JPH02131302A - Carrier employing movable magnet type linear motor - Google Patents

Carrier employing movable magnet type linear motor

Info

Publication number
JPH02131302A
JPH02131302A JP63280113A JP28011388A JPH02131302A JP H02131302 A JPH02131302 A JP H02131302A JP 63280113 A JP63280113 A JP 63280113A JP 28011388 A JP28011388 A JP 28011388A JP H02131302 A JPH02131302 A JP H02131302A
Authority
JP
Japan
Prior art keywords
permanent magnet
flat coil
magnet piece
carrier
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63280113A
Other languages
Japanese (ja)
Inventor
Naoyuki Kato
直之 加藤
Yoshiaki Nagasawa
長沢 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP63280113A priority Critical patent/JPH02131302A/en
Publication of JPH02131302A publication Critical patent/JPH02131302A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0235Containers
    • B65G2201/0261Puck as article support

Landscapes

  • Toys (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To reduce the size of a linear motor by arranging a flat coil at the path side and employing a permanent magnet at the carrier side. CONSTITUTION:A permanent magnet 1 is fixed to a carrier 2 and a flat coil 3 is fixed to the under face of a path, i.e. an H-shaped rail. Two Hall elements 4 are fixed, as magnetic detecting elements, to the lower section of the flat coil 3 and a drive circuit 5 containing the Hall elements 4 as its circuit elements is provided. When the carrier 2 advances onto the flat coil 3, the Hall elements 4 detect the magnetism of the permanent magnet chip 1, thus detecting approach of the carrier 2. Consequently, the drive circuit 5 provides power to the flat coil 3 thus driving the carrier 2 to the position of next flat coil 3 through mutual function of the magnetic force and the permanent magnet chip 1.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、玩具その他の軽量な物品などの搬送体を搬送
するための、可動磁石型リニアモータによる搬送装置に
関する. 「従来の技術とその問題点」 従来の乗物玩具は、回転モータと乾電池を搭載する構造
としたものが多く、駆動原理が小児にも容易に見受けら
れるので、遊戯の興趣が乏しいという問題点がある.ま
た、銀行営業店等の窓口業務の合理化の一環として現金
.伝票あるいは通帳等の物品を搬送するためにリニアモ
ータによる搬送方式が提案されている(特開昭56−9
1694)が、レールに沿って適切な間隔で配置された
複数のステータと、レール上に走行可能に位置し且つ2
次導体を備えた搬送体とを具備する構造を有し、ステー
タを励磁することによりステータと、該ステータの1次
導体間の磁束を横切るように配置された2次導体との間
で駆動力を得る誘導形リニアモータであるので、駆動構
造が複雑で、小型化できず、またパワー(大電力)が必
要であるという問題点がある. 「発明が解決しようとする課題」 本発明は、上記の問題点に鑑みてなされたものであり、
搬送体を電気的に非接触で駆動することができるととも
に、搬送体には永久磁石片を1個だけ搭載して駆動可能
な搬送装置を提供することを課題とする.本発明の他の
課題は、永久磁石片と、その永久磁石片に推力を与える
扁平コイルとの間に合理的な寸法関係を与えることにあ
る.本発明の更なる課題は、搬送体を継続的に走行させ
るための好ましい組合せ楕遣を提供することにある. 「課題を解決するための手段および作用」上記課題を解
決するための本発明の搬送装置は、搬送体に担持され、
進行方向と直交する方向に磁束を生ずる少なくとも1個
の永久磁石片と、略環状に巻回され、前記搬送体が通る
通路に前記永久磁石片の磁極と対面可能に配設される少
なくとも1個の扁平コイルと、前記永久磁石片を所望の
方向へ駆動するように、永久磁石片の磁極および/また
は位置に応じて前記扁平コイルを切替え通電する駆動回
路とを備えることを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transport device using a movable magnet type linear motor for transporting objects such as toys and other lightweight articles. ``Prior art and its problems'' Many conventional ride-on toys have a structure equipped with a rotating motor and a dry cell battery, and the driving principle is easily recognized by children, so they have the problem of lack of interest in play. be. In addition, as part of the rationalization of counter operations at bank branches, etc., cash A conveyance system using a linear motor has been proposed for conveying items such as slips or bankbooks (Japanese Patent Laid-Open No. 56-9
1694) includes a plurality of stators arranged at appropriate intervals along the rail, and two stators that are movably positioned on the rail.
It has a structure comprising a carrier with a secondary conductor, and by exciting the stator, a driving force is generated between the stator and a secondary conductor disposed so as to cross the magnetic flux between the primary conductors of the stator. Since it is an induction type linear motor that obtains , the drive structure is complex, it cannot be miniaturized, and it requires a large amount of power. "Problems to be Solved by the Invention" The present invention has been made in view of the above problems.
It is an object of the present invention to provide a conveying device that can drive a conveying body electrically without contact and can be driven by mounting only one permanent magnet piece on the conveying body. Another object of the present invention is to provide a rational dimensional relationship between a permanent magnet piece and a flat coil that applies thrust to the permanent magnet piece. A further object of the present invention is to provide a preferable combination ellipse for continuously running a carrier. "Means and effects for solving the problem" A conveying device of the present invention for solving the above problem is carried on a conveying body,
at least one permanent magnet piece that generates magnetic flux in a direction perpendicular to the traveling direction; and at least one permanent magnet piece that is wound approximately in an annular shape and is disposed in a path through which the carrier passes so as to be able to face the magnetic pole of the permanent magnet piece. The present invention is characterized by comprising a flat coil, and a drive circuit that switches and energizes the flat coil according to the magnetic pole and/or position of the permanent magnet piece so as to drive the permanent magnet piece in a desired direction.

本発明の上記構成によれば、スタート時に搬送体を扁平
コイルの一側における有効巻線部上に位置させると、該
扁平コイルの一側に駆動回路により流される電流と搬送
体上の永久磁石片による磁束とフレミングの左手の法則
により搬送体が進行方向に推力を受けて移動し、かつ、
扁平コイルの巻回数と電流に応じた推力を受ける搬送体
が扁平コイルの他側の有効巻線部上に移動すると、駆動
回路の切替通電により略環状の扁平コイルに逆向きに電
流が流されるため、同様にして搬送体が同一の進行方向
に推力を受けて加速される.本発明の他の課題を解決す
るための可動磁石型リニアモータによる搬送装置は、前
記扁平コイルが、前記永久磁石片と略同一な長さの有効
巻線部を左右に有しかつ中央に前記永久磁石片の約半分
の長さの空所を有するように略環状に巻回され、かつ前
記通路に沿って扁平コイルの有効巻線部の少なくとも一
方のほぼ中央部に磁気検出素子が設置されたことを特徴
とする.この構成によれば、磁気検出素子の出力信号に
基づいて、磁気検出素子が信号を出力している間に扁平
コイルに駆動回路より電流を供給するとともに、駆動回
路により磁石片の位置に応じて一方向に推力が発生する
ように供給電流の向きが切替えられる. 本発明の更なる課題を解決するための可動磁石型リニア
モータによる搬送装置は、搬送体に担持され、進行方向
と直交する方向に磁束を生ずる少なくと61個の永久磁
石片と、略環状に巻回され、前記搬送体が通るべく一続
きに形成された通路に前記永久磁石片の磁極と対面可能
に、不連続に又は連続して配設される複数個の扁平コイ
ルと、前記永久磁石片を所望の方向へ駆動するように、
永久磁石片の磁極および/または位置に応じて前記扁平
コイルを切替え通電する駆動回路とを備えることを特徴
とする.この構成によれば、一続きに形成した通路を通
る搬送体が不連続に、または連続して加速されるため、
一続きの通路を繰り返し走行する。
According to the above configuration of the present invention, when the carrier is positioned on the effective winding part on one side of the flat coil at the time of start, the current flowing through the one side of the flat coil by the drive circuit and the permanent magnet on the carrier The conveyor moves in the direction of travel under thrust due to the magnetic flux due to the pieces and Fleming's left-hand rule, and
When the carrier, which receives thrust according to the number of windings of the flat coil and the current, moves onto the effective winding part on the other side of the flat coil, current is passed in the opposite direction through the approximately annular flat coil by switching energization of the drive circuit. Therefore, the carrier receives thrust in the same direction of movement and is accelerated. In order to solve another problem of the present invention, there is provided a conveyance device using a moving magnet type linear motor, in which the flat coil has effective winding portions on the left and right sides having substantially the same length as the permanent magnet pieces, and The flat coil is wound approximately in an annular shape with a space approximately half the length of the permanent magnet piece, and a magnetic detection element is installed approximately in the center of at least one of the effective winding portions of the flat coil along the passage. It is characterized by: According to this configuration, the drive circuit supplies current to the flat coil based on the output signal of the magnetic detection element while the magnetic detection element is outputting a signal, and the drive circuit also supplies current to the flat coil according to the position of the magnet piece. The direction of the supplied current is switched so that thrust is generated in one direction. A conveying device using a movable magnet type linear motor to solve a further problem of the present invention includes at least 61 permanent magnet pieces carried on a conveying body and generating magnetic flux in a direction perpendicular to the traveling direction, and a substantially annular magnet. a plurality of flat coils that are wound and disposed discontinuously or continuously so as to be able to face the magnetic poles of the permanent magnet pieces in a continuous path for the conveyor to pass; and the permanent magnet. to drive the pieces in the desired direction.
It is characterized by comprising a drive circuit that switches and energizes the flat coil according to the magnetic pole and/or position of the permanent magnet piece. According to this configuration, the conveyor passing through the continuous path is accelerated discontinuously or continuously, so
Travel through a series of passages repeatedly.

「実施例」 本発明の可動磁石型リニアモータによる搬送装置の基本
構成を第1図(a).(b)に示す.搬送体2をなすレ
ーシングカー玩具には、1個の永久磁石片1が取付けら
れている.断面略H形に形成したレーシングカー玩具走
行のための通路6をなすレールには、その下面に搬送体
2の進行を妨げないように1個の扁平コイル3が取付け
られている.扁平コイル3の下部には磁気検出素子とし
てのホール素子4が2個取付けてあり、またこのホール
素子4を回路要素に含む駆動回路5が配置されている.
磁気検出素子としてはホール素子4の他に、ホールIC
その他磁気によってスイッチング作用を行うリードリレ
ー,磁気抵抗素子などを包含する.本実施例における搬
送体2は四輪のレーシングカー玩具であり、通路6は搬
送体2の走行を案内する走行レーンをなす. 基本構成の寸法関係の他の細部を第2図および第3図に
示す.第2図に示す構成例Iは、ホール素子4を2個使
用した例であり、永久磁石片1の長さを!とするとき、
扁平コイル3の直径は5/21に設定されており、コイ
ル3の中央に長さ1/21の空所を有する.2個のホー
ル素子4は、扁平コイル3の両端縁から距離1/2lに
中心位置を持つように取付けられている.扁平コイル3
はエナメル絶縁電線を略環状に複数回巻回して中央の両
側に2個の有効巻線部を有するように形成されている.
永久磁石片1は搬送体2の進行方向と直交する方向に磁
束を生ずるように厚さ方向にN,S又はS,Nに着磁さ
れている。第3図に示す構成例■は、1個のホール索子
4を使用した例である.但し、永久磁石片】と扁平コイ
ル3とホール素子4との寸法は第2図および第3図の図
示を基本とするが変更も可能である. 基本構成の応用例を第4図から第7図に示す。
``Example'' The basic configuration of a conveying device using a moving magnet type linear motor of the present invention is shown in FIG. 1(a). Shown in (b). One permanent magnet piece 1 is attached to a toy racing car forming the carrier 2. A single flat coil 3 is attached to the lower surface of a rail forming a passage 6 for running a toy racing car, which has a substantially H-shaped cross section so as not to obstruct the movement of the carrier 2. Two Hall elements 4 as magnetic detection elements are attached to the lower part of the flat coil 3, and a drive circuit 5 including the Hall elements 4 as circuit elements is arranged.
In addition to the Hall element 4, a Hall IC can be used as a magnetic detection element.
It also includes reed relays, magnetoresistive elements, etc. that perform switching actions using magnetism. The carrier 2 in this embodiment is a four-wheeled toy racing car, and the passage 6 forms a travel lane for guiding the travel of the carrier 2. Other details regarding the dimensions of the basic configuration are shown in Figures 2 and 3. Configuration example I shown in FIG. 2 is an example in which two Hall elements 4 are used, and the length of the permanent magnet piece 1 is ! When
The diameter of the flat coil 3 is set to 5/21, and there is a void with a length of 1/21 in the center of the coil 3. The two Hall elements 4 are mounted with their centers located at a distance of 1/2l from both ends of the flat coil 3. Flat coil 3
is formed by winding an enamelled insulated wire multiple times in a substantially annular shape, with two effective winding sections on either side of the center.
The permanent magnet piece 1 is magnetized in the direction of N, S or S, N in the thickness direction so as to generate magnetic flux in a direction perpendicular to the traveling direction of the carrier 2. The configuration example (3) shown in FIG. 3 is an example in which one hole cable 4 is used. However, the dimensions of the permanent magnet piece], the flat coil 3, and the Hall element 4 are based on those shown in FIGS. 2 and 3, but may be changed. Application examples of the basic configuration are shown in FIGS. 4 to 7.

第4図図示の応用例は、大きな推力を得るために1個の
駆動回路5に2個の扁平コイル3を組合ぜな例である.
N平コイル3は2個以上にすることも可能である.第5
図図示の応用例は、扁平コイル3をコンパクト化するた
めに、扁平コイル3の両側を折り曲げた例である.この
ように、扁平コイル3の両側を折り曲げても有効巻線部
の長さには変化がないため推力は減少しない.第6図図
示の応用例は、推力向上のため、搬送体2側の磁石片1
の上面にヨーク7を取付け、扁平コイル3の下部におい
て駆動回路5の下面にヨーク8を取付けた例である.ヨ
ーク7,8によって磁石片1による磁束密度が高められ
るため、この磁束密度に比例して推力が向上する.第7
図図示の応用例は、搬送体2が連結式の列車等にした際
において、磁石片1を2個又はそれ以」二使用した例を
示す.基本構成を利用した実施例を第8図から第13図
に示す。第8図(a),(b)に図示した実施例は、永
久磁石片1を搭載した搬送体2をレーシングカー玩具に
しており、両側を折り曲げた扁平コイル3を使用して走
行レーンとしての通路6をコンパクト化している。また
、推力向上のためヨーク7,8を使用している.以下の
実施例では、駆動回路5の図示は省略してある。第9図
(a),(b)に図示した実施例は、通路6を断面略凸
字状のレーンに形成し、搬送体2をなすレーシングカー
玩具の車輪が該通路6を跨ぐようにして搬送体2の案内
を確実にした例である。第10図(a>,(b)に図示
した実施例は、搬送体2をなす鉄道車両玩具が軌道状の
通路6の上を走行するようにした例である.第11図(
a),(b)に図示した実施例は、搬送体2をなす船舶
玩具が細長い水槽による通路6内を進行するようにした
例であり、搬送体2には永久磁石片1が取付けてあり、
通路6内には扁平コイル3が設けてある.第12図に図
示した実施例は、搬送体2をなす飛行機玩具が、保持ス
タンド10に旋回可能に取付けられており、円形の通路
6には扁平コイル3が設けてある.第13図(a),(
b)に図示した実施例は、搬送体2をなす篭が通路6を
なす空中レールに吊下されており、搬送体2と連結され
た永久磁石片1が扁平コイル3によって推力を受けるよ
うにした搬送機の例である, レーシングカー玩具の実施例において、さらに具体的に
扁平コイルの配置例を第14図および第15図に示す.
第14図に図示した実施例は、通路6をなす走行レーン
を一続きの略環状に形成し、搬送体2をなすレーシング
カー玩具の加速のために2個の扁平コイル3を一対とし
て、一対の扁平コイル3を通路6の2箇所に配置したも
のである.通路6は立体的に折曲げた複雑な一続きの走
行レーンに形成してもよい.第15図に図示した実施例
は、推力向上のため略環状の通路6に扁乎コイル3を連
続的に並べ、搬送体2をなすレーシングカー玩具を高速
で走行させる例である.搬送体2には図示しないが永久
磁石が担持されており、扁平コイル3には図示略の駆動
回路を介して電源9から電流が供給される. 駆動回路5の回路構成を第16図および第17図に示す
.第16図図示においては、第2図図示の構成例■の如
く2個のホール素子4を使用して扁平コイル3の通電切
替を行う時の回路構成を示しており、それぞれ差動増幅
器およびウインドコンパレー夕などよりなる2個の増幅
回路(A M P )51と、短絡防止回路53と、4
個のトランジスタをブリッジ接続してなるコイル駆動回
路52とよりなる,AMP51はホール素子4からの信
号を増幅し、信号切換のためのコントロール回路として
ら働く短絡防止回路53は2個のホール素子4から同時
に信号が入った場合の短絡を防止しており、コイル駆動
回路52は2個のホール素子4のいずれから信号が入力
されたかによって扁平コイル3を正逆に切替通電する.
第17図図示においては、第3図図示の構成例Hの如く
、1個のホール素子4を使用して扁平コイル3の切替通
電を行う時の回路構成を示しており、各1個のAMP5
1とタイマー回路54と、コイル駆動回路52とよりな
る.ホール素子4の信号はAMP51により増幅されて
タイマー回路54を介してコイル駆動回路52に加わり
、コイル駆動回路52は最初は扁平コイル3を例えば正
方向に通電し、ホール素子4の信号が無くなってからは
タイマー回路54で定まる時刻の間に扁平コイル3を逆
方向に通電する.スイッチングできるホールIC,りー
ドリレー等を磁気検出素子に使用する場合は第17図図
示のAMP51は不要となる.第2図図示の構成例■に
おいて、永久磁石片1を左右どちらにでも移動するよう
にする場合は、第16図図示の回路において、第18図
図示のごとく短絡防止回路53に正逆コントロール回路
55を追加するか、第19図図示のごとくコイル駆動回
路52の出力側と扁平コイル3の間に切換スイッチ56
を追加して、扁平コイル3に流れる電流方向を逆啄可能
にすればよい。
The application example shown in FIG. 4 is an example in which two flat coils 3 are combined into one drive circuit 5 in order to obtain a large thrust.
It is also possible to have two or more N-flat coils 3. Fifth
The illustrated application example is an example in which both sides of the flat coil 3 are bent in order to make the flat coil 3 more compact. In this way, even if both sides of the flat coil 3 are bent, the length of the effective winding portion does not change, so the thrust does not decrease. In the application example shown in FIG. 6, the magnet piece 1 on the conveyor 2 side is
This is an example in which a yoke 7 is attached to the upper surface, and a yoke 8 is attached to the lower surface of the drive circuit 5 below the flat coil 3. Since the magnetic flux density caused by the magnet piece 1 is increased by the yokes 7 and 8, the thrust is increased in proportion to this magnetic flux density. 7th
The illustrated application example is an example in which two or more magnet pieces 1 are used when the conveyance body 2 is an articulated train or the like. Examples using the basic configuration are shown in FIGS. 8 to 13. In the embodiment shown in FIGS. 8(a) and 8(b), the carrier 2 on which the permanent magnet piece 1 is mounted is made into a toy racing car, and a flat coil 3 with both sides bent is used to create a running lane. The passage 6 is made more compact. In addition, yokes 7 and 8 are used to improve thrust. In the following embodiments, illustration of the drive circuit 5 is omitted. In the embodiment shown in FIGS. 9(a) and 9(b), the passage 6 is formed into a lane with a substantially convex cross section, and the wheels of the toy racing car forming the carrier 2 straddle the passage 6. This is an example in which the conveyor 2 is guided reliably. The embodiment shown in FIGS. 10(a) and 10(b) is an example in which a toy railway vehicle constituting the carrier 2 runs on a track-shaped passage 6.
The embodiments shown in a) and (b) are examples in which a toy boat constituting a carrier 2 moves through a passage 6 formed by a long and narrow water tank, and a permanent magnet piece 1 is attached to the carrier 2. ,
A flat coil 3 is provided within the passage 6. In the embodiment shown in FIG. 12, a toy airplane serving as a carrier 2 is rotatably attached to a holding stand 10, and a flat coil 3 is provided in a circular passage 6. Figure 13(a), (
In the embodiment shown in b), the cage forming the carrier 2 is suspended from the aerial rail forming the passage 6, and the permanent magnet piece 1 connected to the carrier 2 receives thrust from the flat coil 3. In an example of a toy racing car, which is an example of a conveyor, a more specific example of the arrangement of flat coils is shown in Figs. 14 and 15.
In the embodiment shown in FIG. 14, the traveling lane forming the passage 6 is formed into a continuous substantially annular shape, and two flat coils 3 are used as a pair to accelerate the toy racing car forming the carrier 2. flat coils 3 are placed at two locations in the passageway 6. The passageway 6 may be formed into a complex series of travel lanes that are bent three-dimensionally. The embodiment shown in FIG. 15 is an example in which flattened coils 3 are continuously arranged in a substantially annular passage 6 to improve thrust, and a toy racing car forming the carrier 2 is driven at high speed. A permanent magnet (not shown) is supported on the carrier 2, and a current is supplied to the flat coil 3 from a power source 9 via a drive circuit (not shown). The circuit configuration of the drive circuit 5 is shown in Figs. 16 and 17. The illustration in FIG. 16 shows the circuit configuration when switching the current supply to the flat coil 3 using two Hall elements 4 as in the configuration example (2) shown in FIG. Two amplifier circuits (AMP) 51 consisting of comparators, etc., a short circuit prevention circuit 53, and 4
The AMP 51 consists of a coil drive circuit 52 formed by bridge-connecting two transistors.The AMP 51 amplifies the signal from the Hall element 4, and the short-circuit prevention circuit 53, which also functions as a control circuit for signal switching, amplifies the signal from the Hall element 4. The coil drive circuit 52 switches the flat coil 3 between forward and reverse energization depending on which of the two Hall elements 4 the signal is input from.
The illustration in FIG. 17 shows a circuit configuration when one Hall element 4 is used to switch and energize the flat coil 3, as in the configuration example H shown in FIG.
1, a timer circuit 54, and a coil drive circuit 52. The signal from the Hall element 4 is amplified by the AMP 51 and applied to the coil drive circuit 52 via the timer circuit 54, and the coil drive circuit 52 initially energizes the flat coil 3 in the positive direction, for example, until the signal from the Hall element 4 disappears. Then, the flat coil 3 is energized in the opposite direction during the time determined by the timer circuit 54. If a switching Hall IC, read relay, etc. is used as the magnetic detection element, the AMP51 shown in FIG. 17 is not necessary. In the configuration example (3) shown in FIG. 2, if the permanent magnet piece 1 is to be moved to the left or right, in the circuit shown in FIG. 55 or a changeover switch 56 between the output side of the coil drive circuit 52 and the flat coil 3 as shown in FIG.
What is necessary is to add this so that the direction of the current flowing through the flat coil 3 can be reversed.

第3図図示の構成例■において、永久磁石片1ひいては
図示略の搬送体を左右どちらにでも移動するようにする
場合の基本構成を第20図に、駆動回路5を第21図に
示す。これを構成例■とする。駆動回路5において、2
個のタイマー回路54とコイル駆動回路52との間に設
けられたコイル電流切替回路57は、片側のホール素子
4等に信号が発生した時は、もう片側のホール素子4の
働きを無効とする機能を持つ。
In the configuration example (3) shown in FIG. 3, the basic configuration in which the permanent magnet piece 1 and the conveyor (not shown) are moved to the left or right is shown in FIG. 20, and the drive circuit 5 is shown in FIG. 21. This is referred to as a configuration example (■). In the drive circuit 5, 2
A coil current switching circuit 57 provided between the timer circuit 54 and the coil drive circuit 52 disables the function of the Hall element 4 on the other side when a signal is generated in the Hall element 4 etc. on one side. have a function.

「作動」 第2図図示の構成例Iの可動磁石型リニアモータの作動
を第22図により説明する.搬送体2が(ア)の位置に
静止している時に図示略の駆動回路の電源がオンにされ
た場合、又は電源がオンの状態にある時にホール素子4
aの上まで搬送体2が移動してきた場合には、図示略の
駆動回路がホール素子4aにより永久磁石片1を検知し
、フレミングの左手の法則により第22図図示の右方向
に磁石片lを移動させるように扁平コイル3に電流を流
すため、搬送体2は右方向へ進もうとする推力を得る.
搬送体2が(イ)の位W(扁平コイル3の中央)まで進
むと、ホール素子4aは磁石片1を検知しなくなり、電
流も一旦コイル3に流れなくなる。しかし、搬送体2は
惰性によりさらに右方向へ進み、(ウ)の位置でホール
素子4bが磁石片1を検知すると、さらに右方向に磁石
片1を移動させるように図示略の駆動回路が前述とは逆
方向に扁平コイル3に電流を流すため、搬送休2はさら
に右方向へ進もうとする推力を得る。搬送体2が(工)
の位置まで進むとホール素子4bは磁石片1を検知しな
くなるため、扁平コイル3に電流が流れなくなる。しか
しながら、搬送体2は加速されたため惰性によって、さ
らに右方向へ進む。
"Operation" The operation of the movable magnet type linear motor of configuration example I shown in FIG. 2 will be explained with reference to FIG. When the power of the drive circuit (not shown) is turned on while the carrier 2 is stationary at the position (A), or when the power is on, the Hall element 4
When the carrier 2 has moved to above a, the drive circuit (not shown) detects the permanent magnet piece 1 using the Hall element 4a, and according to Fleming's left hand rule, the magnet piece l is moved to the right as shown in FIG. Since current is applied to the flat coil 3 so as to move the carrier 2, a thrust force is generated to move the carrier 2 to the right.
When the carrier 2 advances to position (A) W (the center of the flat coil 3), the Hall element 4a no longer detects the magnet piece 1, and the current no longer flows through the coil 3. However, the conveyor 2 moves further to the right due to inertia, and when the Hall element 4b detects the magnet piece 1 at the position (c), the drive circuit (not shown) as described above moves the magnet piece 1 further to the right. Since the current is passed through the flat coil 3 in the opposite direction, the conveyor 2 obtains a thrust force to move further to the right. Transporter 2 is (engineering)
When the magnet piece 1 is advanced to the position shown in FIG. However, since the carrier 2 has been accelerated, it moves further to the right due to inertia.

第23図に推力と扁平コイル3に流れる電流のタイムチ
ャートを示す。
FIG. 23 shows a time chart of the thrust and the current flowing through the flat coil 3.

第3UJ!J図示の楕成例Hによる可動磁石型リニアモ
ータの作動を第24図および第25図により説明する.
搬送体2が(ア)の位置に静止している時に図示略の駆
動回路の電源がオンになった場合、または電源がオンの
状態にある時にホール素子4の上まで搬送体2が移動し
て来た場合には、ホール素子4により磁石片1を検知し
、フレミングの左手の法則により、磁石片1を第24図
図示の右方向に移動させるようにコイル3に電流を流す
ため、搬送体2は右方向へ進もうとする推力を得る.搬
送体2が(イ)の位置まで進むと、ホール素子4は磁石
片1を検知しなくなるため、電流も一旦コイル3に流れ
なくなる.しかし、搬送体2は惰性によりさらに右方向
へ進む。
3rd UJ! The operation of the movable magnet linear motor according to the elliptical example H shown in FIG. J will be explained with reference to FIGS. 24 and 25.
If the power of the drive circuit (not shown) is turned on while the carrier 2 is stationary at the position (A), or if the carrier 2 moves to above the Hall element 4 while the power is on. 24, the Hall element 4 detects the magnet piece 1, and according to Fleming's left-hand rule, a current is passed through the coil 3 to move the magnet piece 1 to the right as shown in Figure 24. Body 2 gains thrust to move to the right. When the carrier 2 advances to the position (A), the Hall element 4 no longer detects the magnet piece 1, and current no longer flows through the coil 3. However, the carrier 2 moves further to the right due to inertia.

一方、図示略のタイマー回路によりホール素子4が磁石
片1を検知しなくなってから時刻t1後に、駆動回路が
前述とは逆方向にコイル3に電流を流すため、(ウ)の
位置程度まで惰性により進んでいた搬送体2はさらに右
方向へ進もうとする推力を得る。また、タイマー回路に
より電流を流し始めてから時刻t7後に駆動回路はコイ
ル3に電流を流すことを停止する。この時までに、(工
)の位Mまで進んでいた搬送体2は推力は加えられなく
なるが、加速されたため惰性によりさらに右方向へ進む
.第25図に搬送体2に加わる推力とコイル3に流れる
電流のタイムチャートを示す。
On the other hand, at time t1 after the Hall element 4 stops detecting the magnet piece 1 due to a timer circuit (not shown), the drive circuit causes current to flow through the coil 3 in the opposite direction to that described above, so that the inertia reaches the position (c). The carrier 2, which had been moving forward, gains thrust to move further to the right. Furthermore, the drive circuit stops passing current through the coil 3 at time t7 after the timer circuit starts passing the current. By this time, the carrier 2, which had advanced to the (engine) position M, is no longer subjected to thrust, but because it has been accelerated, it moves further to the right due to inertia. FIG. 25 shows a time chart of the thrust force applied to the carrier 2 and the current flowing through the coil 3.

構成例■の作動は、構成例■の作動に,ホール素子の追
加による反対方向への動き、つまり第24図図示の右か
ら左への動きを追加したものである.すなわち、第20
図図示において、左側のホール素子4が先に磁石片1を
検知した時は磁石片1は左から右へ移動し、右側のホー
ル素子が先に磁石片1を検知した時は磁石片1は右から
左へ移動する. 「効果」 以上述べたように、本発明の可動磁石型リニアモータに
よる搬送装置は、搬送体に担持され、進行方向と直交す
る方向に磁束を生ずる少なくとも1個の永久磁石片と、
略環状に巻回され、前記搬送体が通る通路に前記永久磁
石片の磁極と対面可能に配設される少なくとも1個の扁
平コイルと、面記永久磁石片を所望の方向へ駆動するよ
うに、永久磁石片の磁極および/または位置に応じて前
記扁平コイルを切替え通電する駆動回路とを備えるから
、搬送体が1個の磁石片を有するだけでも搬送すること
ができるため、搬送体を小さくすることが可能である、
電気的に接触している摩耗部がないため、耐久性のある
玩具、または搬送機としての利用が可能である、などの
効果がある.また、玩具として利用した場合に、搬送体
としての乗物玩具に回転モータおよび電源がなく磁石片
のみがあること、更には乗物玩具が電気的に非接触であ
ることなどにより遊戯上の興趣が高いものとなる. また、第2の発明の可動磁石型リニアモータによる搬送
装置は、上記第1の発明において、前記扁平コイルが、
前記永久磁石片と略同一な長さの有効巻線部を左右に有
しかつ中央に前記永久磁石片の約半分の長さの空所を有
するように略環状に巻回され、かつ前記通路に沿って扁
平コイルの有効巻線部の少なくとも一方のほぼ中央部に
磁気検出素子がvLW.されるものであるから、永久磁
石片の大きさと扁平コイルの大きさとを適合させること
ができるため、数少ない磁気検出素子によって所望の扁
平コイルの有効巻線部に電流を供給することができる。
The operation of the configuration example (2) is the same as the operation of the configuration example (2) with the addition of a Hall element that causes movement in the opposite direction, that is, movement from right to left as shown in FIG. That is, the 20th
In the diagram, when the left Hall element 4 detects the magnet piece 1 first, the magnet piece 1 moves from left to right, and when the right Hall element detects the magnet piece 1 first, the magnet piece 1 moves from left to right. Move from right to left. "Effects" As described above, the transport device using the movable magnet linear motor of the present invention includes at least one permanent magnet piece that is supported on the transport body and generates magnetic flux in a direction perpendicular to the traveling direction.
at least one flat coil wound approximately in an annular shape and disposed in a path through which the carrier passes so as to be able to face the magnetic pole of the permanent magnet piece; and a flat coil for driving the permanent magnet piece in a desired direction. , and a drive circuit that switches and energizes the flat coil according to the magnetic pole and/or position of the permanent magnet piece, so the conveyor can be conveyed even if it has only one magnet piece, so the conveyor can be made smaller. It is possible to
Since there are no abrasive parts that are in electrical contact, it has the advantage of being able to be used as a durable toy or transporter. In addition, when used as a toy, the vehicle toy as a carrier has no rotating motor or power source, only a magnetic piece, and furthermore, the vehicle toy is electrically non-contact, making it highly entertaining for play. Become a thing. Further, in the conveyance device using a moving magnet type linear motor according to a second invention, in the first invention, the flat coil is
The channel is wound approximately in an annular shape so as to have effective winding portions on the left and right sides having substantially the same length as the permanent magnet piece, and has a space in the center that is approximately half the length of the permanent magnet piece. A magnetic detection element is located approximately at the center of at least one of the effective winding portions of the flat coil along vLW. Since the size of the permanent magnet piece and the size of the flat coil can be matched, current can be supplied to the effective winding portion of a desired flat coil using a small number of magnetic detection elements.

更に、第3の発明の可動磁石型リニアモータによる搬送
装置は、搬送体に担持され、進行方向と直交する方向に
磁束を生ずる少なくとも1個の永久磁石片と、略環状に
巻回され、前記搬送体が通るべく一続きに形成された通
路に前記永久磁石片の磁極と対面可能に、不連続に又は
連続して配設される複数個の扁平コイルと、前記永久磁
石片を所望の方向へ駆動するように、永久磁石片のIi
a極および/または位置に応じて前記扁平コイルを切替
え通電する駆動回路とを備えるから,搬送体としての乗
物玩具を長時間に亘って一続きの通路に走行させること
ができ、一層に興趣が深いものとなる.
Further, in the conveying device using a moving magnet type linear motor according to a third aspect of the invention, at least one permanent magnet piece is carried by the conveying body and generates a magnetic flux in a direction perpendicular to the traveling direction, and the above-mentioned permanent magnet piece is wound approximately in an annular shape. A plurality of flat coils disposed discontinuously or continuously so as to be able to face the magnetic poles of the permanent magnet pieces in a continuous path for the conveyor to pass through; Ii of the permanent magnet piece so as to be driven to
Since the flat coil is provided with a drive circuit that switches and energizes the flat coil according to the a-pole and/or the position, the toy vehicle as a carrier can be run on a continuous passage for a long time, making it even more interesting. It becomes deep.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の基本構成を示す斜視図、第1図
(b)は第1図(a)のA矢視図、第2図および第3図
は基本構成の寸法関係他の細部を構成例■および構成例
■として示す略断面図、第4図から第7図は基本構成の
数個の応用例を示し、第4図は応用例を示す斜視図、第
5図は応用例における扁平コイルを示す平面図、第6図
は応用例を示す正面図、第7図は更に他の応用例を示す
斜視図である.第8図から第13図は基本構成を利用し
た数個の実施例を示し、第8図(a),(b)は実施例
を示す正面図および側面図、第9図(a),(b)は実
施例を示す正面図および側面図、第10図(a),(b
)は実施例を示す正面図および側面図、第11図(a)
,(b)は実施例の一部を断面して示す正面図および側
面図、第12図は実施例を示す斜視図、第13図(a)
,(b)は更に他の実施例を示す側面図および一部を断
面して示す正面図である.第14図および第15図はレ
ーシングカー玩具の実施例においてさらに具体的に扁平
コイルの配置例を示す斜視図、第16図および第17図
は駆動回路の回路構成を示すブロック図、第18図およ
び第19図は第2図図示の構成例Iにおいて搬送体を左
右どちらにでも移動するようにする場合の回路例を示す
ブロック図、第20図は横成例mを示す略断面図、第2
1図は構成例■の駆動回路を示すブロック図である.第
22図は楕成例Iの可動磁石型リニアモータによる搬送
装置の作動を説明する略側面図、第23図はその作動に
おいて推力と扁平コイルに流れる電流を示すタイムチャ
ートである.第24図は構成例Hの作動を説明する略側
面図、第25図はその作動において推力と扁平コイルに
流れる電流を示すタイムチャートである. 1,..永久磁石片、 2,..搬送体、 3...扁
平コイル、 4 ...(磁気検出素子としての)ホー
ル素子、 5...駆動回路、 6...通路、 7,
8...ヨーク、  9...電源. 第1回 (a) 第2図 第3図 第4(2l 第 図 第 (b) (b) (a) 第 図 第 図 第14図 第15図 q 第19図 第20図 第23図
FIG. 1(a) is a perspective view showing the basic configuration of the present invention, FIG. 1(b) is a view taken along arrow A in FIG. 1(a), and FIGS. 2 and 3 are dimensional relationships of the basic configuration, etc. 4 to 7 show several application examples of the basic structure, FIG. 4 is a perspective view showing an application example, and FIG. FIG. 6 is a plan view showing a flat coil in an applied example, FIG. 6 is a front view showing an applied example, and FIG. 7 is a perspective view showing another applied example. FIGS. 8 to 13 show several embodiments using the basic configuration, FIGS. 8(a) and (b) are front and side views showing the embodiments, and FIGS. 9(a) and ( b) is a front view and side view showing the embodiment, FIGS. 10(a) and (b)
) are a front view and a side view showing the embodiment, and FIG. 11(a)
, (b) are a front view and a side view showing a part of the embodiment in cross section, FIG. 12 is a perspective view showing the embodiment, and FIG. 13(a)
, (b) are a side view and a partially sectional front view showing still another embodiment. 14 and 15 are perspective views showing a more specific example of the arrangement of flat coils in the embodiment of the racing car toy, FIGS. 16 and 17 are block diagrams showing the circuit configuration of the drive circuit, and FIG. 18 19 is a block diagram showing a circuit example in which the carrier is moved to the left or right in configuration example I shown in FIG. 2
Figure 1 is a block diagram showing the drive circuit of configuration example (■). FIG. 22 is a schematic side view illustrating the operation of the conveying device using the movable magnet type linear motor of elliptical example I, and FIG. 23 is a time chart showing the thrust force and the current flowing through the flat coil during the operation. FIG. 24 is a schematic side view illustrating the operation of configuration example H, and FIG. 25 is a time chart showing the thrust force and the current flowing through the flat coil during the operation. 1,. .. Permanent magnet piece, 2. .. carrier; 3. .. .. Flat coil, 4. .. .. Hall element (as a magnetic detection element), 5. .. .. drive circuit, 6. .. .. passage, 7,
8. .. .. York, 9. .. .. power supply. 1st (a) Figure 2 Figure 3 Figure 4 (2l Figure (b) (b) (a) Figure Figure 14 Figure 15q Figure 19 Figure 20 Figure 23

Claims (3)

【特許請求の範囲】[Claims] (1)搬送体に担持され、進行方向と直交する方向に磁
束を生ずる少なくとも1個の永久磁石片と、 略環状に巻回され、前記搬送体が通る通路に前記永久磁
石片の磁極と対面可能に配設される少なくとも1個の扁
平コイルと、 前記永久磁石片を所望の方向へ駆動するように、永久磁
石片の磁極および/または位置に応じて前記扁平コイル
を切替え通電する駆動回路と を備えることを特徴とする可動磁石型リニアモータによ
る搬送装置。
(1) At least one permanent magnet piece that is carried by a conveying body and generates magnetic flux in a direction perpendicular to the traveling direction; and a magnetic pole of the permanent magnet piece that is wound approximately in an annular shape and faces the magnetic pole of the permanent magnet piece in a path through which the conveying body passes. at least one flat coil that can be arranged; and a drive circuit that switches and energizes the flat coil according to the magnetic pole and/or position of the permanent magnet piece so as to drive the permanent magnet piece in a desired direction. A conveyance device using a movable magnet type linear motor, characterized by comprising:
(2)前記扁平コイルが、前記永久磁石片と略同一な長
さの有効巻線部を左右に有しかつ中央に前記永久磁石片
の約半分の長さの空所を有するように略環状に巻回され
、かつ前記通路に沿つて扁平コイルの有効巻線部の少な
くとも一方のほぼ中央部に磁気検出素子が設置されたこ
とを特徴とする請求項1に記載の可動磁石型リニアモー
タによる搬送装置。
(2) The flat coil has a substantially annular shape, having effective winding portions on the left and right sides having approximately the same length as the permanent magnet piece, and having a space in the center that is approximately half the length of the permanent magnet piece. 2. The movable magnet type linear motor according to claim 1, wherein a magnetic detection element is installed approximately in the center of at least one of the effective winding portions of the flat coil along the passage. Conveyance device.
(3)搬送体に担持され、進行方向と直交する方向に磁
束を生ずる少なくとも1個の永久磁石片と、 略環状に巻回され、前記搬送体が通るべく一続きに形成
された通路に前記永久磁石片の磁極と対面可能に、不連
続に又は連続して配設される複数個の扁平コイルと、 前記永久磁石片を所望の方向へ駆動するように、永久磁
石片の磁極および/または位置に応じて前記扁平コイル
を切替え通電する駆動回路と を備えることを特徴とする可動磁石型リニアモータによ
る搬送装置。
(3) at least one permanent magnet piece carried by the conveying body and generating magnetic flux in a direction perpendicular to the traveling direction; A plurality of flat coils disposed discontinuously or continuously so as to be able to face the magnetic poles of the permanent magnet pieces, and the magnetic poles of the permanent magnet pieces and/or so as to drive the permanent magnet pieces in a desired direction. A conveyance device using a movable magnet type linear motor, comprising a drive circuit that switches and energizes the flat coil according to the position.
JP63280113A 1988-11-05 1988-11-05 Carrier employing movable magnet type linear motor Pending JPH02131302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280113A JPH02131302A (en) 1988-11-05 1988-11-05 Carrier employing movable magnet type linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280113A JPH02131302A (en) 1988-11-05 1988-11-05 Carrier employing movable magnet type linear motor

Publications (1)

Publication Number Publication Date
JPH02131302A true JPH02131302A (en) 1990-05-21

Family

ID=17620507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280113A Pending JPH02131302A (en) 1988-11-05 1988-11-05 Carrier employing movable magnet type linear motor

Country Status (1)

Country Link
JP (1) JPH02131302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646917A (en) * 1994-11-08 1997-07-08 Pioneer Electronic Corporation Carrier system for carrying mediums
JP2018185568A (en) * 2017-04-24 2018-11-22 凸版印刷株式会社 Three-dimensional object with AR marker, AR marker system and AR marker server

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912608B1 (en) * 1969-04-02 1974-03-26
JPS5024918A (en) * 1973-06-15 1975-03-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912608B1 (en) * 1969-04-02 1974-03-26
JPS5024918A (en) * 1973-06-15 1975-03-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646917A (en) * 1994-11-08 1997-07-08 Pioneer Electronic Corporation Carrier system for carrying mediums
JP2018185568A (en) * 2017-04-24 2018-11-22 凸版印刷株式会社 Three-dimensional object with AR marker, AR marker system and AR marker server

Similar Documents

Publication Publication Date Title
US3845720A (en) Magnetic-levitation vehicle with auxiliary magnetic support at track-branch locations
US3788447A (en) Linear motor conveyor
JPS63290101A (en) Linear motor type conveyor system
GB1190211A (en) Trolley System
JP7256182B2 (en) Truck switches to guide vehicle movement
JPS6115557A (en) Levitating type conveying apparatus
US3912992A (en) Parallel connected linear electric motor system
US4848242A (en) Linear induction propelled track guided runner
JPH01159709A (en) Points for floor conveying system
JPS62225109A (en) Conveyor of levitation type
JPH02131302A (en) Carrier employing movable magnet type linear motor
JPH0748028A (en) Shifting equipment utilizing dc linear motor
JP4000644B2 (en) Transport vehicle traveling system
JP2760842B2 (en) Linear induction motor type transfer system
JP2576862Y2 (en) Shoe sorting device
JP2602810B2 (en) Floating transfer device
JPH0952621A (en) Transfer device
JP2582742Y2 (en) Linear DC motor type transfer device
JPH01298902A (en) Levitating, guiding and driving device for guided repulsion magnetic levitation railway
JP3144837B2 (en) Magnetic levitation traveling device
SU511656A1 (en) Linear electric motor
JP2555542B2 (en) Floating carrier
JPH0669244B2 (en) Magnetic levitation transfer system
JP3312799B2 (en) Wheel-supported railless linear motor car system
JP2767922B2 (en) Linear capsule-type traveling device