JPH02129363A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPH02129363A
JPH02129363A JP28132588A JP28132588A JPH02129363A JP H02129363 A JPH02129363 A JP H02129363A JP 28132588 A JP28132588 A JP 28132588A JP 28132588 A JP28132588 A JP 28132588A JP H02129363 A JPH02129363 A JP H02129363A
Authority
JP
Japan
Prior art keywords
shutter
molecular beam
aperture shield
vacuum
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28132588A
Other languages
Japanese (ja)
Inventor
Atsushi Kamijo
敦 上條
Tsutomu Mitsuzuka
三塚 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28132588A priority Critical patent/JPH02129363A/en
Publication of JPH02129363A publication Critical patent/JPH02129363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Valve Housings (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)
  • Moulding By Coating Moulds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To facilitate the opening and closing of the shutter and to stably control the thickness of a film in the order of magnitude of an atom layer by forming a shutter plate surface in contact with an aperture shield with a nonmetal, reducing the frictional force at the sliding contact part. CONSTITUTION:This vacuum deposition device is formed by a vapor deposition source 2 provided in a vacuum vessel 1, the aperture shield 6, a shutter 4, and a shutter driving part 5 connected to the shutter 4. The aperture shield 6 is provided with a molecular beam discharge hole 16, and controls the discharge path of a molecular beam 3. The shutter 4 is slidably set on the hole 16, and provided with a shutter plate 41 for opening and closing the hole 16. The shutter surface in contact with the aperture shield 6 is made of a specified nonmetal, and the gas discharge amt. of the nonmetal is controlled to <=10<-7>Torr.l/ sec.cm<2>.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は真空蒸着装置に関し、特に所定の物質の分子層
を所定の基板に蒸着する真空蒸着装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vacuum evaporation apparatus, and more particularly to a vacuum evaporation apparatus for depositing a molecular layer of a predetermined substance onto a predetermined substrate.

[従来の技術] 半絶縁性基板上や絶縁性基板上に、いくつかの物質を原
子層オーダーの膜厚υ制御を行いながら交互に積層させ
た人工格子・多層薄膜の形成にあたっては、各物質の蒸
着源からの分子線の経路の開閉を頻繁に行う必要がある
[Prior art] In forming an artificial lattice/multilayer thin film in which several substances are alternately laminated on a semi-insulating substrate or an insulating substrate while controlling the film thickness υ on the order of atomic layers, it is necessary to It is necessary to frequently open and close the path of the molecular beam from the vapor deposition source.

原子層オーダーの膜厚制御を行うためには、蒸着スピー
ドは0.1nm/秒くらいの非常にゆっくりとした蒸着
を行わなければならないが、界面での酸化などを防ぐた
めに超高真空が必要となる。
In order to control the film thickness on the order of atomic layers, the deposition speed must be very slow, about 0.1 nm/sec, but an ultra-high vacuum is required to prevent oxidation at the interface. Become.

従来のこの種の真空蒸着装置について、図面を参照して
説明する。
A conventional vacuum evaporation apparatus of this type will be explained with reference to the drawings.

第2図(a) 、 (b)は回転導入機構を用いてシャ
ッタ4aを回転させ、このシャッタ4aにより蒸着源2
からの分子線3の経路を開閉する例を示し、第3図は圧
縮空気シリンダ9を用いてシャッタ4bを直線運動させ
、分子線3の経路を開閉する例を示す。
In FIGS. 2(a) and 2(b), a shutter 4a is rotated using a rotation introducing mechanism, and the vapor deposition source 2 is rotated by this shutter 4a.
FIG. 3 shows an example in which the path of the molecular beam 3 is opened and closed by moving the shutter 4b linearly using the compressed air cylinder 9.

前者は、蒸着源が多数ある場合、それぞれのシャッタが
第2図(b)に示すように分子線経路の開閉に伴って回
転するので、各シャッタが他の蒸着源からの分子線をよ
ぎったり、シャッタ同士がぶつからないようにするため
に蒸着源相互間を離さなければならず、そのために真空
槽1aが大きくなるという欠点がある。
In the former case, when there are many evaporation sources, each shutter rotates as the molecular beam path opens and closes as shown in Figure 2(b), so each shutter does not cross the molecular beams from other evaporation sources. However, in order to prevent the shutters from colliding with each other, the deposition sources must be separated from each other, which has the disadvantage that the vacuum chamber 1a becomes large.

また、後者は、シャッタ4bが前後に直線運動をするた
めに、前者のようにシャッタ同士を互いに離す必要がな
いので真空槽1bがコンパクトになる。しかし、真空槽
1b外から超高真空中に直線運動を導入するために必ず
ベローズ8が必要であるが、シャッタ4bの開閉が鎖繁
に行われるため、ベローズ8に金属疲労が起き、ベロー
ズ8からの真空もれが生ずる。
Further, in the latter case, since the shutter 4b moves linearly back and forth, there is no need to separate the shutters from each other as in the former case, so that the vacuum chamber 1b becomes compact. However, the bellows 8 is absolutely necessary to introduce linear motion into the ultra-high vacuum from outside the vacuum chamber 1b, but since the shutter 4b is opened and closed frequently, metal fatigue occurs in the bellows 8. Vacuum leakage occurs.

そこで直線運動機構を真空槽内に取入れた第4図のよう
な、いわゆる電磁シャッタが開発された。
Therefore, a so-called electromagnetic shutter was developed, as shown in Fig. 4, which incorporates a linear motion mechanism into a vacuum chamber.

この例は、軸方向に2分割されたソレノイド51内に、
シャッタ4Cに連結する強磁性金属の磁芯52を設けた
シャッタ駆動部5を備え、各ソレノイドに電流を流すこ
とによってシャッタ4Cを直線運動させるものでおる。
In this example, in the solenoid 51 which is divided into two in the axial direction,
The shutter drive unit 5 is provided with a magnetic core 52 of ferromagnetic metal connected to the shutter 4C, and the shutter 4C is moved linearly by passing current through each solenoid.

上述した電磁シャッタを設けた従来の真空装置を第1図
に示す。第1図において、真空槽1内には蒸着源2か設
けられ、所定の物質の分子線3を放出して基板10上に
所定の厚さの蒸着層を蒸着させる。分子線3の経路上に
配設されて分子線3の拡がりを制限するアパーチャーシ
ールド6は、分子線放出孔16を有し、この分子線放出
孔16は、該孔16上に1習接したシャッタ板41によ
って開閉され、これによって分子線3の放出経路を開閉
して基板10上への蒸着層の厚さを制御する。
A conventional vacuum apparatus provided with the above-mentioned electromagnetic shutter is shown in FIG. In FIG. 1, a vapor deposition source 2 is provided in a vacuum chamber 1, and a molecular beam 3 of a predetermined substance is emitted to deposit a vapor deposition layer of a predetermined thickness on a substrate 10. The aperture shield 6 disposed on the path of the molecular beam 3 to limit the spread of the molecular beam 3 has a molecular beam emission hole 16, and this molecular beam emission hole 16 is in contact with the hole 16. It is opened and closed by a shutter plate 41, thereby opening and closing the emission path of the molecular beam 3 to control the thickness of the vapor deposited layer on the substrate 10.

シャッタ板41は、アパーチャーシールド6上に固定さ
れたシャッタ駆動部5にシャッタ固定板42を介して連
結している。シャッタ駆動部5は、導線を巻回されたソ
レノイド51と磁芯52とから構成され、ソレノイド5
1に電流を流すことによってシャッタ4のシャッタ板4
1がアパーチャーシールド6上を開動し、基板への蒸着
物質の膜厚制御が行ねれる。
The shutter plate 41 is connected to the shutter driving section 5 fixed on the aperture shield 6 via a shutter fixing plate 42. The shutter drive unit 5 is composed of a solenoid 51 wound with a conductive wire and a magnetic core 52.
By passing a current through 1, the shutter plate 4 of the shutter 4
1 opens on the aperture shield 6, and the thickness of the vapor deposited substance on the substrate can be controlled.

[発明が解決しようとする課題] しかしながら、上記の如く構成された真空装置を用いて
原子層オーダーの膜厚制御を行うためには、上述の如く
、超高真空中で蒸着スピードを遅くさせて蒸着を行う必
要があり、超高真空中では摩擦係数が急に大きくなる。
[Problems to be Solved by the Invention] However, in order to control the film thickness on the order of atomic layers using the vacuum apparatus configured as described above, it is necessary to slow down the deposition speed in an ultra-high vacuum as described above. Vapor deposition is necessary, and the friction coefficient suddenly increases in ultra-high vacuum.

このため、シャッタ4の開閉に伴って、シャッタ4とア
パーチャーシールド6との!習接部に生ずる摩擦力が大
きくなり、ついにはシャッタ4の開閉動作が行えなくな
ってしまうという欠点があった。
Therefore, as the shutter 4 opens and closes, the shutter 4 and the aperture shield 6! The disadvantage is that the frictional force generated in the contact portion becomes large, and eventually the shutter 4 cannot be opened or closed.

本発明の目的は、超高真空中でもシャッタの開閉動作を
滑らかに行うことができる真空蒸着装置を提供すること
にある。
An object of the present invention is to provide a vacuum evaporation apparatus that can smoothly open and close a shutter even in an ultra-high vacuum.

[課題を解決するための手段] 本発明は、真空槽内に設けられ、所定の物質の分子線を
放出して基板上に蒸着物質を蒸着させる蒸着源と、分子
線放出孔を備え、分子線の放出経路を制限するアパーチ
ャーシールドと、前記分子線放出孔上に1習動可能に設
置され、前記分子線放出孔を開閉するシャッタ板を備え
たシャッタと、該シャッタに連結したシャッタ駆動部と
を有してなる真空蒸着装置において、シャッタ板の少な
くともアパーチャーシールドとの接触面が、カス放出t
lカ10−7torr−j /sec−cm2 ヨり小
Q(、N非金属で形成されていることを特徴とする真空
蒸着装置である。
[Means for Solving the Problems] The present invention is provided in a vacuum chamber and includes a vapor deposition source that emits molecular beams of a predetermined substance to deposit a vapor deposition substance on a substrate, and a molecular beam emission hole. an aperture shield that limits a beam emission path; a shutter that is movably installed above the molecular beam emission hole and includes a shutter plate that opens and closes the molecular beam emission hole; and a shutter drive unit connected to the shutter. In a vacuum evaporation apparatus comprising: at least the contact surface of the shutter plate with the aperture shield,
This is a vacuum evaporation apparatus characterized by being made of a non-metallic material.

本発明において、ガス放出量が10−7Torr−β/
/sec−cm2より小さい非金属材料としては、例え
ば、パイロリティックグラファイト、パイロリティック
ポロンナイトライト、シリコン、ガラス、窒化チタン、
タングステンカーバイド、二酸化シリコン等が挙げられ
る。また、これらの非金属材料はシャッタ板の少なくと
もアパーチャーシールドとの接触面の構成材料でおれば
よく、シャッタ板の全体をこれらの材料で作製しても、
あるいはシャッタ板の一部あるいは表面のみをこれらの
材料で作製あるいはコーティングしたものであってもよ
い。
In the present invention, the amount of gas released is 10-7Torr-β/
Examples of nonmetallic materials smaller than /sec-cm2 include pyrolytic graphite, pyrolytic poron nitrite, silicon, glass, titanium nitride,
Examples include tungsten carbide and silicon dioxide. In addition, these nonmetallic materials only need to be the constituent materials of at least the contact surface of the shutter plate with the aperture shield, and even if the entire shutter plate is made of these materials,
Alternatively, only a portion or the surface of the shutter plate may be made or coated with these materials.

[作用] 超高真空中では、1習接部分での摩擦係数は、大気斤あ
るいは低真空状態における摩擦係数に比べ、極端に大き
くなることが知られている。
[Operation] It is known that in an ultra-high vacuum, the coefficient of friction at a contact point becomes extremely large compared to the coefficient of friction in the atmosphere or in a low vacuum state.

蒸着源から放出される分子線の拡がりを制限するアパー
チャーシールドには、分子線を制限する大きざに対応し
た分子線放出孔がおいており、シャッタはこの孔を完全
に覆ったり、あけたりしなければならない。従って、ア
パーチャーシールドとシャッタ板とは必ず接することに
なる。このアパーチャーシールドとシャッタ板との接触
部分で生ずる摩擦力と、分子線の開閉に伴うシャッタの
高速動作のためにアパーチャーシールドとシャッタの1
2接部にはひっかき傷が生じ、シャッタの開閉数が増え
るにつれて摺接部の表面が荒れ、摩擦力がますます増大
してついにはシャッタが動かなくなってしまう。
The aperture shield that restricts the spread of the molecular beam emitted from the evaporation source has a molecular beam emission hole corresponding to the size that restricts the molecular beam, and the shutter can completely cover or open this hole. There must be. Therefore, the aperture shield and the shutter plate are always in contact with each other. Due to the frictional force generated at the contact area between the aperture shield and the shutter plate and the high-speed operation of the shutter due to the opening and closing of the molecular beam, the aperture shield and shutter
Scratches occur on the two contact parts, and as the number of times the shutter is opened and closed increases, the surface of the sliding contact part becomes rough, and the frictional force increases more and more until the shutter stops moving.

そこで本発明においては、少なくともアパーチャーシー
ルドに接するシャッタ板面をガス放出量が金属並に小さ
い非金属で形成することによって、アパーチャーシール
ドとシャッタ板の(習接部で生ずる摩擦力を小さくして
いる。これは、これらの非金属の比重が金属に比べ小さ
いこと、金属と非金属との間の摩擦係数は、金属と金属
との間のそれよりも極端に小さいことによっている。
Therefore, in the present invention, at least the surface of the shutter plate in contact with the aperture shield is made of a non-metal whose gas release rate is as small as that of metal, thereby reducing the frictional force generated at the contact area between the aperture shield and the shutter plate. This is because the specific gravity of these nonmetals is lower than that of metals, and the coefficient of friction between metals and nonmetals is extremely smaller than that between metals.

[実施例] 次に本発明の実施例について図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す部分断面側面図である
FIG. 1 is a partially sectional side view showing one embodiment of the present invention.

真空槽1内には蒸着源2が設けられ、所定の物質の分子
線3を放出して基板10上に所定の厚さの蒸着層を蒸着
させる。分子線3の経路上に配設されて分子線3の拡が
りを制限するアパーチャーシールド6は、分子線放出孔
16を有し、この分子線放出孔16は、該孔16上に1
習接したシャッタ板41によって開閉され、これによっ
て分子線3の放出経路を開閉して基板10上への蒸@層
の厚さを制御する。
A vapor deposition source 2 is provided in the vacuum chamber 1 and emits molecular beams 3 of a predetermined substance to deposit a vapor deposition layer of a predetermined thickness onto a substrate 10 . The aperture shield 6 disposed on the path of the molecular beam 3 to limit the spread of the molecular beam 3 has a molecular beam emission hole 16 , and the molecular beam emission hole 16 has a single hole above the hole 16 .
It is opened and closed by a shutter plate 41 attached to the shutter plate 41, thereby opening and closing the emission path of the molecular beam 3 and controlling the thickness of the vaporized layer on the substrate 10.

シャッタ板41は、アパーチャーシールド6上に固定さ
れたシャッタ駆動部5にシャッタ固定板42を介して連
結している。シャッタ駆動部5は真空槽1内に設けられ
、リン青銅のボビンに、ポリイミドで絶縁被覆された銅
細線を2分割して巻回されたソレノイド51とニッケル
等の強磁性金属の磁芯52とから構成される。シャッタ
板41およびシャッタ固定板42から構成されるシャッ
タ4は、磁芯52の先端部に連結され、シャッタ駆動部
5の2分割されたソレノイド51のそれぞれに電流を流
すことにより駆動する。本実施例ではシャッタ板41の
素材として第1表記載のものを用いた。
The shutter plate 41 is connected to the shutter driving section 5 fixed on the aperture shield 6 via a shutter fixing plate 42. The shutter drive unit 5 is provided in the vacuum chamber 1, and includes a solenoid 51 that is wound around a phosphor bronze bobbin by dividing a thin copper wire insulated with polyimide into two parts, and a magnetic core 52 of a ferromagnetic metal such as nickel. It consists of The shutter 4, which is composed of a shutter plate 41 and a shutter fixing plate 42, is connected to the tip of a magnetic core 52, and is driven by passing a current through each of the two divided solenoids 51 of the shutter driving section 5. In this example, the materials listed in Table 1 were used as the materials for the shutter plate 41.

上記のように構成された真空蒸着装置について、形成素
材の異なる各シャッタの安定動作を確かめるため、5 
x 10” Torrの超高真空中、室温において、シ
ャッタの開閉を1秒間隔で行い、10000回の開閉動
作でシャッタの運動が遅くなったり、止ったりした場合
を不良、シャッタ動作が滑らかな場合を正常と判定した
。その結果を併せて第1表に示す。
Regarding the vacuum evaporation apparatus configured as described above, in order to confirm the stable operation of each shutter made of different forming materials, five
In an ultra-high vacuum of x 10" Torr at room temperature, the shutter is opened and closed at 1-second intervals. If the shutter movement slows down or stops after 10,000 opening and closing operations, it is considered defective. If the shutter movement is smooth, it is considered defective. was determined to be normal.The results are also shown in Table 1.

第1表のように、金属製のシャッタ板では10000回
の開閉試験に耐えられないのに対し、本発明の非金属あ
るいは非金属コーティングシャッタ板では、非常に滑ら
かな開閉動作を行うことができた。
As shown in Table 1, metal shutter plates cannot withstand 10,000 opening and closing tests, whereas the nonmetallic or nonmetallic coated shutter plate of the present invention can perform extremely smooth opening and closing operations. Ta.

[発明の効果] 以上説明したように、本発明の真空蒸着装置は、超高真
空中でもシVツタとアパーチャーシールドとの摩擦力が
小さいのでシャッタを安定に開閉させることができ、従
って膜厚制御を安定して行うことができる。
[Effects of the Invention] As explained above, the vacuum evaporation apparatus of the present invention can stably open and close the shutter because the frictional force between the shutter vine and the aperture shield is small even in an ultra-high vacuum, and therefore the film thickness can be controlled. can be performed stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は真空蒸着装置の一例の部分断面側面図、第2図
(a) 、 (b)はそれぞれ従来の真空蒸着装置の第
1の例を示す部分断面側面図および要部斜視図、第3図
および第4図はそれぞれ従来の真空蒸着装置の第2およ
び第3の例を示す部分断面側面図である。 1.1a〜1C・・・真空槽 2・・・蒸着源       3・・・分子線4.48
〜4C・・・シャッタ 5・・・シャッタ駆動部 6・・・アパーチャーシールド 7・・・回転軸 9・・・圧縮空気シリンダ 16・・・分子線放出孔 41・・・シャッタ板 51・・・ソレノイド 代 理 人 弁理士 舘 8・・・ベローズ 10・・・基板 1つ・・・軸 41・・・シャッタ固定板 52・・・磁芯 野千惠子
FIG. 1 is a partially sectional side view of an example of a vacuum evaporation device, and FIGS. 3 and 4 are partial cross-sectional side views showing second and third examples of conventional vacuum evaporation equipment, respectively. 1.1a-1C...Vacuum chamber 2...Vapor deposition source 3...Molecular beam 4.48
~4C... Shutter 5... Shutter drive unit 6... Aperture shield 7... Rotating shaft 9... Compressed air cylinder 16... Molecular beam emission hole 41... Shutter plate 51... Solenoid representative Patent attorney Tate 8... Bellows 10... 1 board... Shaft 41... Shutter fixing plate 52... Magnetic core Chieko Nono

Claims (1)

【特許請求の範囲】[Claims] (1)真空槽内に設けられ、所定の物質の分子線を放出
して基板上に蒸着物質を蒸着させる蒸着源と、分子線放
出孔を備え、分子線の放出経路を制限するアパーチャー
シールドと、前記分子線放出孔上に摺動可能に設置され
、前記分子線放出孔を開閉するシャッタ板を備えたシャ
ッタと、該シャッタに連結したシャッタ駆動部とを有し
てなる真空蒸着装置において、シャッタ板の少なくとも
アパーチャーシールドとの接触面が、ガス放出量が10
^−^7torr・l/sec・cm^2より小さい非
金属で形成されていることを特徴とする真空蒸着装置。
(1) A evaporation source installed in a vacuum chamber that emits a molecular beam of a predetermined substance to deposit the evaporation material on a substrate, and an aperture shield that is equipped with a molecular beam emission hole and restricts the emission path of the molecular beam. , a vacuum evaporation apparatus comprising: a shutter slidably installed on the molecular beam emission hole and equipped with a shutter plate for opening and closing the molecular beam emission hole; and a shutter drive unit connected to the shutter. At least the contact surface of the shutter plate with the aperture shield has a gas release rate of 10
A vacuum evaporation device characterized in that it is made of a non-metal having a value smaller than ^-^7 torr.l/sec.cm^2.
JP28132588A 1988-11-09 1988-11-09 Vacuum deposition device Pending JPH02129363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28132588A JPH02129363A (en) 1988-11-09 1988-11-09 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28132588A JPH02129363A (en) 1988-11-09 1988-11-09 Vacuum deposition device

Publications (1)

Publication Number Publication Date
JPH02129363A true JPH02129363A (en) 1990-05-17

Family

ID=17637533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28132588A Pending JPH02129363A (en) 1988-11-09 1988-11-09 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPH02129363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136834A (en) * 2011-11-28 2013-07-11 National Institute For Materials Science Shutter device for vapor deposition and deposition apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136834A (en) * 2011-11-28 2013-07-11 National Institute For Materials Science Shutter device for vapor deposition and deposition apparatus using the same

Similar Documents

Publication Publication Date Title
EP0053811B1 (en) Magnetic recording media
US3342632A (en) Magnetic coating
US4751100A (en) Magnetic recording medium and method for making the same
JPH02129363A (en) Vacuum deposition device
JP7041597B2 (en) Heat-assisted magnetic recording medium and magnetic storage device
KR101871995B1 (en) Sputtering apparatus
Chaudhari et al. Design and performance of an ultrahigh vacuum system for metallic multilayers
JP7193291B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JPH0192364A (en) Vacuum metallizer
JPH01108719A (en) Vacuum evaporator
JPS61240429A (en) Magnetic recording medium
JPS6154143A (en) Table device
EP0415431A2 (en) Magnetic recording medium
JPS63227764A (en) Electromagnetic shutter for ultra-high-vacuum vapor deposition equipment
EP0517411A1 (en) Magnetic recording medium
Androes et al. Device for Evaporating Multiple Films
JPH03105721A (en) Magnetic recording medium, its production and production machine of magnetic recording medium
JPH0562186A (en) Manufacture of magnetic recording medium
JPS6334226B2 (en)
Yuan Study of composite thin films for applications in high density data storage
JP2547770B2 (en) Method for manufacturing information recording medium
Lince et al. EXAFS studies of the structure of sputter-deposited MoS {sub 2} films
JP3340803B2 (en) High-speed atomic beam sputter deposition apparatus and method for producing functionally graded thin film
JPH04328324A (en) Manufacture of magnetic recording medium
JPH0512765B2 (en)