueous solution and put it in a 100ml eggplant-shaped flask.
The mixture was heated in an oil bath at 180° C. for 30 minutes with stirring, and then cooled to room temperature to obtain Substance A containing a high content of trans-1,4-cyclohexalinemethanol. As a result of analyzing the substance A by gas chromatography,
The composition was 15.4% cis isomer and 84.6% trans isomer. Next, substance A was prepared using 20 theoretical plates and a reduced pressure of 10 mmHg.
, 30 g of fraction Aa was obtained by distilling at a distillation temperature of 152 to 163°C. As a result of analyzing the fraction Aa, the composition was found to be cis isomer 3. Mix 50g of raw material ■ and 0.2g of 50% sodium hydroxide aqueous solution, put into a 100ml eggplant-shaped flask, heat in an oil bath at 200℃ for 3 hours with stirring, and then cool to room temperature. The mixture was cooled to a temperature of 100.degree. C. to obtain Substance B containing a high content of trans-1,4-cyclohexalinemethanol. As a result of analyzing the substance B, the composition was found to be 17.7% cis-isomer;
The trans isomer content was 82.3%. Next, substance B was distilled under the same conditions as those shown in Example 1, except that the degree of vacuum was changed to 40 mmHg and the distillation temperature was changed to 185 to 188°C, to obtain 30 g of fraction Ba. .. As a result of analyzing the fraction Ba, the composition was found to be 3.9% of the cis isomer.
It was 96.1% trans isomer.

夾1』(二1 50gの原料■と濃度20%の水酸化ナトリウム水溶液
1.0gとを混合し、100mlのナス形フラスコに入
れ、攪拌しながらオイル浴で160℃、2時間加熱した
後室温まで冷却し、トランス−1.4−シクロヘキサリ
ンメタノール高含有物である物質Cを得た. 該物質Cを分析した結果、組成は、シス体16.3%、
トランス体83.7%であった.次に、物質Cを、理論
段数10段に変えた以外は実施例−1で示した条件と同
条件で蒸留することにより、30gの留分Caを得た. 該留分Caを分析した結果、組成は、シス体90%,ト
ランス体91.0%であった.夾m二A 50gの原料■と濃度100%のナトリウムメチラー}
0.5gとを混合し、100mlのナス形フラスコに入
れ、攪拌しながらオイル浴で180℃、1時閏加熱した
後室温まで冷却し、トランス−1.4−シクロヘキサリ
ンメタノール高含有物である物質Dを得た. 該物質Dを分析した結果、組成は、シス体14.8%、
トランス体85.2%であった.次に、物質Dを、理論
段数10段に変えた以外は実施例−2で示した条件と同
条件で蒸留することにより、30gの留分Daを得た. 該留分Daを分析した結果、組成は、シス体8.6%,
トランス体91.4%であった.夾ILL二五 3kgの原料■を5リットルのフラスコに入れ、理論段
数20段の精留塔(直径30mm,長さ1m、ラシヒリ
ング入り)で減圧度10mmHg、留出温度152〜1
63℃で蒸留し、0.72kgの留分Eaと2.OOk
gの留分Ebとに分けた. 留分Eaの組成は、シス体が3.4%でトランス体が9
6,6%であった. 一方、留分Ebの組成は、シス体が33.2%でトラン
ス体が66.8%であった. 次に、2kgの留分Ebと50%水酸化ナトリウム水溶
液80gを攪拌機付きの3リットルのフラスコに入れ、
徐々に温度を上げて180゜Cで30分間加熱した後室
温まで冷却し、アルカリと同当量の塩酸で中和し、物質
Fを得た. その後、物質Fを分析した結果、シス体15.8%、ト
ランス体84.2%の組成であった.さらに、この物質
Fを5リットルのフラスコに入れ、上記と同様に蒸留し
、0.64kgの留分Gaと1.10kgの留分Gbと
を得た.留分Gaの組成は、シス体2.2%でトランス
体97.8%であった. 一方、留分Gbの組成は、シス体22.2%でトランス
体77.8%であった, 火JJL二J, 3kgの原料■と濃度50%水酸化ナトリウム水溶液6
0gを5リットルのフラスコに入れ、理論段数20段の
蒸留塔(直径30mm,長さ1m、ラシしリング入り)
で減圧度10mmHg、留出温度153〜162℃で蒸
留し、0.6kgの留分Ha.0.8kgの留分Hb,
1.2kgの留分Hcを得た. 留分Haの組成は、シス体3.6%,トランス体96.
4%で、留分Hbの組成は、シス体24%.トランス体
97.6%で、留分Hcの組成は、シス体2.2%,ト
ランス体97.8%であった. 犬JLLニヱ 800gの原料■にナトリウムメチラート16gを加え
、理論段数20Pi(直径30mm、長さlm,ラシヒ
リング入り》減圧度40mmHg、留出温度185〜1
88℃で蒸留し.500gの留分Jを得た。
Mix 50g of raw material ■ and 1.0g of a 20% sodium hydroxide aqueous solution, put into a 100ml eggplant-shaped flask, heat in an oil bath at 160°C for 2 hours with stirring, and then cool to room temperature. The substance C was cooled to a high content of trans-1,4-cyclohexalinemethanol.As a result of analyzing the substance C, the composition was 16.3% of the cis isomer,
The trans isomer content was 83.7%. Next, Substance C was distilled under the same conditions as in Example 1, except that the number of theoretical plates was changed to 10, to obtain 30 g of fraction Ca. As a result of analyzing the Ca fraction, the composition was 90% cis isomer and 91.0% trans isomer.夾m2A 50g of raw materials ■ and 100% concentration sodium methyler}
0.5 g of trans-1,4-cyclohexaline was mixed, placed in a 100 ml eggplant-shaped flask, heated in an oil bath for 1 hour at 180°C while stirring, and then cooled to room temperature. Substance D was obtained. As a result of analyzing the substance D, the composition was 14.8% cis-isomer;
The trans isomer content was 85.2%. Next, Substance D was distilled under the same conditions as in Example 2, except that the number of theoretical plates was changed to 10, to obtain 30 g of fraction Da. As a result of analyzing the fraction Da, the composition was 8.6% cis isomer,
It was 91.4% trans isomer. ILL 25 3 kg of raw material ■ was put into a 5 liter flask, and a rectification column with 20 theoretical plates (30 mm in diameter, 1 m in length, with a Raschig ring) was used to reduce the pressure to 10 mmHg and distill the temperature to 152 to 1.
Distilled at 63°C, 0.72 kg of fraction Ea and 2. OOk
It was divided into a fraction Eb and a fraction Eb. The composition of fraction Ea is 3.4% cis isomer and 9% trans isomer.
It was 6.6%. On the other hand, the composition of fraction Eb was 33.2% cis-isomer and 66.8% trans-isomer. Next, 2 kg of fraction Eb and 80 g of 50% sodium hydroxide aqueous solution were placed in a 3 liter flask equipped with a stirrer.
The temperature was gradually raised to 180°C for 30 minutes, then cooled to room temperature and neutralized with hydrochloric acid in the same amount as the alkali to obtain Substance F. Thereafter, substance F was analyzed and found to have a composition of 15.8% cis isomer and 84.2% trans isomer. Further, this substance F was put into a 5 liter flask and distilled in the same manner as above to obtain 0.64 kg of fraction Ga and 1.10 kg of fraction Gb. The composition of the fraction Ga was 2.2% cis isomer and 97.8% trans isomer. On the other hand, the composition of fraction Gb was 22.2% cis isomer and 77.8% trans isomer.
Put 0g into a 5 liter flask and add a distillation column with 20 theoretical plates (30 mm in diameter, 1 m in length, with a rasp ring)
Distillation was carried out at a reduced pressure of 10 mmHg and a distillation temperature of 153 to 162°C, and 0.6 kg of fraction Ha. 0.8 kg of distillate Hb,
1.2 kg of fraction Hc was obtained. The composition of the fraction Ha is 3.6% cis isomer and 96% trans isomer.
4%, the composition of the fraction Hb is 24% cis isomer. The composition of the fraction Hc was 2.2% cis-isomer and 97.8% trans-isomer. Add 16 g of sodium methylate to 800 g of Inu JLL Nie raw material ■, and prepare a theoretical plate number of 20 Pi (diameter 30 mm, length 1 m, with Raschig ring), degree of vacuum 40 mm Hg, distillation temperature 185-1
Distilled at 88°C. 500 g of fraction J was obtained.

該留分Jを、ガスクロマトグラフ法で分析した結果、組
成は、トランス体が96.4%であり、シス体が3.6
%であった. 更に、留分Jを70℃でステンレス製バットに流し込み
、一夜放で後、フローズンカッター[FZ型、湘南産業
■製]でカッティングを行い、取扱の容易な、白色のト
ランス−1  4−CHDM扮末を得た。
As a result of analyzing this fraction J by gas chromatography, the composition was 96.4% trans isomer and 3.6% cis isomer.
%Met. Furthermore, distillate J was poured into a stainless steel vat at 70°C, left overnight, and then cut with a frozen cutter [Model FZ, manufactured by Shonan Sangyo ■] to obtain a white trans-1 4-CHDM material that is easy to handle. I got the end.

このものの融点は62℃であった。The melting point of this product was 62°C.

ul 800gの原料■と水酸化ナトリウム8gとを1リット
ルのステンレス製オートクレープに入れ、180℃で2
時間加熱した. 冷却後、実施例−7と同様に蒸留し、留分Kを得た. 該留分Kを型に流し込んで、冷却固化し、粉砕した. このものの分析結果は、トランス体96 8%、シス体
3.2%、融点62℃で取扱の容易な白色粉末であった
. 犬1』1ニダ 800gの原料■とナトリウムアルコラート6gとを理
論段数10段(直径30mm,長さ0,5m、ラシヒリ
ング入り)の蒸留塔に入れ、減圧度40mmHg、留出
温度185〜188℃で蒸留し、500gの留分Lを得
た. 該留分Lをジャケット付二一グー[卓上型二ダー、PN
V−1型、入江商会四製]で10分間混練りした後、一
夜放置してフローズンカッターで粉砕し、白色の取扱の
容易なトランス−14−CHDM粉末を得た. このものの分析結果は、トランス体90.3%、シス体
9.7%の組成を有し、融点は58゜Cであった。
Put 800g of raw material ■ and 8g of sodium hydroxide into a 1 liter stainless steel autoclave and heat at 180℃ for 2 hours.
Heated for an hour. After cooling, distillation was carried out in the same manner as in Example 7 to obtain fraction K. The fraction K was poured into a mold, solidified by cooling, and pulverized. Analysis of this product revealed that it was a white powder that contained 968% trans isomer and 3.2% cis isomer, with a melting point of 62°C and was easy to handle. Inu 1'' 800 g of raw material ■ and 6 g of sodium alcoholate were placed in a distillation column with 10 theoretical plates (30 mm in diameter, 0.5 m in length, with a Raschig ring), and the pressure was reduced to 40 mmHg and the distillation temperature was 185 to 188°C. Distillation was performed to obtain 500 g of fraction L. The fraction L is transferred to a jacketed 21-goo [desktop type 2-dah, PN
V-1 model, manufactured by Irie Shokai 4] for 10 minutes, left overnight and pulverized with a frozen cutter to obtain white easily handled trans-14-CHDM powder. Analysis of this product revealed that it had a composition of 90.3% trans isomer and 9.7% cis isomer, and had a melting point of 58°C.

犬』1舛二二L旦 800gの原料■とナトリウムアルコラート5gとを理
論段数10段(直径30mm、長さ0.5m、ラシヒリ
ング入り)の蒸留塔に入れ、減圧度40mmHg,留出
温度185〜188℃で蒸留し、500gの留分Mを得
た. 該留分Mをジャケット付二一グーで10分間混練した後
、1時間放置してベレッター[EXD−100型、不二
パウダル■製コで直径3mm,長さ10〜50mmに成
形し、白色のトランス−1.4−CHDMペレットを得
た.このものの分析結果は、トランス体96 8%、シ
ス体3.2%の組成を有し、融点は62℃であった. [発明の効果] 上記したように、本発明により、トランス−14−CH
DMを効率良く、かつ経済的に製造することが可能にな
る. また、本発明により、室温で固形状であり、取扱が容易
で、特別な収納容器を必要とせず、安価な容器に収納可
能な粉状のトランス−1.4−CHDMを、商業的に有
利に製造できる.また、本発明により得られたトランス
−1.4− C H D M又はその粉末を用いること
により、また、それに各種改良剤を添加して用いること
により、耐熱、耐火、耐候、耐変形、訓電等の各種効果
に優れたポリエステル樹脂などの誘導体を製造すること
が可能になり、ひいては、1.4−CHDMの用途を拡
大することもできる. 特許出願人 東和化成工業株式会社
800 g of raw material (1) and 5 g of sodium alcoholate were placed in a distillation column with 10 theoretical plates (30 mm in diameter, 0.5 m in length, with a Raschig ring), the degree of vacuum was 40 mmHg, and the distillation temperature was 185 ~ Distilled at 188°C to obtain 500g of fraction M. The fraction M was kneaded for 10 minutes in a jacketed 21-glue, left for 1 hour, and then molded using a Beretter [Model EXD-100, manufactured by Fuji Paudal Co., Ltd.] to a diameter of 3 mm and a length of 10 to 50 mm. Trans-1.4-CHDM pellets were obtained. Analysis of this product revealed that it had a composition of 968% trans isomer and 3.2% cis isomer, and had a melting point of 62°C. [Effect of the invention] As described above, according to the present invention, trans-14-CH
It becomes possible to manufacture DM efficiently and economically. In addition, the present invention provides a commercially advantageous powder form of trans-1.4-CHDM that is solid at room temperature, easy to handle, does not require a special storage container, and can be stored in an inexpensive container. It can be manufactured to Furthermore, by using the trans-1.4-C HDM obtained by the present invention or its powder, and by adding various improving agents thereto, it is possible to improve heat resistance, fire resistance, weather resistance, deformation resistance, and training. It becomes possible to produce derivatives such as polyester resins that have excellent effects such as electrical properties, and in turn, it is possible to expand the uses of 1,4-CHDM. Patent applicant: Towa Kasei Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1 1,4−シクロヘキサリンメタノールのシス体及び
トランス体混合物を、アルカリの存在下で蒸留すること
を特徴とする、トランス−1,4−シクロヘキサリンメ
タノールの製造方法。 2 1,4−シクロヘキサリンメタノールのシス体及び
トランス体混合物を、アルカリの存在下で加熱してトラ
ンス−1,4−シクロヘキサリンメタノール高含有物を
調製した後、蒸留することを特徴とする、トランス−1
,4−シクロヘキサリンメタノールの製造方法。 3 1,4−シクロヘキサリンメタノールのシス体及び
トランス体混合物を、アルカリの存在下で蒸留し、トラ
ンス−1,4−シクロヘキサリンメタノール高含有物を
調製した後、粉末化することを特徴とする、トランス−
1,4−シクロヘキサリンメタノール粉末の製造方法。 4 1,4−シクロヘキサリンメタノールのシス体及び
トランス体混合物を、アルカリの存在下で加熱してトラ
ンス−1,4−シクロヘキサリンメタノール高含有物を
調製した後、蒸留し、更に粉末化することを特徴とする
、トランス−1,4−シクロヘキサリンメタノール粉末
の製造方法。
[Scope of Claims] 1. A method for producing trans-1,4-cyclohexaline methanol, which comprises distilling a mixture of cis and trans forms of 1,4-cyclohexaline methanol in the presence of an alkali. 2 A mixture of the cis and trans forms of 1,4-cyclohexaline methanol is heated in the presence of an alkali to prepare a product with a high content of trans-1,4-cyclohexaline methanol, and then distilled. transformer-1
, 4-cyclohexalinemethanol manufacturing method. 3 A mixture of cis and trans 1,4-cyclohexaline methanol is distilled in the presence of an alkali to prepare a product with a high content of trans-1,4-cyclohexaline methanol, and then powdered. , trans-
A method for producing 1,4-cyclohexaline methanol powder. 4. Heating a mixture of cis and trans 1,4-cyclohexaline methanol in the presence of an alkali to prepare a product with a high content of trans-1,4-cyclohexaline methanol, followed by distillation and further pulverization. A method for producing trans-1,4-cyclohexaline methanol powder, characterized by:
JP1087991A 1988-04-10 1989-04-10 Process for producing trans-1,4-cyclohexanedimethanol and powder thereof Expired - Lifetime JP2537401B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/375,493 US4999090A (en) 1988-04-10 1989-07-05 Process for preparing trans-1,4-cyclohexanedimethanol and powder of the same
DE68919576T DE68919576T2 (en) 1988-08-01 1989-08-01 Manufacturing process of trans-1,4-cyclohexanedimethanol.
EP89307803A EP0353990B1 (en) 1988-08-01 1989-08-01 Process for preparing trans-1, 4 cyclohexanedimethanol

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-190726 1988-08-01
JP19072688 1988-08-01
JP32781188 1988-12-27
JP63-327811 1988-12-27

Publications (2)

Publication Number Publication Date
JPH02131442A true JPH02131442A (en) 1990-05-21
JP2537401B2 JP2537401B2 (en) 1996-09-25

Family

ID=26506267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087991A Expired - Lifetime JP2537401B2 (en) 1988-04-10 1989-04-10 Process for producing trans-1,4-cyclohexanedimethanol and powder thereof

Country Status (1)

Country Link
JP (1) JP2537401B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535222A (en) * 2007-07-30 2010-11-18 ダウ グローバル テクノロジーズ インコーポレイティド Method for purifying C6-C16 aliphatic diol
JP2021506970A (en) * 2017-12-22 2021-02-22 ハンファ ソリューションズ コーポレーション A method for producing cyclohexanedimethanol having a high trans content and cyclohexanedimethanol produced thereby.
CN116099221A (en) * 2023-02-21 2023-05-12 江苏虹港石化有限公司 1, 4-cyclohexanedimethanol purification device and purification method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4982090B2 (en) * 2006-02-16 2012-07-25 リケンテクノス株式会社 Extruded sheet
JP5166706B2 (en) * 2006-06-26 2013-03-21 リケンテクノス株式会社 Resin composition and sheet using the same
JP5230082B2 (en) * 2006-06-26 2013-07-10 リケンテクノス株式会社 Laminated decorative sheet
JP2008093827A (en) * 2006-10-05 2008-04-24 Riken Technos Corp Three-dimensional processing decorative sheet
US8476376B2 (en) * 2010-03-11 2013-07-02 Evonik Degussa Gmbh Heat-curing powder-lacquer compositions yielding a matte surface after curing of the coating, as well as a simple method for production of same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535222A (en) * 2007-07-30 2010-11-18 ダウ グローバル テクノロジーズ インコーポレイティド Method for purifying C6-C16 aliphatic diol
JP2021506970A (en) * 2017-12-22 2021-02-22 ハンファ ソリューションズ コーポレーション A method for producing cyclohexanedimethanol having a high trans content and cyclohexanedimethanol produced thereby.
CN116099221A (en) * 2023-02-21 2023-05-12 江苏虹港石化有限公司 1, 4-cyclohexanedimethanol purification device and purification method
CN116099221B (en) * 2023-02-21 2023-10-17 江苏虹港石化有限公司 1, 4-cyclohexanedimethanol purification device and purification method

Also Published As

Publication number Publication date
JP2537401B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
EP0353990B1 (en) Process for preparing trans-1, 4 cyclohexanedimethanol
NO176093B (en) Reactive compounds containing perfluorovinyl groups, and the use of such compounds
CN111187148B (en) Method for simultaneously preparing o-hydroxy phenetole and 1, 3-benzodioxole-2-one
CN106045858A (en) Method for preparing dimethyl terephthalate from waste PETG film through normal-pressure alcoholysis
JPH02131442A (en) Production of trans-1,4-cyclohexanedimethanol and powder thereof
JP5581324B2 (en) Process for producing N, N-dialkyllactamides
CN110563692A (en) Method for preparing galaxolide musk by using superfine aluminum trichloride as catalyst
JPH05378B2 (en)
JP6372771B2 (en) Process for producing trans-cyclohexanedicarboxylate bis (2-hydroxyalkyl)
WO1996010554A1 (en) Processes for the preparation of cyclopropanecarboxylic acid and derivatives thereof
JP3022935B2 (en) Trans-1,4-cyclohexanedimethanol tetrahydrate crystal, and method for producing the tetrahydrate crystal or anhydride
JP2009126854A (en) Method for producing dimethyl trans-1,4-cyclohexanedicarboxylate
CN104030922A (en) Method for preparing dimethyl n-butyl malonate
JP6135020B2 (en) Method for producing perfluoroalkenyloxy group-containing vinyl compound
JPS6078941A (en) Production of alpha-fluoroacrylic acid ester
JPH0669991B2 (en) Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine
CN110204428A (en) A kind of preparation method of veratrole
CN114292163B (en) Method for preparing isopulegol from citronellal
CN113214059B (en) Preparation method of raspberry ketone
TW202000636A (en) Process for preparing bis(2-hydroxyethyl) terephthalate
JP4444443B2 (en) Method for recovering valuable components from polyester waste
JPS60330B2 (en) Method for producing cyclopentanone
CN109705084A (en) A kind of method of industrialized production glycerin shrinkage benzaldehyde
WO2018078961A1 (en) Production method for trans-bis(2-hydroxyalkyl) cyclohexanedicarboxylate, and bis(2-hydroxyalkyl) cyclohexanedicarboxylate
JPS6141507B2 (en)