JPH02130431A - Pyroelectric type infrared sensor - Google Patents
Pyroelectric type infrared sensorInfo
- Publication number
- JPH02130431A JPH02130431A JP63286066A JP28606688A JPH02130431A JP H02130431 A JPH02130431 A JP H02130431A JP 63286066 A JP63286066 A JP 63286066A JP 28606688 A JP28606688 A JP 28606688A JP H02130431 A JPH02130431 A JP H02130431A
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- infrared sensor
- source electrode
- pyroelectric
- shield case
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000006698 induction Effects 0.000 abstract description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 3
- 101100484930 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) VPS41 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
- G01J5/35—Electrical features thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、電界効果トランジスタ(FET)を用いた焦
電型赤外線センサの改良に関するものである。この種の
赤外線センサとしては、従来から第2図に示すようなも
のが知られている。図において、1は焦電素子、2はF
ET、Rgはゲート抵抗、3はドレインリード線、4は
ソースリード線、5はグランドリード線、6はシールド
ケース。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a pyroelectric infrared sensor using a field effect transistor (FET). As this type of infrared sensor, the one shown in FIG. 2 is conventionally known. In the figure, 1 is a pyroelectric element, 2 is an F
ET and Rg are gate resistances, 3 is a drain lead wire, 4 is a source lead wire, 5 is a ground lead wire, and 6 is a shield case.
7は赤外透過窓である。8はドレインリード線3に接続
される電源である。FET2はゲート電極G、ドレイン
電極D、ソース電極Sを持っている。7 is an infrared transmitting window. 8 is a power source connected to the drain lead wire 3. FET2 has a gate electrode G, a drain electrode D, and a source electrode S.
本構成によれば、赤外透過窓7を通して焦電素子1のど
ちらかで受光された赤外線エネルギーの変化に応じて、
電荷量の変化が発生する。これによるゲート電位の変化
によりソース電流が制御され、この変化はセンサ外部に
適当なソース抵抗Rsを設けることで、Rs端子間のソ
ース電圧の変化として検出することができる。According to this configuration, depending on the change in infrared energy received by either of the pyroelectric elements 1 through the infrared transmission window 7,
A change in the amount of charge occurs. The source current is controlled by the change in the gate potential caused by this, and this change can be detected as a change in the source voltage between the Rs terminals by providing an appropriate source resistance Rs outside the sensor.
このような焦電型赤外線センサでは、シールドケース外
部のリード線3,4.5は高周波に対してインダクタン
ス成分を持っており、外来高周波電波により、誘導ノイ
ズを発生する。FET2には高周波領域でゲート、ドレ
イン電極間に帰還容量Cfが形成され、これによる帰還
のため、例えば端子3に発生した高周波ノイズがゲート
電位に影響を与え、センサ外部のソース電圧検出回路に
対し誤信号を与えるという問題がある。In such a pyroelectric infrared sensor, the lead wires 3, 4.5 outside the shield case have an inductance component with respect to high frequencies, and generate induction noise due to external high frequency radio waves. In FET2, a feedback capacitance Cf is formed between the gate and drain electrodes in the high frequency region, and due to this feedback, high frequency noise generated at terminal 3, for example, affects the gate potential and causes a drop in the source voltage detection circuit outside the sensor. There is a problem of giving a false signal.
本発明は、上記のような高周波によるセンサの誤信号発
生の問題を解決するためになされたものである。第1図
は、本発明の実施例を示すものである、第2図と同一部
分には同一符号を付しである。図において、シールドケ
ース内のドレイン電極りとソース電極Sに抵抗rDとr
5を各々直列に接続しである。The present invention has been made in order to solve the problem of generation of false signals from sensors due to high frequencies as described above. FIG. 1 shows an embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals. In the figure, resistors rD and r are connected to the drain electrode and source electrode S in the shield case.
5 are connected in series.
この構成によれば、抵抗r’D+r8は高周波誘導ノイ
ズに対してはりアクタンス成分により大きいインピーダ
ンスとして作用するが、1m前後の低周波赤外線検出信
号に対しては直流的な抵抗素子として作用する。従って
、センサからの誤信号の主要原因となるリード線3に誘
起され、ドレイン電極りに入力する高周波ノイズ及びソ
ース電極Sから出力されるFETにより増幅された高周
波ノイズに対して、抵抗ro、 r’sは抑制効果を持
ち、センサ出力としてリード線4に現われる誤信号は著
しく低下する。抵抗値rD、rsには検出出力の電圧効
果を実用的な範囲で小さく抑えるように選ばれる。According to this configuration, the resistor r'D+r8 acts as a large impedance due to the actance component against high frequency induced noise, but acts as a DC resistance element against a low frequency infrared detection signal of about 1 m. Therefore, the resistors ro and r are effective against high frequency noise induced in the lead wire 3 and input to the drain electrode and high frequency noise amplified by the FET output from the source electrode S, which are the main causes of erroneous signals from the sensor. 's has a suppressing effect, and the erroneous signal appearing on the lead wire 4 as a sensor output is significantly reduced. The resistance values rD and rs are selected so as to suppress the voltage effect of the detection output to a small value within a practical range.
第1表は、本発明の効果を示す430MHz、3W出力
及び825MHz、3W出力のトランシーバによるセン
サの誤信号発生距離テスト結果である。Table 1 shows the results of a sensor error signal generation distance test using transceivers of 430 MHz, 3 W output and 825 MHz, 3 W output, which demonstrate the effects of the present invention.
第1表
本テストには抵抗rD、r3として抵抗ペーストを用い
、1〜4にΩとしたが、センサの構造、用途等に応じて
他の抵抗の種類、抵抗値を選択しても良い。In Table 1, in this test, resistor paste was used as the resistors rD and r3, and Ω was set as 1 to 4, but other resistor types and resistance values may be selected depending on the structure and application of the sensor.
又、表には示していないが、ソース電極のみに抵抗r、
gを接続した場合も、外来高周波電波の影響を低減でき
る。Also, although not shown in the table, there is a resistance r, only at the source electrode.
Even when connected with g, the influence of external high frequency radio waves can be reduced.
第1図は本発明の実施例を示す説明図、第2図は従来の
焦電型赤外線センサを示す説明図である。
1・・・焦電素子
2・・・FET
ドレインリード線
ソースリード線
グランドリード線
シールドケース
赤外透過窓FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a conventional pyroelectric infrared sensor. 1...Pyroelectric element 2...FET Drain lead wire Source lead wire Ground lead wire Shield case Infrared transmission window
Claims (1)
ルドケース内に収納した焦電型赤外線センサにおいて、
上記電界効果トランジスタのドレイン電極とソース電極
の両方、又はソース電極のみに抵抗を直列に接続したこ
とを特徴とする焦電型赤外線センサ。A pyroelectric infrared sensor uses a pyroelectric element and a field effect transistor and houses them in a shield case.
A pyroelectric infrared sensor characterized in that a resistor is connected in series to both the drain electrode and the source electrode or only to the source electrode of the field effect transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63286066A JPH02130431A (en) | 1988-11-11 | 1988-11-11 | Pyroelectric type infrared sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63286066A JPH02130431A (en) | 1988-11-11 | 1988-11-11 | Pyroelectric type infrared sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02130431A true JPH02130431A (en) | 1990-05-18 |
Family
ID=17699511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63286066A Pending JPH02130431A (en) | 1988-11-11 | 1988-11-11 | Pyroelectric type infrared sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02130431A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04118637U (en) * | 1991-04-09 | 1992-10-23 | 能美防災株式会社 | flame detector |
EP0807806A2 (en) * | 1996-05-14 | 1997-11-19 | Heimann Optoelectronics GmbH | Circuit for the detection of electromagnetic radiation |
-
1988
- 1988-11-11 JP JP63286066A patent/JPH02130431A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04118637U (en) * | 1991-04-09 | 1992-10-23 | 能美防災株式会社 | flame detector |
EP0807806A2 (en) * | 1996-05-14 | 1997-11-19 | Heimann Optoelectronics GmbH | Circuit for the detection of electromagnetic radiation |
EP0807806A3 (en) * | 1996-05-14 | 1999-09-22 | Heimann Optoelectronics GmbH | Circuit for the detection of electromagnetic radiation |
KR100516529B1 (en) * | 1996-05-14 | 2006-01-12 | 페르킨엘머 옵토일렉트로닉스 게엠베하 | Electronic radiation trapping circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60125530A (en) | Infrared ray sensor | |
US4626678A (en) | Light detecting circuit | |
JPH0631777Y2 (en) | Noise filter | |
JPH02130431A (en) | Pyroelectric type infrared sensor | |
JPH0530105Y2 (en) | ||
JPH06138241A (en) | Preamplifier for semiconductor radiation measuring instrument | |
KR0131569Y1 (en) | Pyroelectric infrared sensor | |
US4303889A (en) | Filter circuit | |
US4087762A (en) | Cable equalization resonant amplifier circuit | |
US5399993A (en) | High input impedance amplifier | |
US4437069A (en) | Low noise tuned amplifier | |
JPH06260859A (en) | Device to detect electric power in output of electronic circuit | |
US3980965A (en) | Frequency response control circuit apparatus | |
JPH0311747Y2 (en) | ||
JPS58978Y2 (en) | charge amplifier | |
CN1050194C (en) | Pyroelectric infrared radiation detector | |
JPH0416494Y2 (en) | ||
US3979690A (en) | Failsafe controlled gain inverting amplifier apparatus | |
JPS60231178A (en) | Impedance measuring appratus | |
JPH0115221Y2 (en) | ||
KR930008062Y1 (en) | Crosstalk testing circuit | |
JPH0712118B2 (en) | How to prevent the generation of noise in electronic circuits | |
JPS62294305A (en) | Frequency conversion circuit | |
GB1035042A (en) | Low-pass electrical filter circuits | |
JPS63240204A (en) | Phase shift circuit |