JPH0212998A - Radio wave absorber - Google Patents

Radio wave absorber

Info

Publication number
JPH0212998A
JPH0212998A JP16433388A JP16433388A JPH0212998A JP H0212998 A JPH0212998 A JP H0212998A JP 16433388 A JP16433388 A JP 16433388A JP 16433388 A JP16433388 A JP 16433388A JP H0212998 A JPH0212998 A JP H0212998A
Authority
JP
Japan
Prior art keywords
radio wave
sheet
nonwoven fabric
medium
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16433388A
Other languages
Japanese (ja)
Inventor
Akira Yoshiuchi
暁 葭内
Tetsuji Inui
乾 哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16433388A priority Critical patent/JPH0212998A/en
Priority to EP89100020A priority patent/EP0323826B1/en
Priority to DE68928378T priority patent/DE68928378T2/en
Priority to US07/293,495 priority patent/US5081455A/en
Publication of JPH0212998A publication Critical patent/JPH0212998A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a radio wave absorber which has satisfactory oblique incident characteristic and wide band by alternately laminating nonwoven fabrics having different conductivities, and forming a cavity in the nonwoven fabric having large conductivity. CONSTITUTION:Nonwoven fabrics having different conductivities are alternately laminated, and a cavity is formed in the nonwoven fabric having large conductivity. First, nonwoven fabric made of conductive fiber and polymer resin fiber is employed as a medium. This nonwoven fabric has means as stereoscopically disposed medium of the conductive fiber, becoming locally irregular in electromagnetic wave manner. As a result, radio wave characteristic which cannot be obtained in the homogeneous medium is provided, and Fn (n=1, 2,...) sheet corresponds thereto. Second, the nonwoven fabric sheet having larger conductivity than that of the Fn sheet is formed, and a medium formed with punched holes is introduced thereinto. It has the same characteristic in the electromagnetic wave manner, but its operating region is increased, and Mn (n=1, 2,...) sheet corresponds thereto. The hole has an arbitrary shape and size, thereby variously altering the characteristics of the Mn sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は不要電波の抑制、アンテナ特性の改善、電波暗
室などに用い、電磁波の反射および散乱を阻止する電波
吸収体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a radio wave absorber that is used for suppressing unnecessary radio waves, improving antenna characteristics, radio anechoic chambers, etc., and preventing reflection and scattering of electromagnetic waves.

(従来の技術) 第2次世界大戦以降の目ざましいレーダ技術およびマイ
クロ波通信技術の発展に呼応して、電磁波の反射・散乱
を抑制するための電波吸収体の開発が進められた。この
目的の電波吸収体の特性は、電波の垂直および斜入射時
での電波吸収特性および電波吸収特性の周波数変化によ
って評価される。
(Prior Art) In response to the remarkable development of radar technology and microwave communication technology since World War II, development of radio wave absorbers for suppressing reflection and scattering of electromagnetic waves has progressed. The characteristics of the radio wave absorber for this purpose are evaluated by the radio wave absorption characteristics when the radio waves are vertically and obliquely incident, and the frequency change of the radio wave absorption characteristics.

すなわち、第3図に示すように、電波1が金属板3上の
電波吸収体2に角θ1で入射した時、角θ2へ反射又は
散乱する電波が入射電波に対して如何に減衰するかで電
波吸収能力を規定するが、θ1=02=0の場合を垂直
入射特性、他の場合を斜入射特性と言う。θ1が大きく
なると01=0の時と電波吸収特性は大きく異なり、ま
た実際の使用に当っては、そのような場合が多いので、
斜入射特性が大切になる。また、電波吸収体は、あらゆ
る周波数で使用出来るのが好ましい。しかしながら現実
の電波吸収体は使用できる周波数が限られており、その
周波数帯域が比帯域中にして20%以下のものを狭帯域
型、それ以上のものを広帯域型としている。
In other words, as shown in Fig. 3, when the radio wave 1 is incident on the radio wave absorber 2 on the metal plate 3 at an angle θ1, the radio wave reflected or scattered toward the angle θ2 is attenuated relative to the incident radio wave. The radio wave absorption ability is defined, and the case where θ1=02=0 is called the normal incidence characteristic, and the other cases are called the oblique incidence characteristic. When θ1 becomes large, the radio wave absorption characteristics differ greatly from those when 01=0, and in actual use, such cases are often the case, so
Oblique incidence characteristics are important. Further, it is preferable that the radio wave absorber can be used at any frequency. However, in actual radio wave absorbers, usable frequencies are limited, and those whose frequency band is less than 20% of the fractional band are called narrow-band types, and those whose frequency bands are above 20% are called wide-band types.

電波吸収体は、大別してシート状電波吸収体と、ピラミ
ッドに代表される表面形状に凹凸をつけたものとがある
。前者は表面が平坦であり、薄型である為使い易い利点
があるが、狭帯域特性であり電波の斜入射に対しての電
波吸収特性が−義的に定まり、入射角が大きくなれば著
しく吸収特性は劣化する。ゴムフェライト系、フェライ
トタイル、ゴムカーボン系、ウレタンカーボン系のシー
ト状電波吸収体がこれに相当する。これに対して、後者
のピラミッド型電波吸収体は、広帯域特性をもち、表面
形状の複雑さが利点となって斜入射特性の秀れた電波吸
収体となるが、ピラミッド(表面の突起)の長さが少な
くとも1/4波長程度必要となることから厚さの大きい
(あるいは寸法の大きい)電波吸収体であり、とり扱い
上不利になり、また電波暗室での使用では作業スペース
を著しく減じる。本発明は、基本的には、シート状の電
波吸収体であるが、その狭帯域特性と斜入射特性の悪さ
を、材質として導電性繊維入りの不織布を用いることと
、特殊な構成を施すことにより改善している。
Radio wave absorbers can be roughly divided into sheet-like radio wave absorbers and those with an uneven surface shape, typified by pyramids. The former has the advantage of being easy to use because it has a flat surface and is thin, but it has narrow band characteristics and the radio wave absorption characteristics for oblique incidence of radio waves are defined by definition, and the absorption becomes more pronounced as the angle of incidence increases. Characteristics deteriorate. This includes rubber ferrite type, ferrite tile, rubber carbon type, and urethane carbon type sheet-like radio wave absorbers. On the other hand, the latter type of pyramid-shaped radio wave absorber has broadband characteristics and has the advantage of having a complex surface shape, making it a radio wave absorber with excellent oblique incidence characteristics. Since the length needs to be at least 1/4 wavelength, it is a radio wave absorber with a large thickness (or large size), which is disadvantageous in handling, and when used in an anechoic chamber, the work space is significantly reduced. The present invention is basically a sheet-like radio wave absorber, but its poor narrow band characteristics and oblique incidence characteristics can be overcome by using a nonwoven fabric containing conductive fibers as the material and by applying a special configuration. This has been improved.

導電性繊維のエレクトロニクス分野への導入は、近年の
シールド技術の要請のもとに、導電性プラスチックまた
は、導電性不織布などにおいてなされている。しかしな
がら、これらに於ては、導電性繊維を可能な限り大量に
混合し金属体に近い電気伝導度を得ることを目的として
いる。もし、このような導電性プラスチックを第1図ま
たは第2図のMnシートまたはFnシートとして用いる
なら、その層自体で電波は反射し何の電波吸収効果も発
揮しない。
Conductive fibers have been introduced into the electronics field in the form of conductive plastics, conductive nonwoven fabrics, etc. based on the recent demands for shielding technology. However, the purpose of these materials is to mix as much conductive fiber as possible to obtain electrical conductivity close to that of a metal body. If such a conductive plastic is used as the Mn sheet or Fn sheet shown in FIG. 1 or 2, the layer itself will reflect radio waves and will not exhibit any radio wave absorption effect.

本発明の構造に似た例の電波吸収体としては金属板3の
前方)J4波長の所)に抵抗皮膜4を設置したサノスバ
リースクリーン型(あるいは抵抗皮膜型)の電波吸収体
がある。すなわち第4図のような構造のものである。し
かしながらこの場合はM4波長の共振器であり、特性も
本発明の電波吸収体と異なり、狭帯域特性となり、斜入
射特性も良くない。本発明とサリスバリースクリーン型
電波吸収体との異なる点は、サリスバリースクリーン型
では、媒質として均一媒質(空気とか発泡体)を用い、
またスクリーンへの工夫も見られないのに対して、本発
明では周波数帯域と斜入射特性の向上を意図して、不均
一媒質を用い、かつスクリーンへの工夫を施し、電波吸
収体としての新しい構成、特性を実現した所にある。
An example of a radio wave absorber having a structure similar to that of the present invention is a Thanosbury screen type (or resistive film type) radio wave absorber in which a resistive film 4 is provided in front of the metal plate 3 (at the J4 wavelength). That is, it has a structure as shown in FIG. However, in this case, it is an M4 wavelength resonator, and its characteristics are different from those of the radio wave absorber of the present invention, in that it has narrow band characteristics and its oblique incidence characteristics are not good. The difference between the present invention and the Salisbury screen type radio wave absorber is that the Salisbury screen type uses a uniform medium (air or foam) as the medium;
In addition, no innovations have been made to the screen, whereas the present invention uses a non-uniform medium with the intention of improving the frequency band and oblique incidence characteristics, and has made improvements to the screen to create a new radio wave absorber. It lies in the realization of its composition and characteristics.

(発明が解決しようとする問題点) シート状電波吸収体の代表的な特性を第5図(a)。(Problem that the invention attempts to solve) Figure 5(a) shows typical characteristics of the sheet-like radio wave absorber.

(b)に示す。(a)は周波数特性、(b)は斜入射特
性である。上の特性は狭帯域特性であり、斜入射特性は
良くない。本発明では、この欠点を改善しようとする。
Shown in (b). (a) shows the frequency characteristics, and (b) shows the oblique incidence characteristics. The above characteristics are narrow band characteristics, and the oblique incidence characteristics are not good. The present invention attempts to improve this drawback.

(問題点を解決する為の手段) 導電性繊維と高分子樹脂を絡ませた不織布を積層して構
成した電波吸収体において、導電率の異なる前記不織布
が交互に積層され、導電率の大きな不織布には空洞部が
形成されている電波吸収体である。
(Means for solving the problem) In a radio wave absorber constructed by laminating nonwoven fabrics in which conductive fibers and polymer resin are entangled, the nonwoven fabrics having different conductivities are alternately laminated to form a nonwoven fabric with high conductivity. is a radio wave absorber in which a cavity is formed.

二つの均質な媒質の境界をなしている平面への電磁波の
入射・反射は、既にシェルクノフ著(森脇義雄訳)の“
電磁波論″(合波書店、昭29.第1刷)に記述されて
いるように、1つの境界値問題として一義的な解を与え
、媒質が均一である限り、シート状電波吸収体の狭帯域
性および、斜入射特性の劣化は、まぬがれ得ない。
The incidence and reflection of electromagnetic waves on a plane that forms the boundary between two homogeneous media has already been described in “
As described in ``Electromagnetic Wave Theory'' (Goupa Shoten, 1950, 1st printing), a unique solution is given as a boundary value problem, and as long as the medium is homogeneous, the narrow narrowing of the sheet-like radio wave absorber is Deterioration of band characteristics and oblique incidence characteristics cannot be avoided.

本発明では、シート状電波吸収体の媒質を局所的に不均
一にして、上の欠点を改善する。その為に、2つの手段
を用いる。第1には、媒質を導電性繊維と高分子樹脂繊
維より成る不織布を用いる。
In the present invention, the above drawbacks are improved by making the medium of the sheet-like radio wave absorber locally non-uniform. For this purpose, two methods are used. First, a nonwoven fabric made of conductive fibers and polymer resin fibers is used as the medium.

この不織布の電気0恒電磁波的)特性は導電性繊維の材
質、形状、寸法および繊維の絡み具合によって定まり、
不織布の他の構成要素である高分子樹脂繊維は導電性繊
維を立体配置させる為の支持媒体としての役割を果たす
。従ってこの不織布は、導電性繊維の立体配置媒質とし
ての意味をもち電気的(電磁波的)には局所的に不均一
な媒質となっている。その結果、−例として第6図(a
)、(b)に示すように、導電性繊維の絡みは均一でな
いR,(抵抗)、C,(容量)、およびり、(インダク
タンス)が空間にばらまかれた状態を作り、それぞれの
R,、C1,L、の結合によって種々な周波数特性を局
所的に作り出し、また導電性繊維に種々の角度をもって
入射した電磁波は、夫々の角度から見たR、、 C1,
L、によって散乱する。すなわちこの不織布は、均質な
媒質では得られない電磁波特性を有する。第1図におけ
るFn(n=1゜2・・・)シートがこれに相当する。
The electrical (electromagnetic wave) characteristics of this nonwoven fabric are determined by the material, shape, and dimensions of the conductive fibers, and the degree of entanglement of the fibers.
Polymer resin fibers, which are other constituents of the nonwoven fabric, serve as a support medium for three-dimensionally arranging the conductive fibers. Therefore, this nonwoven fabric serves as a medium for the three-dimensional arrangement of conductive fibers, and is a medium that is electrically (electromagnetic waves) locally non-uniform. As a result, - for example, Figure 6 (a
) and (b), the entanglement of conductive fibers creates a state in which R, (resistance), C, (capacitance), and C, (inductance) are not uniformly scattered in space, and each R, , C1, L, to locally create various frequency characteristics, and the electromagnetic waves incident on the conductive fiber at various angles have R,, C1,
Scattered by L. That is, this nonwoven fabric has electromagnetic wave characteristics that cannot be obtained with a homogeneous medium. The Fn (n=1°2...) sheet in FIG. 1 corresponds to this.

第2の手段としてFnシートよりも導電率の大きい不織
布シートを作り、これにパンチング穴を設けた媒質を導
入する。電磁波に対しての特性は第7図(a)、(b)
に示すように第6図の場合と同じ働きをするが、作用領
域が第6図に比べて大きく、従ってRm、Cm、Lmの
分布は広範囲で不均一となる。第1図におけるMn(n
=1゜2・・・)シートがこれに相当する。第1図では
穴は四角形に描いであるが、任意の形状、大きさが可能
で、これによって、Mnシートの特性を種々変えること
ができる。
As a second method, a nonwoven fabric sheet having higher conductivity than the Fn sheet is made, and a medium with punched holes is introduced into the nonwoven fabric sheet. The characteristics for electromagnetic waves are shown in Figure 7 (a) and (b).
As shown in FIG. 6, the function is the same as that shown in FIG. 6, but the area of action is larger than that shown in FIG. 6, and therefore the distribution of Rm, Cm, and Lm becomes non-uniform over a wide range. Mn(n
=1°2...) sheet corresponds to this. In FIG. 1, the holes are drawn as squares, but they can have any shape and size, thereby making it possible to vary the properties of the Mn sheet.

(実施例) ニッケルコーティングアクリル繊維(導電性繊維)とポ
リエステル繊維(高分子樹脂繊維)を混合率1対99で
混合し目付は量150gr/cm2で交繊し、積層圧縮
して厚さ11cmの不織布シート(Fl)を製作した。
(Example) Nickel-coated acrylic fibers (conductive fibers) and polyester fibers (polymer resin fibers) were mixed at a mixing ratio of 1:99, and the fibers were mixed at a basis weight of 150 gr/cm2, laminated and compressed to a thickness of 11 cm. A nonwoven fabric sheet (Fl) was produced.

この不織布シートの電波吸収特性を第8図に示す。The radio wave absorption characteristics of this nonwoven fabric sheet are shown in FIG.

均一媒質のシート状電波吸収体の特性が第5図に示した
ように狭帯域なのに対し、第8図は広帯域特性を示し、
本発明を実証したものである。
While the characteristics of the sheet-like radio wave absorber in a uniform medium are narrowband as shown in Figure 5, Figure 8 shows broadband characteristics.
This demonstrates the invention.

ニッケルコーティングアクリル繊維(導電性繊維)とア
クリル繊維(高分子樹脂繊維)を混合率10対90及び
2対98で、目付は量150gr/cm2で交繊し、積
層圧縮して厚さ2mmおよび2cmの不織布シート(F
l)を製作した。この不織布シートのインピーダンス特
性は第9図(a)、(b)に見られるように均質の媒質
では見られない特異な周波数特性を示す。これは導電性
繊維が、“詳細な説明″で述べたように局所的に容量、
インダクタンスの分布を変え、周波数特性をもたらせる
結果である。
Nickel-coated acrylic fibers (conductive fibers) and acrylic fibers (polymer resin fibers) were mixed at a mixing ratio of 10:90 and 2:98, with a basis weight of 150 gr/cm2, and laminated and compressed into thicknesses of 2 mm and 2 cm. Non-woven fabric sheet (F
l) was produced. The impedance characteristics of this nonwoven fabric sheet exhibit unique frequency characteristics that cannot be seen in a homogeneous medium, as shown in FIGS. 9(a) and 9(b). This is due to the fact that the conductive fibers locally have a capacitance and
This is the result of changing the inductance distribution and producing frequency characteristics.

ニッケルコーティングアクリル繊維(導電性繊維)とポ
リエステル繊維(高分子樹脂繊維)を用いて、第1図で
のFnシートとしては、混合率3対97で、目付は量1
30gr/cm2交繊回数3回で、Mnシートとしては
混合率5対95で、目付は量100gr/am2交繊回
数1回でシート成形し、MlおよびM2シートには第1
0図に示すような貫通穴をあけ、第2図のように積層す
るに′!′1およびF2は7mm、F3は15mm、M
lとM2は2mmとした。この電波吸収体の周波数特性
を第11図に示す。2.5GHz〜25GHzで、まず
20dB程度の吸収特性を示し、超広帯域特性を示す。
Using nickel-coated acrylic fibers (conductive fibers) and polyester fibers (polymer resin fibers), the Fn sheet in Figure 1 has a mixing ratio of 3:97 and a basis weight of 1.
30gr/cm2 fibers were mixed 3 times, the Mn sheet was mixed at a mixing ratio of 5:95, and the basis weight was 100gr/cm2 fibers were mixed 1 time to form a sheet, and the Ml and M2 sheets were
Drill a through hole as shown in Figure 0 and stack the layers as shown in Figure 2'! '1 and F2 are 7mm, F3 is 15mm, M
l and M2 were set to 2 mm. The frequency characteristics of this radio wave absorber are shown in FIG. At 2.5 GHz to 25 GHz, it exhibits an absorption characteristic of about 20 dB and exhibits an ultra-wideband characteristic.

長さ5mm直径2011mのスチール繊維(導電性繊維
)とポリエステル繊維(高分子樹脂繊維)を用いて、第
1図でのFnシートとしては、混合率2対98で、目付
は量130gr/cm2交繊回数3回で、Mnシートと
しては混合率3対97で目付は量100gr/cm2交
繊回数1回でシート成形し、MlおよびM2シートには
第12図に示すような貫通穴をあけ、第2図のように積
層するに、FlおよびF2は3mm、F3は6mm、M
lとM2は2mmとした。
Using steel fibers (conductive fibers) and polyester fibers (polymer resin fibers) with a length of 5 mm and a diameter of 2011 m, the Fn sheet in Figure 1 was made with a mixing ratio of 2:98 and a basis weight of 130 gr/cm2. The number of fibers was 3, and the Mn sheet had a mixing ratio of 3 to 97, and the basis weight was 100 gr/cm2.The number of fibers was 1 to form a sheet, and through holes were made in the Ml and M2 sheets as shown in Figure 12. When laminated as shown in Figure 2, Fl and F2 are 3mm, F3 is 6mm, and M
l and M2 were set to 2 mm.

この電波吸収体は第13図に示すように広帯域特性を示
す。第14図には15GHzTE波に対する斜入射特性
を示す。電界がスリットに対して平行な場合と垂直な場
合についての測定値を01=02が5°〜60°までプ
ロットした。斜入射特性が良くかつ、吸収体の構造が特
定の方向にスリットを設けであるに拘らず、実用的には
、その影響が問題にならないことを示している。
This radio wave absorber exhibits broadband characteristics as shown in FIG. FIG. 14 shows the oblique incidence characteristics for a 15 GHz TE wave. The measured values when the electric field is parallel to the slit and when it is perpendicular to the slit are plotted from 01=02 to 5° to 60°. This shows that the oblique incidence characteristics are good and that even though the structure of the absorber has slits in a specific direction, the effect of this is not a problem in practical terms.

実施例に示したシート状電波吸収体の表面に整合用とし
てFnシートと同材料のピラミッド(長さ8cm底面3
cmX3cm)を敷きつめると3GHz以上では吸収量
が30dB以上となった。
A pyramid made of the same material as the Fn sheet (8 cm long, bottom 3
cm x 3 cm), the absorption amount was 30 dB or more at frequencies above 3 GHz.

(発明の効果) 斜入射特性の良い、広帯域電波吸収体が実現できた。(Effect of the invention) We have achieved a broadband radio wave absorber with good oblique incidence characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電波吸収体の構成図、第2図は本発明
の電波吸収体の組立図、第3図は電波の入射角θ1と反
射角θ2を定義する図、 第4図はサリスバリスクリーン型電波吸収体を説明する
図、 第5図(a)、(b)は通常のシート状電波吸収体の周
波数特性と斜入射特性を示す図、 第6図(a)、 (b)は導電性繊維が空間的に不均一
な抵抗(R)容量(C)およびインダクタンス(L)を
与えることを説明する図、 第7図(a)、(b)は導電性繊維を混入したシートに
貫通人をあけることにより、より広範囲なR,C。 Lの不均一さを与える事を説明する図、第8図は実施例
の電波吸収特性図、 第9図は実施例でのインピーダンス特性図、第10図は
実施例でのMlおよびM2シートでの穴の寸法を示す図
、 第11図は実施例の電波吸収特性図、 第12図は実施例でのMlおよびM2シートでの穴の寸
法を示す図、 第13図は実施例の電波吸収特性図、 第14図は実施例の斜入射特性図。 図中1は電波、2は電波吸収体、3は金属板、4は抵抗
皮膜
Fig. 1 is a configuration diagram of the radio wave absorber of the present invention, Fig. 2 is an assembled diagram of the radio wave absorber of the invention, Fig. 3 is a diagram defining the incident angle θ1 and reflection angle θ2 of radio waves, and Fig. 4 is a diagram defining the radio wave incident angle θ1 and reflection angle θ2. A diagram explaining the Saris Variscreen type radio wave absorber. Figures 5 (a) and (b) are diagrams showing the frequency characteristics and oblique incidence characteristics of a normal sheet-shaped radio wave absorber. Figures 6 (a) and (b) ) is a diagram explaining that conductive fibers give spatially nonuniform resistance (R), capacitance (C), and inductance (L), and Figures 7 (a) and (b) are diagrams in which conductive fibers are mixed. A wider range of R and C can be achieved by opening a through hole in the seat. Figure 8 is a radio wave absorption characteristic diagram of the example, Figure 9 is an impedance characteristic diagram of the example, and Figure 10 is the Ml and M2 sheets of the example. Figure 11 is a diagram showing the radio wave absorption characteristics of the example. Figure 12 is a diagram showing the hole dimensions of Ml and M2 sheets in the example. Figure 13 is the radio wave absorption characteristic diagram of the example. Characteristic diagram: Figure 14 is an oblique incidence characteristic diagram of the embodiment. In the diagram, 1 is a radio wave, 2 is a radio wave absorber, 3 is a metal plate, and 4 is a resistive film.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性繊維と高分子樹脂を絡ませた不織布を積層
して構成した電波吸収体において、導電率の異なる前記
不織布が交互に積層され、導電率の大きな不織布には空
洞部が形成されていることを特徴とする電波吸収体。
(1) In a radio wave absorber constructed by laminating nonwoven fabrics in which conductive fibers and polymeric resin are entangled, the nonwoven fabrics with different conductivities are alternately laminated, and a cavity is formed in the nonwoven fabric with high conductivity. A radio wave absorber characterized by:
JP16433388A 1988-01-05 1988-06-30 Radio wave absorber Pending JPH0212998A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16433388A JPH0212998A (en) 1988-06-30 1988-06-30 Radio wave absorber
EP89100020A EP0323826B1 (en) 1988-01-05 1989-01-02 Electromagnetic wave absorber
DE68928378T DE68928378T2 (en) 1988-01-05 1989-01-02 Absorber for electromagnetic radiation
US07/293,495 US5081455A (en) 1988-01-05 1989-01-04 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16433388A JPH0212998A (en) 1988-06-30 1988-06-30 Radio wave absorber

Publications (1)

Publication Number Publication Date
JPH0212998A true JPH0212998A (en) 1990-01-17

Family

ID=15791180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16433388A Pending JPH0212998A (en) 1988-01-05 1988-06-30 Radio wave absorber

Country Status (1)

Country Link
JP (1) JPH0212998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039017A (en) * 2008-04-30 2015-02-26 テイカ株式会社 Broadband electromagnetic wave absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039017A (en) * 2008-04-30 2015-02-26 テイカ株式会社 Broadband electromagnetic wave absorber

Similar Documents

Publication Publication Date Title
CN104993249B (en) Single-pass band bilateral inhales ripple and is combined Meta Materials and its antenna house and antenna system
US3733606A (en) Camouflaging means for preventing or obstructing detection by radar reconnaissance
US5662982A (en) Material with artificial dielectric constant
JP5496879B2 (en) Composite wave absorber
JPH08204379A (en) Radio wave absorber
US6359581B2 (en) Electromagnetic wave abosrber
CN111403917A (en) Ultra-thin broadband metamaterial wave absorber unit
US5453745A (en) Wideband wave absorber
JP5085026B2 (en) Electromagnetic wave absorber
JPH09186484A (en) Wide band electronic waves absorber
CN212257701U (en) Dual-band magnetic material wave-absorbing structure
JPH0212998A (en) Radio wave absorber
JPH06132691A (en) Radio wave absorber
KR20240026104A (en) Near-field electromagnetic wave absorber
Abdelaziz A novel technique for improving the performance of Salisbury screen
CN109802243A (en) A kind of active-passive compatible composite radar absorber based on AFSS
KR102213841B1 (en) Electro-magnetic wave absorber and manufacturing method thereof
US5892188A (en) Porous ferrite wave absorber
CN212162089U (en) Ultra-thin broadband metamaterial wave absorber unit
Niaz et al. Design of broadband electromagnetic absorber using resistive Minkowski loops
JP2917271B2 (en) Radio wave absorber
CN110311228A (en) 2.5D ultra wide band frequency applied to ultra-wideband antenna selects surface texture
JPH0212995A (en) Radio wave absorber
Döken et al. A simple frequency selective absorber surface design
JPH1154981A (en) Electromagnetic wave absorber