JPH021300B2 - - Google Patents

Info

Publication number
JPH021300B2
JPH021300B2 JP15119783A JP15119783A JPH021300B2 JP H021300 B2 JPH021300 B2 JP H021300B2 JP 15119783 A JP15119783 A JP 15119783A JP 15119783 A JP15119783 A JP 15119783A JP H021300 B2 JPH021300 B2 JP H021300B2
Authority
JP
Japan
Prior art keywords
photoreceptor
cgl
ctl
layer
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15119783A
Other languages
Japanese (ja)
Other versions
JPS6043663A (en
Inventor
Akihiro Ootsuki
Nobuyuki Takahashi
Shoichi Nagamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15119783A priority Critical patent/JPS6043663A/en
Publication of JPS6043663A publication Critical patent/JPS6043663A/en
Publication of JPH021300B2 publication Critical patent/JPH021300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はキヤリア伝搬層(以下CTLと記す)
およびキヤリア発生層(以下CGLと記す)を有
する機能分離型電子写真用セレン感光体に関す
る。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a carrier propagation layer (hereinafter referred to as CTL).
and a functionally separated selenium photoreceptor for electrophotography having a carrier generation layer (hereinafter referred to as CGL).

〔従来技術とその問題点〕[Prior art and its problems]

機能分離型感光体において、CTLとCGLの界
面においてはテルルなどの成分元素の濃度に差が
あるため、CTLとCGLの間のキヤリアの移動が
困難である。そのためにCTLとCGLの間に接合
層を介在させ、キヤリアの移動を容易にすること
が知られている。この種の機能分離型感光体の接
合層としては、例えば日本応用物理学会英文誌
(Japanese Journal of Applied Physics)第20
巻、第1号(1981年)、pp119〜124に記載されて
いるように実験室レベルでは純セレンを用いたも
のが知られているが、まだ十分なものとは言えな
い。特に低電界に於ては(1〜5V/μm以下)、
光照射に依り発生したキヤリアが接合部に於てシ
ヨツトキバリアー型の注入を示す事から、感度が
この注入性能に依つて左右されると言う現像が起
こり、結局限られた露光時間では、光減衰しきれ
ない極めて残留電位の高い感光体となる事が知ら
れている。この例の様な感光体では、繰返し複写
時の残留電位が更らに増加する傾向にある事は言
うまでもない。
In a functionally separated photoreceptor, there is a difference in the concentration of component elements such as tellurium at the interface between CTL and CGL, making it difficult for carriers to move between CTL and CGL. For this purpose, it is known that a bonding layer is interposed between CTL and CGL to facilitate carrier movement. As a bonding layer for this type of functionally separated photoreceptor, for example, Japanese Journal of Applied Physics No. 20
Vol., No. 1 (1981), pp. 119-124, methods using pure selenium are known at the laboratory level, but they are still not sufficient. Especially in low electric fields (1 to 5 V/μm or less),
Since the carrier generated by light irradiation shows a shot barrier type injection at the joint, development occurs in which the sensitivity depends on this injection performance, and after all, within a limited exposure time, the light It is known that this results in a photoreceptor with an extremely high residual potential that cannot be completely attenuated. Needless to say, in a photoreceptor like this example, the residual potential during repeated copying tends to further increase.

他の接合層の例としては塩素を添加したセレン
からなるものが知られている。この場合は、低い
残留電位を実現するという点では所期の目的を達
しているが、次のような欠点を有し、実用性が十
分でない。
Other bonding layers made of selenium doped with chlorine are known. In this case, although the intended purpose has been achieved in terms of realizing a low residual potential, it has the following drawbacks and is not sufficiently practical.

(1) Clは昇華性の強い物質であり、これをSeに
所定量だけ且つ均一に混合させて、所望のCl添
加Seを作成する事は極めて困難である。
(1) Cl is a substance with strong sublimation properties, and it is extremely difficult to uniformly mix a predetermined amount of Cl with Se to create the desired Cl-added Se.

(2) 蒸着時、SeやSe−Teと共に真空装置内に付
着したCl添加Seあるいは感光体からSeやSe−
Teと共に回収したCl添加Seを精製、再使用す
る事は極めて困難である。特にSe中にClが微
量でも混入すると、温度特性が著しく劣化する
ことから、回収原料を使用することができず、
混在するSeやSe−Teを含めて廃棄することに
なるので原料コストの増大につながる。
(2) During vapor deposition, Cl-doped Se adhered to the vacuum equipment together with Se and Se-Te, or Se and Se-Te from the photoreceptor.
It is extremely difficult to purify and reuse Cl-added Se recovered together with Te. In particular, if even a small amount of Cl is mixed into Se, the temperature characteristics will deteriorate significantly, making it impossible to use recovered raw materials.
Since the mixed Se and Se-Te must be disposed of, this leads to an increase in raw material costs.

CTLとCGLの接合性を改良する他の方法とし
ては、例えばSe−Te系でそれを実現する場合に、
CTLに低濃度Te−Se、CGLに高濃度Te−Seを
用いると共に、CTLのTe濃度に勾配を付け、そ
のCGL側の部分のTe濃度が、CGLのCTL側Te
濃度に対し、その差が15wt%以下になる様に
(望ましくは10wt%以下)制御すると言うもので
ある。あるいは、CTLにTe濃度勾配をつけずに、
CGLに於てTe濃度勾配をつけて上記条件で接合
させても、同様の良好な接合性能は得られる。あ
るいはまたCTL・CGL共Te濃度勾配をつけ、上
記条件で接合させても同様の良好な接合性能が得
られるのは無論である。しかしこれらの場合には
次の挙げる欠点が存在する。
Another way to improve the bonding properties of CTL and CGL is to use Se-Te systems, for example.
In addition to using low-concentration Te-Se for CTL and high-concentration Te-Se for CGL, a gradient is added to the Te concentration of CTL, and the Te concentration on the CGL side of the CGL is
The concentration is controlled so that the difference is 15 wt% or less (preferably 10 wt% or less). Alternatively, without adding a Te concentration gradient to the CTL,
Similar good bonding performance can be obtained even if the CGL is bonded under the above conditions with a Te concentration gradient. Alternatively, it goes without saying that similar good bonding performance can be obtained by applying a Te concentration gradient to both CTL and CGL and bonding under the above conditions. However, these cases have the following drawbacks.

(1) SeとTeとは蒸気圧が異なる為、望ましいTe
濃度勾配を、再現性良く、安定して作製する事
は非常に困難な技術である。従つて、CTLあ
るいはCGL、またはその両者のTe濃度勾配を
適正に制御する事により、CTLのCGL側Te濃
度をCGLのCTL側Te濃度差を10wt%以下にす
るのは困難で生産性に乏しい。
(1) Desirable Te because Se and Te have different vapor pressures
It is a very difficult technique to create a concentration gradient stably with good reproducibility. Therefore, by appropriately controlling the Te concentration gradient of CTL, CGL, or both, it is difficult and unproductive to reduce the Te concentration difference between the CGL side of CTL and the CGL side to less than 10 wt%. .

(2) CTLとCGLの良好な接合性を得るために、
CTLに大きな濃度勾配をつける事を再現性良
く制御するのは極めて困難である。なぜなら、
CTLはCGLに比して厚く通常数十μm程度の厚
みを有しているので、これだけの膜厚における
Te濃度の再現性良い制御は困難である。また、
CTLのTe濃度を出来るだけ低く抑えて温度特
性等に配慮し(例えば0%)、CGLのTe濃度に
大きな勾配をつける事で接合性を保証しようと
言う感光体に於ては、表面Te濃度とその直下
のTe濃度との差が大きい事に依る、繰返し複
写時やリフアイニング時の表面層の削れから来
る感度減小、或いは高温放置下で進行するTe
拡散に起因する感度減小が発生し、実用上重大
な支障をきたすことがある。
(2) To obtain good conjugation between CTL and CGL,
It is extremely difficult to control the creation of large concentration gradients in CTLs with good reproducibility. because,
Since CTL is thicker than CGL and usually has a thickness of about several tens of micrometers,
It is difficult to control Te concentration with good reproducibility. Also,
In a photoreceptor, the surface Te concentration should be kept as low as possible to ensure bonding properties by keeping the CTL Te concentration as low as possible (for example, 0%) and creating a large gradient in the CGL Te concentration. Sensitivity decreases due to abrasion of the surface layer during repeated copying or refining due to a large difference between the Te concentration directly below it, or Te concentration that progresses when left at high temperatures.
Decrease in sensitivity due to diffusion may occur, causing serious problems in practical use.

〔発明の目的〕[Purpose of the invention]

本発明は上述の欠点を除去し、CTLとCGLの
間のバリヤの影響を緩和するための接合層を温度
特性その他の特性を低下させることなく生産上容
易な手段で設けた機能分離型電子写真用感光体を
提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks and provides a functionally separated type electrophotographic device in which a bonding layer for alleviating the influence of the barrier between CTL and CGL is provided by means that are easy to produce without deteriorating temperature characteristics or other characteristics. The purpose of the present invention is to provide a photoreceptor for use.

〔発明の要点〕[Key points of the invention]

本発明は酸素を添加していないCTLとCGLの
間に2〜10μmの厚さの酸素を添加したSe層を介
在させることによつて円滑な接合性能を実現しよ
うとするものである。
The present invention attempts to achieve smooth bonding performance by interposing an oxygen-added Se layer with a thickness of 2 to 10 μm between oxygen-free CTL and CGL.

Seに酸素を添加した場合、直流電気伝導度が
オーダ的に増加すると共に、活性化エネルギの著
しい減少が起こる事が知られている。CTLと
CGLとの間に酸素添加Se層を設ける事は、両者
の合金元素の濃度差に基づくエネルギーギヤツプ
の相違を、中間的なエネルギーギヤツプを有する
層を設ける事で緩和する事に相当すると考えら
れ、これに依り、円滑な接合性能を有するに至る
ものと推定される。
It is known that when oxygen is added to Se, the DC electrical conductivity increases in an orderly manner and the activation energy significantly decreases. CTL and
Providing an oxygen-doped Se layer between the CGL and CGL is equivalent to alleviating the difference in energy gap due to the difference in concentration of alloying elements between the two by providing a layer with an intermediate energy gap. It is thought that this is the reason why smooth bonding performance is achieved.

本発明はCTL、CGLのみを有する機能分離型
感光体に限らず表面に表面保護層(OCL)を有
するものに対しても有効に実施できる。
The present invention can be effectively implemented not only for functionally separated photoreceptors having only CTL and CGL but also for those having a surface protective layer (OCL) on the surface.

〔発明の実施例〕[Embodiments of the invention]

本発明による感光体は、例えば第1図に示すよ
うにアルミニウム基体1の上に純Seからなる
CTL2、酸素添加Seからなる接合層3、Se−Te
からなるCGL4が積層されている。
The photoreceptor according to the present invention is made of pure Se on an aluminum substrate 1, for example, as shown in FIG.
CTL2, bonding layer 3 made of oxygen-doped Se, Se-Te
CGL4 consisting of is laminated.

実施例 1 第1図に示す構造の感光体を形成するために、
真空蒸着装置内の回転支持軸にアルミニウム素管
を取りつけ、Seを収容した蒸発源を抵抗加熱方
式で加熱して、素管1上に純Se層2を63μmの厚
さに蒸着した。基体温度は61℃、蒸着中の真空度
は5×10-5Torr以上であつた。純Se層2の蒸着
が終了した時点で真空を破り、蒸発源に酸素添加
Se原料を投入し、再び真空引きを行つて純Seと
同一条件で純Se層2の上に酸素添加Se層3を
5μmの厚さに積層した。
Example 1 In order to form a photoreceptor having the structure shown in FIG.
An aluminum raw tube was attached to a rotating support shaft in a vacuum evaporation apparatus, and an evaporation source containing Se was heated by a resistance heating method to deposit a pure Se layer 2 on the raw tube 1 to a thickness of 63 μm. The substrate temperature was 61° C., and the degree of vacuum during deposition was 5×10 −5 Torr or higher. When the deposition of pure Se layer 2 is completed, the vacuum is broken and oxygen is added to the evaporation source.
Inject the Se raw material, evacuate again, and form the oxygen-added Se layer 3 on top of the pure Se layer 2 under the same conditions as for pure Se.
Laminated to a thickness of 5 μm.

第2図は酸素添加Se原料の製法を示し、セレ
ン11は、硝酸・過酸化水素水等に対して耐性を
有する容器12に収納されており、この容器12
は同じ耐性を有する蓋13にて密閉されている。
同じ耐性を有する容器14中には、硝酸或いは過
酸化水素水等、セレン11に対して酸化性の性質
を持つ溶液15が満たされている。この状態で暫
く放置するとセレン11は酸化され、表面は白濁
化して来る。放置時間を短縮するには、放置時、
溶液15に光をあてるか、加熱するか、或いはそ
の両者を同時に行えば良い。この様にして得られ
た酸素添加Seを粉砕し、湿式分析を行つた所、
3.28×103O2重量ppmであつた。酸素添加Se蒸着
後再度真空を破り、40メツシユ980メツシユの大
きさに調製された13.5wt%のSe−Te合金を、蒸
発源の原料供給系に42g並べた後、再度真空引き
を行つた。蒸発源の炭素ボートに通電し、ボート
温度が450℃に上昇した時点で原料を滑らかにボ
ートに供給し、酸素添加Se層3の上にSeTe合金
のフラツシユ蒸着を行い、厚さ2μmのCGL4を
作製した。
Fig. 2 shows a method for producing an oxygen-added Se raw material, in which selenium 11 is stored in a container 12 that is resistant to nitric acid, hydrogen peroxide, etc.
are sealed with a lid 13 having the same resistance.
A container 14 having the same resistance is filled with a solution 15 having oxidizing properties to selenium 11, such as nitric acid or hydrogen peroxide. If left in this state for a while, selenium 11 will be oxidized and the surface will become cloudy. To shorten the time left unattended, when leaving
The solution 15 may be exposed to light, heated, or both may be performed simultaneously. When the oxygenated Se obtained in this way was crushed and subjected to wet analysis,
It was 3.28×10 3 O 2 ppm by weight. After the oxygen-added Se vapor deposition, the vacuum was broken again, and 42 g of 13.5 wt% Se-Te alloy prepared to the size of 40 meshes and 980 meshes was arranged in the raw material supply system of the evaporation source, and then vacuum was drawn again. The carbon boat serving as the evaporation source is energized, and when the boat temperature rises to 450°C, the raw material is smoothly supplied to the boat, and a flash of SeTe alloy is deposited on the oxygen-added Se layer 3 to form CGL4 with a thickness of 2 μm. Created.

第4図は本発明の実施例1の第1図の構造をも
つ感光体のゼログラフイツク特性(Xerographic
Gain)を示す。Xerographic Gainの電界依存の
データ(a)により、この感光体は低電界(約0.2v/
μm、従つて約14V)迄十分に感度のある。従つ
てCTLとCGLとの間にバリヤのない、良好な接
合性能を有する感光体である事がわかる。
FIG. 4 shows the xerographic characteristics of the photoreceptor having the structure shown in FIG. 1 of Example 1 of the present invention.
Gain). According to the electric field dependence data (a) of Xerographic Gain, this photoreceptor is
µm, therefore approximately 14V). Therefore, it can be seen that the photoreceptor has good bonding performance with no barrier between CTL and CGL.

第5図は、第3図構造を持つ比較例の感光体の
Xerographic Gainのデータである。
Xerographic Gainの電界依存のデータ(a)依り、
この感光体は、約1V/μm程度の電界でしきい値
を持つており、従つて、約70V程度依り下には電
位が下がらない、残留電位の高い感光体である事
がわかる。
Figure 5 shows a comparative photoreceptor having the structure shown in Figure 3.
This is Xerographic Gain data.
Based on the electric field dependence data (a) of Xerographic Gain,
This photoreceptor has a threshold value at an electric field of about 1 V/μm, and therefore, it can be seen that the photoreceptor has a high residual potential, and the potential does not drop below about 70 V.

第6図は、この感光体の繰返し電位挙動の評価
装置を示す。感光体21は図中の矢印の方向に周
速100mm/secの条件で回転する。帯電器22で帯
電を行い、この電位をプローブ23及びプローブ
25で測定している。露光光源24は点滅され、
露光条件は半減衰露光量の5倍に設定されてい
る。除電光26は半減衰露光量の10倍に設定され
ており、除電後の電位は、プローブ27で測定し
ている。測定結果によれば実施例1の接合層を有
する感光体の露光後の電位の最終値は60V、除電
後電位の最終値は5Vであり、一方接合層を有し
ない第3図に示す構造の比較例感光体では露光後
電位の最終値が80V、除電後電位の最終値が40V
で、本発明による感光体が極めて疲労特性の良い
ことが判つた。
FIG. 6 shows an apparatus for evaluating the repeated potential behavior of this photoreceptor. The photoreceptor 21 rotates in the direction of the arrow in the figure at a circumferential speed of 100 mm/sec. A charger 22 performs charging, and a probe 23 and a probe 25 measure this potential. The exposure light source 24 is blinked,
The exposure condition is set to five times the half-attenuation exposure amount. The static elimination light 26 is set to 10 times the half-attenuation exposure, and the potential after static elimination is measured with a probe 27. According to the measurement results, the final value of the potential after exposure of the photoreceptor having the bonding layer of Example 1 was 60 V, and the final value of the potential after static elimination was 5 V. On the other hand, the photoconductor having the structure shown in FIG. In the comparative example photoreceptor, the final value of the potential after exposure is 80V, and the final value of the potential after static elimination is 40V.
It was found that the photoreceptor according to the present invention has extremely good fatigue properties.

次に実施例1と同じ製作条件で接合層の厚さを
0(比較例と同じ)0.5μm、1μm、2μm、5μm、
10μmと変化させて積層したあと、CGLとして25
重量%のSe−Te合金を形成した感光体について
ゼログラフイ特性および繰返し疲労特性を調べ
た。
Next, under the same manufacturing conditions as Example 1, the thickness of the bonding layer was 0 (same as the comparative example) 0.5 μm, 1 μm, 2 μm, 5 μm,
After laminating with varying thickness of 10 μm, CGL is 25
The xerographic properties and cyclic fatigue properties of the photoreceptor formed of Se-Te alloy of % by weight were investigated.

第7図は、実施例1で示したXerographic
Gainの電界依存データに於ける電界しきい値に
関し、一つの線図に纒めたものである。CGLが
25重量%とTe濃度が高い場合においても酸素添
加Seの接合層の効果は顕著である。この場合、
接合層の膜厚は2μm以上、望ましくは5μm以上が
適正と言える。第8図は第6図の装置で測定した
露光後電位(プローブ25の電位)の最終値を整
理したものである。酸素添加Seの接合層の効果
は顕著であると言える。ただし、接合層の膜厚を
必要以上に厚くした場合、温度特性の劣化、帯電
低下の増加が引き起こされるので10μm以下が望
ましい。
FIG. 7 shows the Xerographic diagram shown in Example 1.
This diagram summarizes the electric field threshold value in the electric field dependence data of Gain in one diagram. C.G.L.
Even when the Te concentration is as high as 25% by weight, the effect of the oxygen-doped Se bonding layer is significant. in this case,
The appropriate thickness of the bonding layer is 2 μm or more, preferably 5 μm or more. FIG. 8 shows the final values of the post-exposure potential (potential of the probe 25) measured with the apparatus shown in FIG. 6. It can be said that the effect of the oxygen-doped Se bonding layer is remarkable. However, if the thickness of the bonding layer is made thicker than necessary, it will cause deterioration of temperature characteristics and increase in charge reduction, so it is preferably 10 μm or less.

実施例 2 あらかじめ蒸着装置内に蒸発源ボートを二つ用
意しておき、真空を破ることなくCTLと接合層
を実施例1と同一条件で作製した後、矢張り実施
例1と同じ条件でCGLを蒸着して作製した感光
体に関して評価した所、実施例1の感光体と同様
な結果が得られた。
Example 2 Two evaporation source boats were prepared in advance in the evaporation apparatus, and the CTL and bonding layer were prepared under the same conditions as in Example 1 without breaking the vacuum, and then CGL was prepared under the same conditions as in Example 1. When a photoreceptor prepared by vapor deposition was evaluated, results similar to those of the photoreceptor of Example 1 were obtained.

実施例 3 酸素添加Seの作製の方法として、SeO2
1000ppmの量を純Seに直接添加した以外はすべ
て実施例1と同一条件で感光体を製作したところ
実施例1と同様な結果が得られた。
Example 3 SeO 2 was used as a method for producing oxygen-doped Se.
A photoreceptor was manufactured under the same conditions as in Example 1 except that 1000 ppm of Se was added directly to pure Se, and the same results as in Example 1 were obtained.

実施例 4 第9図に示すように第1図と同一の条件でアル
ミニウム基体1の上に純SeからなるCTL2を形
成した後接合層としての酸素添加Se3を0.5μm、
1μm、2μm、5μm、10μmの厚さに蒸着し、比較
のための酸素添加Se層を設けないものと共にそ
の上に40重量%のSe−Te合金を蒸発源の原料供
給系に21g並べた後、実施例1と同様なやり方で
Se−Te合金のフラツシユ蒸着を行つて1μmの厚
さのCGL4を作成した。この後再度真空を破り、
40メツシユ〜80メツシユの粒径に調製された純
Seを原料供給系に2Kg並べた後、再度真空引き
を行つた。次いで蒸発源の炭素ボートが380℃に
上昇した時点で原料を滑らかにボートに供給し、
CGLの上に純Seのフラツシユ蒸着を行つて厚さ
1μmのOCL5を形成した。このうち接合層3の
膜厚0.5μmおよび10μmのもののゼログラフイ特
性を第10図、第11図にそれぞれ示す。
Xerographic Gainの電界依存に注目すると、第
10図の感光体と第11図の感光体は、明らかに
低電界での挙動が違つたものとなつている。第1
0図の感光体では、1〜2V/μmの電界で
Xerographic Gainの収束が見られ、電界のしき
い値が高い事から、この感光体の残留電位が高い
ものである事がわかる。第4図の感光体では、電
界のしきい値は1V/μm以下であり、低電界まで
感度があつて残留電位の低い、従つて接合性能の
良い感光体である事がわかつた。
Example 4 As shown in FIG. 9, after forming a CTL 2 made of pure Se on an aluminum substrate 1 under the same conditions as in FIG.
After evaporating to a thickness of 1 μm, 2 μm, 5 μm, and 10 μm, and arranging 21 g of 40 wt% Se-Te alloy in the raw material supply system of the evaporation source along with the one without oxygen-added Se layer for comparison. , in a similar manner to Example 1.
CGL4 with a thickness of 1 μm was fabricated by flash deposition of Se-Te alloy. After this, the vacuum is broken again,
Pure powder prepared to a particle size of 40 mesh to 80 mesh
After 2 kg of Se was placed in the raw material supply system, the system was evacuated again. Next, when the temperature of the evaporation source carbon boat has risen to 380℃, the raw material is smoothly supplied to the boat.
Thickness by flash deposition of pure Se on CGL
OCL5 of 1 μm was formed. Among these, the xerographic characteristics of the bonding layer 3 having a film thickness of 0.5 μm and 10 μm are shown in FIG. 10 and FIG. 11, respectively.
Paying attention to the electric field dependence of Xerographic Gain, the photoreceptor shown in FIG. 10 and the photoreceptor shown in FIG. 11 clearly behave differently in a low electric field. 1st
For the photoconductor shown in Figure 0, an electric field of 1 to 2 V/μm
The convergence of the Xerographic Gain is observed and the electric field threshold is high, indicating that the residual potential of this photoreceptor is high. The photoreceptor shown in FIG. 4 has an electric field threshold of 1 V/μm or less, is sensitive to low electric fields, has a low residual potential, and is thus found to have good bonding performance.

このXerographic Gainのデータの内、500mm
光での測定データを基に、Xerographic Gainが
10-2の時の電界を、電界のしきい値に相当する量
として代表させた時の、接合層3の厚さと電界し
きい値との関係を比較例の値とともに第12図に
示す。接合層の存在に依り、電界しきい値が下が
り、従つて残留電位の低下につながる事は第7図
の場合と同様である。特に5μm以上の接合層を入
れた場合は、極めて良好な接合性能を示す事がわ
かつた。
Of this Xerographic Gain data, 500mm
Based on optical measurement data, Xerographic Gain is
FIG. 12 shows the relationship between the thickness of the bonding layer 3 and the electric field threshold value, when the electric field at 10 -2 is represented as an amount corresponding to the electric field threshold value, together with the values of comparative examples. As in the case of FIG. 7, the presence of the bonding layer lowers the electric field threshold, leading to a decrease in residual potential. In particular, it was found that when a bonding layer of 5 μm or more was added, extremely good bonding performance was exhibited.

接合層厚さ0.5μmおよび10μmの感光体につい
て第6図に示す装置を用いて繰返し電位挙動を測
定した結果、0.5μmの接合層を有する感光体の露
光後電位の最終値は130V、除電後電位の最終値
は110Vであり、この感光体が、必ずしも満足の
いく疲労特性を示す感光体ではない事がわかる。
一方、10μmの接合層を有する感光体の露光後電
位の最終値は40V、除電後電位の最終値は25Vで
あり、この感光体は良好な疲労特性を示す感光体
である事がわかる。
As a result of repeatedly measuring the potential behavior of photoreceptors with bonding layer thicknesses of 0.5 μm and 10 μm using the apparatus shown in Figure 6, the final value of the post-exposure potential of the photoreceptor with a bonding layer of 0.5 μm was 130 V, after static elimination. The final value of the potential was 110V, which indicates that this photoreceptor does not necessarily exhibit satisfactory fatigue characteristics.
On the other hand, the final value of the potential after exposure of the photoreceptor having a bonding layer of 10 μm is 40 V, and the final value of the potential after static elimination is 25 V, indicating that this photoreceptor exhibits good fatigue characteristics.

第13図は、繰返し電位挙動のデータの内、露
光後電位(プローブ25電位)の最終値を整理し
たもので、第8図と同様に酸素添加Se接合層の
効果は顕著であると共に、膜厚を増す事に依り、
一層の接合性能の改善を実現し得る事がわかる。
ただし10μmをこえる厚さの接合層をCTLとCGL
の間にはさむことは第1図の構造の感光体と同様
に避けなければならない。
Figure 13 shows the final value of the post-exposure potential (probe 25 potential) among the data on repeated potential behavior, and as in Figure 8, the effect of the oxygen-doped Se bonding layer is remarkable, and the film By increasing the thickness,
It can be seen that further improvement in bonding performance can be achieved.
However, CTL and CGL have a bonding layer with a thickness exceeding 10μm.
As with the photoreceptor having the structure shown in FIG. 1, sandwiching between the two must be avoided.

〔発明の効果〕〔Effect of the invention〕

本発明によればCTLとCGL、あるいはさらに
CGLの上にOCLを有する機能分離型感光体にお
いて、CTLとCGLの間に接合層として酸素添加
Se層を入れる構成とする事により、CTLとCGL
の間の合金元素、例えばTeの濃度差の大小にか
かわらず、良好な接合性能、すなわち残留電位の
低い、従つて繰返し残留電位の低い感光体を他の
特性を損なうことなく、容易にかつ再現性の良く
作製し得る効果が得られる。またSe−Te合金の
CGLのTe含有量が高い場合でも、接合層の厚さ
を制御する事で良好な接合性能を実現し得る。接
合層の膜厚の制御は、単に原料投入量を変化させ
るだけで容易に行うことができる。
According to the invention, CTL and CGL, or even
Oxygen is added as a bonding layer between CTL and CGL in a functionally separated photoreceptor with OCL on top of CGL.
By incorporating the Se layer, CTL and CGL
Good bonding performance, i.e. low residual potential, regardless of the large or small concentration difference of alloying elements, e.g. Te, between Effects that can be easily manufactured can be obtained. Also, Se-Te alloy
Even when the Te content of CGL is high, good bonding performance can be achieved by controlling the thickness of the bonding layer. The thickness of the bonding layer can be easily controlled by simply changing the input amount of raw materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構造を示す断面
図、第2図は本発明の実施に用いられる酸素添加
Se原料の製造装置の断面図、第3図は比較のた
めの従来の機能分離型感光体の断面図、第4図は
本発明の一実施例のXerographic Gainを示し、
aは波長をパラメータとした電界強度との関係線
図、bは10V/μmの電界における波長との関係
線図、第5図は比較例のXerographic Gainを示
し、第5図a,bはそれぞれ第4図と同様な電界
強度との関係線図、波長との関係線図、第6図は
繰返し電位挙動の評価装置の配置図、第7図は電
界しきい値と接合層の厚さとの関係線図、第8図
は繰返し残留電位と接合層の厚さとの関係線図、
第9図は本発明の別の実施例の構造を示す断面
図、第10図は第9図に示した構造で0.5μmの厚
さの接合層を有する感光体のXerographic Gain
を示し、第10図a,bはそれぞれ第4図と同様
な電界強度との関係線図、波長との関係線図、第
11図は同じ構造で10μmの厚さの接合層を有す
る感光体のXerographic Gainを示し、第11図
a,bは同様にそれぞれ電界強度との関係線図、
波長との関係線図、第12図は第9図に示した構
造の感光体の電界しきい値と接合層の膜厚との関
係線図、第13図同様に繰返し残留電位と接合層
の膜厚との関係線図である。 1…アルミニウム基体、2…CTL、3…酸素
添加Se層、4…CGL、5…OCL。
Figure 1 is a cross-sectional view showing the structure of one embodiment of the present invention, and Figure 2 is an oxygen-added
FIG. 3 is a cross-sectional view of a conventional functionally separated photoreceptor for comparison, and FIG. 4 shows the Xerographic Gain of an embodiment of the present invention.
a is a relationship diagram with electric field strength using wavelength as a parameter, b is a relationship diagram with wavelength in an electric field of 10 V/μm, Figure 5 shows the Xerographic Gain of a comparative example, and Figure 5 a and b are respectively Figure 4 shows the relationship between electric field strength and wavelength, Figure 6 shows the layout of the evaluation device for repeated potential behavior, and Figure 7 shows the relationship between electric field threshold and bonding layer thickness. Relationship diagram, Figure 8 is a relationship diagram between repeated residual potential and bonding layer thickness.
FIG. 9 is a sectional view showing the structure of another embodiment of the present invention, and FIG. 10 is a Xerographic gain of a photoreceptor having the structure shown in FIG. 9 and having a bonding layer with a thickness of 0.5 μm.
Figures 10a and 10b are the same relationship diagrams with electric field strength and wavelength as in Figure 4, respectively, and Figure 11 shows a photoconductor with the same structure but a bonding layer 10 μm thick. Figures 11a and 11b also show the relationship diagram with the electric field strength, respectively.
Figure 12 is a graph showing the relationship between the electric field threshold value of the photoreceptor having the structure shown in Figure 9 and the thickness of the bonding layer. It is a relationship diagram with film thickness. DESCRIPTION OF SYMBOLS 1... Aluminum base, 2... CTL, 3... Oxygenated Se layer, 4... CGL, 5... OCL.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素を添加していないキヤリヤ伝搬層および
キヤリヤ発生層を有する電子写真用セレン感光体
において、キヤリヤ伝搬層とキヤリヤ発生層の間
に2〜10μmの厚さの酸素を添加したセレン層が
介在することを特徴とする電子写真用セレン感光
体。
1. In an electrophotographic selenium photoreceptor having a carrier propagation layer and a carrier generation layer to which no oxygen is added, an oxygen-added selenium layer with a thickness of 2 to 10 μm is interposed between the carrier propagation layer and the carrier generation layer. A selenium photoreceptor for electrophotography characterized by the following.
JP15119783A 1983-08-19 1983-08-19 Selenium photosensitive body for electrophotography Granted JPS6043663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15119783A JPS6043663A (en) 1983-08-19 1983-08-19 Selenium photosensitive body for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15119783A JPS6043663A (en) 1983-08-19 1983-08-19 Selenium photosensitive body for electrophotography

Publications (2)

Publication Number Publication Date
JPS6043663A JPS6043663A (en) 1985-03-08
JPH021300B2 true JPH021300B2 (en) 1990-01-11

Family

ID=15513373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15119783A Granted JPS6043663A (en) 1983-08-19 1983-08-19 Selenium photosensitive body for electrophotography

Country Status (1)

Country Link
JP (1) JPS6043663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465197U (en) * 1990-10-19 1992-06-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465197U (en) * 1990-10-19 1992-06-05

Also Published As

Publication number Publication date
JPS6043663A (en) 1985-03-08

Similar Documents

Publication Publication Date Title
US4613556A (en) Heterogeneous electrophotographic imaging members of amorphous silicon and silicon oxide
JPH021300B2 (en)
JPS5860746A (en) Electrophotographic receptor
JPS6180160A (en) Electrophotographic sensitive body
JPH0239786B2 (en)
JPS6318184B2 (en)
JPH0546539B2 (en)
JPS63241554A (en) Electrophotographic sensitive body
JPS5981649A (en) Electrophotographic receptor
JPS63208057A (en) Electrophotographic sensitive body
JPS58217940A (en) Recording material
JPS63208056A (en) Electrophotographic sensitive body
JPS63165859A (en) Electrophotographic sensitive body
JPS5875158A (en) Electrophotographic method
JPS63187258A (en) Electrophotographic sensitive body
Belyantsev et al. Charge-carrier redistribution in inhomogeneous semiconductor structures under the action of a Lorentz force
JPS6258269A (en) Electrophotographic sensitive body
JPS62115460A (en) Electrophotographic sensitive body
JPH032295B2 (en)
JPS58156948A (en) Photoconductive material
JPS6283755A (en) Electrophotographic sensitive body
JPS6295540A (en) Electrophotographic sensitive body
JPS63208052A (en) Electrophotographic sensitive body
JPS6258265A (en) Electrophotographic sensitive body
JPS63202756A (en) Electrophotographic sensitive body