JPH0213015B2 - - Google Patents

Info

Publication number
JPH0213015B2
JPH0213015B2 JP10272285A JP10272285A JPH0213015B2 JP H0213015 B2 JPH0213015 B2 JP H0213015B2 JP 10272285 A JP10272285 A JP 10272285A JP 10272285 A JP10272285 A JP 10272285A JP H0213015 B2 JPH0213015 B2 JP H0213015B2
Authority
JP
Japan
Prior art keywords
fluidized bed
ore
temperature
gas
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10272285A
Other languages
Japanese (ja)
Other versions
JPS61262590A (en
Inventor
Shiko Takada
Hisao Hamada
Eiji Katayama
Shinobu Takeuchi
Mitsuo Kadoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10272285A priority Critical patent/JPS61262590A/en
Publication of JPS61262590A publication Critical patent/JPS61262590A/en
Publication of JPH0213015B2 publication Critical patent/JPH0213015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はフエロアロイ、非鉄金属等の粉状鉱石
の流動層還元方法に関する。 〔従来の技術〕 鉄鉱石を固体状態のまま還元して製品、半製品
とすることは直接製鉄法の予備還元として、また
鉄粉製造の際の粗還元粉として古くから行なわれ
ているところである。 その製造方法の内、化学工業等の分野で触媒反
応や固体反応に広く利用されている流動層技術を
応用した流動層予備還元法も古くから試みられて
いる。1958年のH−Iron法、1965年のFIQR法、
1972年のHIB法なども全て流動層予備還元法で
ある。 流動層還元法の長所は粉体を流体のように扱う
ことができ、それゆえ連続化が容易になり、また
反応制御性も良いという所にある。しかしその反
面短所もあり、流動層を出た排ガスは通常その反
応温度を持ち、その熱の有効利用を考なければシ
ヤフト炉のように熱効率が良くならない。 この熱効率を向上させることに関してはセメン
ト業界で従来よりロータリーキルンに原料を供給
する前段にロータリーキルンから出た高温排ガス
をサスペンジヨンプレヒータと呼ぶ一連のサイク
ロンを連ねた気−固向流熱交換器に通し、原料を
予熱する方法が採られている。この方法は流動層
還元法にも応用でき、上記問題の一つの解決方法
といえる。 もう一つの点は流動層還元法において還元に必
要な反応潜熱、鉱石加熱、炉体からの熱放散に見
合う熱量の供給を還元ガスの顕熱、すなわち(還
元ガス予熱温度と反応温度の差)と(還元ガス
量)との積で供給しようとした場合、還元ガス量
が、流動化に必要な最低ガス量よりかなり多くな
り、そのため反応炉径、ダクト等が大きなものに
なり設備的に巨大になるか、もしくは還元ガス量
を控え目にした場合還元ガスの必要予熱温度を高
くする必要があり、そのまま流動層に入れた場
合、鉄鉱石が流動層内で焼結し、もはや流動状態
を維持することが不可能となる。 〔発明が解決しようとする問題点〕 本発明は上記流動層による粉状鉱石の予備還元
の欠点を解決し、熱効率の向上と、流動層内の焼
結の防止を図る方法を提供することを目的とする
ものである。 〔問題点を解決するための手段〕 このような流動層還元法の欠点を克服する方法
として本発明者等は固気熱交換装置例えばサスペ
ンジヨンプレヒータのガス入口煙道にガス吹込用
ノズルを設け、酸素を含むガス若干量を流入し、
流動層から排出される還元ガスの一部を燃焼さ
せ、反応温度より高い高温排ガスを作り、該排ガ
スを原料粉状鉱石と固気熱交換させて、反応温度
以上に鉱石を加熱し、その反応温度以上に加熱さ
れた鉱石を流動層に直接導入することにより、還
元反応熱(吸熱反応)、炉外熱放散等に見合う熱
量の一部を補い、流動層に導入する予熱した還元
ガスの流量または還元ガスの予熱温度を低減する
方法を創案した。 この場合、注意すべき点は、還元炉の排ガスで
はなく、還元ガスそれ自身を固気熱交換装置に導
入し、酸素を吹き込むことによつてその一部を燃
焼させ、鉱石を加熱することことは不可能である
ことが本発明者らの広範な研究により明らかにな
つたことである。即ち、鉱石を還元した後の排ガ
スはその還元能力が極端に落ちているため、さら
に酸素を加え一部を燃焼させた場合は、ほぼその
還元能力が無くなるため、そのガス温度が鉱石の
融点近くにまで上昇しても焼結トラブルを起こさ
ず、鉱石予熱ができることが本発明者らによつて
発見されたことによる。 また流動層還元の排ガスはその欠点でもある排
ガス温度が高いことがさらに本発明方法、すなわ
ち流動層還元排ガスを直接原料粉状鉱石と固気熱
交換させることを有利にしている。本発明のよう
に流動層還元法の排ガスを直接原料粉状鉱石と固
気熱交換させ、さらにそれにO2を添加すること
により反応温度以上に鉱石を予熱し、流動層還元
する技術思想はこれまで無い。 この場合勿論酸素の代りに空気を吹込むことも
可能である。また還元ガスはCO、H2が有効であ
る。 〔作用〕 流動層還元排ガスを原料粉状鉱石と固気熱交換
させる前にO2を含むガスを少量吹込み流動層出
口排ガスの一部を燃焼させ、流動層反応温度以上
に鉱石を加熱し、流動層に供給することは還元ガ
ス量の減少もしくは還元ガス予熱温度の低下の効
果がある。 還元ガス量を減少させることができればダクト
径、還元炉容量、鉱石予熱炉、計算設備全体を小
さくすることができ、設備費の低減につながる。
また還元ガス予熱温度の低下は予熱に必要な燃料
の低減もさることながら、流動層内での鉱石焼結
防止の点から非常に有効である。 流動層を用いた鉱石の還元技術において800℃
の反応温度で運転する場合、1200℃近い高温ガス
を分散板を通して流動層内に導入すると、流動層
内の分散板ノズルを出た所では、まだ1200℃近い
温度を保持しているため、部分的に還元された鉱
石の焼結が起こる可能性が非常に高い。それゆえ
流動層による鉱石の還元法においては焼結しない
反応温度の選択とその反応温度にできるだけ近い
還元ガス温度でガス供給できることが安定操業の
要である。 以上のように還元反応潜熱や炉外熱放散に見合
う熱量を補うのに鉱石を反応温度以上に加熱する
必要がある。一方還元された鉱石の焼結を防ぐた
めに1350℃以下にする必要がある。 〔実施例〕 第1図に示す装置を用いて行つた本発明の実施
例を示す。 還元炉1、サスペンジヨンプレヒータ3を含む
高温反応を行なわせる装置の主要部分は熱損失を
できるだけ少なくするために耐火断熱材10で保
護されている。 還元ガス供給装置9より供給される還元ガス
H2は予熱装置8で所定温度まで昇温され、ガス
分散板7を介して流動層に導入される。原料鉄鉱
石はあらかじめ整粒、乾燥したものを実験に用
い、鉱石供給装置2よりサスペンジヨンプレヒー
タ3内に導入され流動層出口排ガスと熱交換しな
がら流動層下部に取り付けらた鉱石供給口11よ
り流動層内に入り所定温度で還元される。サスペ
ンジヨンプレヒータ3には流動層出口排ガス導入
部に本発明を実行できるように酸素吹込みノズル
4を設けてある。流動層下部には鉱石の連続排出
を可能とする排出口6がある。 本発明の効果を明らかにする操業実験は鉱石供
給量を28.4Kg/H一定、還元鉄鉱石排出量を19.4
Kg/H一定、還元炉反応温度を800〜810℃一定、
使用鉄鉱石銘柄、粒径を2mm以下のマウントニユ
ーマン鉱石一定とし、他の操業条件並びに結果は
第1表に示した。操業は 鉄鉱石をサスペンジヨンプレヒータを使わず
に直接流動層へ装入した場合(比較例) 流動層出口排ガスのみで鉄鉱石予熱を行う通
常のサスペンジヨンプレヒータの運転操業を行
つた場合(比較例) 本発明の流動層出口排ガスの一部を燃焼し、
鉄鉱石温度を反応温度以上に高めた場合の操
業、その場合、上記、と同じ還元ガス量で
行つた場合の還元ガス予熱温度低下が可能とな
る効果を顕著に示す一例(実施例) 同様に本発明の流動層出口排ガスの一部を撚
焼し、鉄鉱石温度を反応温度以上に高めた場合
の操業でその場合、と同じ還元ガス予熱温度
で操業した場合、必要還元ガス量が減少できる
効果を顕著に示す一例(実施例) である。 この場合鉄鉱石予熱温度は鉱石供給量調整用ダ
ンパ12を閉じた場合の温度計13で測定した温
度をもつて鉄鉱石予熱温度の比較代表値とした。
撹拌機構15は流動化状態が不良になつた時のみ
使用した。 第1表の実施例から明らかなようにサスペンジ
ヨンプレヒータ3の前にO2を少量吹込み流動層
出口排ガスの一部を燃焼させ、流動層還元反応温
度以上に鉄鉱石を加熱し、流動層に供給すること
は還元ガス量の減少もしくは還元ガス予熱温度の
低下の効果をもたらし、より安定かつ経済的な流
動層還元を達成することができた。また本発明は
クロム鉱石など他の鉱石に対しても同様に行い効
果があることが実験により確認されている。
[Industrial Application Field] The present invention relates to a fluidized bed reduction method for powdery ores such as ferroalloys and non-ferrous metals. [Prior art] Reducing iron ore in its solid state to produce products and semi-finished products has been carried out for a long time as preliminary reduction in the direct iron manufacturing process and as coarse reduced powder in the production of iron powder. . Among the manufacturing methods, a fluidized bed pre-reduction method that applies fluidized bed technology, which is widely used for catalytic reactions and solid reactions in fields such as the chemical industry, has been attempted for a long time. H-Iron Act of 1958, FIQR Act of 1965,
The HIB method of 1972 and other methods are all fluidized bed preliminary reduction methods. The advantage of the fluidized bed reduction method is that the powder can be treated like a fluid, making it easy to carry out continuous production and providing good reaction control. However, on the other hand, it also has a disadvantage: the exhaust gas leaving the fluidized bed usually has the same reaction temperature, and unless the effective use of that heat is considered, the thermal efficiency will not be as good as in a shaft furnace. In order to improve this thermal efficiency, the cement industry has traditionally used a method in which the high-temperature exhaust gas emitted from the rotary kiln is passed through an air-solid counterflow heat exchanger called a suspension preheater, which is a series of cyclones connected before feeding raw materials to the rotary kiln. A method is used to preheat the raw materials. This method can also be applied to the fluidized bed reduction method, and can be said to be one solution to the above problems. Another point is that in the fluidized bed reduction method, the supply of heat corresponding to the latent heat of reaction necessary for reduction, ore heating, and heat dissipation from the furnace body is determined by the sensible heat of the reducing gas, that is, the difference between the preheating temperature of the reducing gas and the reaction temperature. If we try to supply the product of Or, if the amount of reducing gas is kept modest, the required preheating temperature of the reducing gas must be increased, and if the iron ore is placed in the fluidized bed as it is, the iron ore will sinter in the fluidized bed and will no longer maintain its fluidized state. It becomes impossible to do so. [Problems to be Solved by the Invention] The present invention aims to solve the drawbacks of the preliminary reduction of powdery ore using a fluidized bed, and to provide a method for improving thermal efficiency and preventing sintering in the fluidized bed. This is the purpose. [Means for Solving the Problems] As a method to overcome the drawbacks of the fluidized bed reduction method, the present inventors have provided a gas blowing nozzle in the gas inlet flue of a solid-gas heat exchange device, such as a suspension preheater. , some amount of gas containing oxygen is introduced,
A part of the reducing gas discharged from the fluidized bed is combusted to produce high-temperature exhaust gas higher than the reaction temperature, and the exhaust gas is subjected to solid-gas heat exchange with the raw material powder ore to heat the ore to a temperature higher than the reaction temperature. By directly introducing the ore heated above the temperature into the fluidized bed, part of the amount of heat commensurate with reduction reaction heat (endothermic reaction), heat dissipation outside the furnace, etc. is compensated for, and the flow rate of the preheated reducing gas introduced into the fluidized bed is increased. Alternatively, we devised a method to reduce the preheating temperature of the reducing gas. In this case, it is important to note that the reducing gas itself, rather than the exhaust gas from the reducing furnace, is introduced into the solid-gas heat exchange device, and by blowing in oxygen, a part of it is combusted and the ore is heated. It has become clear through extensive research by the present inventors that this is not possible. In other words, the reducing ability of the exhaust gas after reducing the ore is extremely low, so if oxygen is added and some of it is combusted, the reducing ability is almost completely lost, and the gas temperature is close to the melting point of the ore. This is because the present inventors discovered that ore can be preheated without causing sintering trouble even if the temperature rises to . Further, the high exhaust gas temperature of the fluidized bed reduction exhaust gas, which is also a drawback thereof, makes the method of the present invention, that is, the direct solid-gas heat exchange of the fluidized bed reduction exhaust gas with the raw material powder ore, advantageous. This is the technical concept of fluidized bed reduction in which the exhaust gas of the fluidized bed reduction method is directly subjected to solid gas heat exchange with the raw material powder ore, and O 2 is added thereto to preheat the ore to a temperature higher than the reaction temperature. Not until then. In this case, of course, it is also possible to blow air instead of oxygen. Also, CO and H 2 are effective reducing gases. [Operation] Before the fluidized bed reduced exhaust gas is subjected to solid-gas heat exchange with the raw material powder ore, a small amount of gas containing O 2 is injected to burn a part of the fluidized bed outlet exhaust gas and heat the ore above the fluidized bed reaction temperature. , supplying it to a fluidized bed has the effect of reducing the amount of reducing gas or lowering the reducing gas preheating temperature. If the amount of reducing gas can be reduced, the duct diameter, reduction furnace capacity, ore preheating furnace, and calculation equipment as a whole can be reduced, leading to a reduction in equipment costs.
Further, lowering the reducing gas preheating temperature is very effective not only in reducing the amount of fuel required for preheating but also in preventing ore sintering in the fluidized bed. 800℃ in ore reduction technology using fluidized bed
When operating at a reaction temperature of 1,200°C, when high-temperature gas is introduced into the fluidized bed through the dispersion plate, the temperature at the point where it exits the dispersion plate nozzle in the fluidized bed is still close to 1,200°C, so a partial Sintering of the reduced ore is very likely to occur. Therefore, in the ore reduction method using a fluidized bed, it is important to select a reaction temperature that does not cause sintering and to be able to supply gas at a reducing gas temperature as close as possible to the reaction temperature for stable operation. As described above, it is necessary to heat the ore above the reaction temperature in order to compensate for the amount of heat commensurate with the latent heat of the reduction reaction and heat dissipation outside the furnace. On the other hand, in order to prevent sintering of the reduced ore, it is necessary to keep the temperature below 1350°C. [Example] An example of the present invention carried out using the apparatus shown in FIG. 1 will be described. The main parts of the apparatus for carrying out the high temperature reaction, including the reduction furnace 1 and the suspension preheater 3, are protected by a refractory heat insulating material 10 in order to minimize heat loss. Reducing gas supplied from reducing gas supply device 9
H 2 is heated to a predetermined temperature in the preheating device 8 and introduced into the fluidized bed via the gas distribution plate 7 . The raw material iron ore used in the experiment was sized and dried in advance, and was introduced into the suspension preheater 3 from the ore supply device 2, and while exchanging heat with the fluidized bed outlet exhaust gas, it was passed through the ore supply port 11 attached at the bottom of the fluidized bed. It enters the fluidized bed and is reduced at a predetermined temperature. The suspension preheater 3 is provided with an oxygen blowing nozzle 4 at the fluidized bed outlet exhaust gas introduction section so that the present invention can be carried out. There is a discharge port 6 at the bottom of the fluidized bed that allows continuous discharge of ore. In an operational experiment to clarify the effects of the present invention, the ore supply amount was kept constant at 28.4 kg/h, and the reduced iron ore discharge amount was kept at 19.4 kg/h.
Kg/H constant, reduction furnace reaction temperature constant 800-810℃,
The brand of iron ore used and the particle size of Mount Newman ore of 2 mm or less were constant, and other operating conditions and results are shown in Table 1. The operation is as follows: When iron ore is charged directly into the fluidized bed without using a suspension preheater (comparative example) When a normal suspension preheater is operated to preheat the iron ore using only the exhaust gas at the outlet of the fluidized bed (comparative example) ) Burning a part of the fluidized bed outlet exhaust gas of the present invention,
An example (example) that clearly shows the effect of reducing the reducing gas preheating temperature when the iron ore temperature is raised above the reaction temperature, and in that case, the same amount of reducing gas as above is used. In an operation in which a part of the fluidized bed outlet exhaust gas of the present invention is twisted and fired and the iron ore temperature is raised above the reaction temperature, the required amount of reducing gas can be reduced if the operation is performed at the same reducing gas preheating temperature. This is an example (example) that clearly shows the effect. In this case, as the iron ore preheating temperature, the temperature measured with the thermometer 13 when the damper 12 for adjusting the ore supply amount was closed was taken as a representative value for comparison of the iron ore preheating temperature.
The stirring mechanism 15 was used only when the fluidization state became poor. As is clear from the examples in Table 1, a small amount of O 2 is injected before the suspension preheater 3 to burn part of the fluidized bed outlet exhaust gas, heat the iron ore above the fluidized bed reduction reaction temperature, and This had the effect of reducing the amount of reducing gas or lowering the reducing gas preheating temperature, making it possible to achieve more stable and economical fluidized bed reduction. Furthermore, it has been confirmed through experiments that the present invention is similarly effective on other ores such as chromium ore.

〔発明の効果〕〔Effect of the invention〕

本発明方法により反応温度より高い温度に予熱
した粉状鉱石を流動層で還元反応させるので、還
元ガスの温度を低くしその量を抑制して安定的に
経済的に効率よく流動層還元を行うことができ、
従来の流動層炉の欠点を改善することができた。
By the method of the present invention, powdered ore preheated to a temperature higher than the reaction temperature is subjected to a reduction reaction in a fluidized bed, so the temperature of the reducing gas is lowered and the amount thereof is suppressed, thereby achieving stable, economical and efficient fluidized bed reduction. It is possible,
The drawbacks of the conventional fluidized bed furnace could be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いる装置の一例の縦
断面図である。 1…還元炉、2…鉱石供給装置、3…サスペン
ジヨンプレヒータ、4…酸素吹込みノズル、5…
還元ガス入口、6…還元鉄排出口、7…ガス分散
板、8…還元ガス予熱装置、9…還元ガス供給装
置、10…耐火断熱材、11…鉱石供給口、12
…鉱石供給量調整用ダンパ、13…鉱石温度測定
用熱電対、14…炉内温度測定用熱電対、15…
撹拌機構。
FIG. 1 is a longitudinal cross-sectional view of an example of an apparatus used for carrying out the present invention. 1... Reduction furnace, 2... Ore supply device, 3... Suspension preheater, 4... Oxygen blowing nozzle, 5...
Reducing gas inlet, 6...Reduced iron outlet, 7...Gas distribution plate, 8...Reducing gas preheating device, 9...Reducing gas supply device, 10...Refractory insulation material, 11...Ore supply port, 12
...Damper for ore supply amount adjustment, 13...Thermocouple for measuring ore temperature, 14...Thermocouple for measuring furnace temperature, 15...
Stirring mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 粉状の鉱石を高温の還元ガスで流動還元させ
る粉状鉱石の流動層還元法において、流動層出口
排ガスを、酸素を吹き込んでその一部を燃焼させ
ると共に、該排ガスを原料粉状鉱石と固気熱交換
させて粉状鉱石を加熱し、その粉状鉱石を流動層
に導入することを特徴とする粉状鉱石の流動層還
元方法。
1. In the fluidized bed reduction method for powdered ore in which powdered ore is fluidized and reduced with high-temperature reducing gas, oxygen is blown into the fluidized bed exit exhaust gas to burn a part of it, and the exhaust gas is combined with the raw material powdered ore. A fluidized bed reduction method for powdery ore, characterized by heating the powdery ore through solid-air heat exchange and introducing the powdery ore into a fluidized bed.
JP10272285A 1985-05-16 1985-05-16 Fluidized-bed reducing method of powdered ore Granted JPS61262590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272285A JPS61262590A (en) 1985-05-16 1985-05-16 Fluidized-bed reducing method of powdered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272285A JPS61262590A (en) 1985-05-16 1985-05-16 Fluidized-bed reducing method of powdered ore

Publications (2)

Publication Number Publication Date
JPS61262590A JPS61262590A (en) 1986-11-20
JPH0213015B2 true JPH0213015B2 (en) 1990-04-03

Family

ID=14335157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272285A Granted JPS61262590A (en) 1985-05-16 1985-05-16 Fluidized-bed reducing method of powdered ore

Country Status (1)

Country Link
JP (1) JPS61262590A (en)

Also Published As

Publication number Publication date
JPS61262590A (en) 1986-11-20

Similar Documents

Publication Publication Date Title
US5118479A (en) Process for using fluidized bed reactor
US4226586A (en) Method and apparatus for the thermal treatment of fine-grained material with hot gases
CA2387690A1 (en) Method for gasifying organic materials and mixtures of materials
CN110093504A (en) A kind of method and system using high calcium-magnesium-titanium heading preparation rich-titanium material
JP2732522B2 (en) Equipment for producing iron or non-ferrous metals from self-soluble or non-self-soluble, self-reducing ores ores
JP3057576B2 (en) Method and apparatus for heat treatment of particulate material
US3203681A (en) Method for heat treatment of powdered raw meterial
US4636342A (en) Method for continuously manufacturing non-fired pellets
US3498594A (en) Cement burning process and apparatus
JPS62210048A (en) Production of nonoxide powder
US20120328507A1 (en) Reduced moisture chemical reactions
US1742750A (en) Production and utilization of carbon monoxide
US6749425B1 (en) Indirect heating furnace
JP2001526318A (en) Method for producing direct reduced iron in multistage furnaces
JPH0213015B2 (en)
CA2096906A1 (en) Method of producing cement clinker
US2831759A (en) Apparatus and method for producing sponge iron
JPS6360133A (en) Granulation by jet stream bed
US4416696A (en) Method for heat treating cement clinker raw materials
US4416697A (en) Method for preheating cement clinker raw materials
CA1276433C (en) Process of carrying out high-temperature reactions
JPH0130888B2 (en)
JPS62225887A (en) Fluidized-bed reduction method of powdered ore
JPS62227020A (en) Reforming and heating method for reducing gas generated in melt reduction furnace
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace