JPH02129152A - Production of alicyclic diamines - Google Patents

Production of alicyclic diamines

Info

Publication number
JPH02129152A
JPH02129152A JP63280913A JP28091388A JPH02129152A JP H02129152 A JPH02129152 A JP H02129152A JP 63280913 A JP63280913 A JP 63280913A JP 28091388 A JP28091388 A JP 28091388A JP H02129152 A JPH02129152 A JP H02129152A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
palladium
diamine
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63280913A
Other languages
Japanese (ja)
Other versions
JPH0830045B2 (en
Inventor
Hiroshige Maruyama
丸山 寛茂
Seiji Saito
誠司 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON OKISOKOOLE KK
Original Assignee
NIPPON OKISOKOOLE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON OKISOKOOLE KK filed Critical NIPPON OKISOKOOLE KK
Priority to JP63280913A priority Critical patent/JPH0830045B2/en
Publication of JPH02129152A publication Critical patent/JPH02129152A/en
Publication of JPH0830045B2 publication Critical patent/JPH0830045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as a raw material for polyamide resin, non-yellowing polyurethane resin, epoxy resin hardener, etc., by hydrogenating an aromatic amine in the presence of palladium and ruthenium catalyst. CONSTITUTION:An alicyclic diamine is produced by hydrogenating an aromatic diamine in the presence of palladium and ruthenium catalyst in a solvent such as dioxan or in the absence of solvent under a hydrogen pressure of 10-300kg/cm<2> at 100-230 deg.C for 0.5-6hr. The weight ratio of Pd to Ru used as the catalyst is preferably (0.001-2)/1 and the amount of the catalyst is 0.0001-0.5 pts.-wt. in terms of metal based on the diamine. The catalyst is usually supported on a carrier such as alumina or diatomaceous earth. Both catalysts are used at the same time in the reaction of the diamine used as a raw material or the diamine is first reacted in the presence of Pd and then Ru.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は芳香族ジアミン類を原料として、これを水素添
加することにより、それに相当する脂環式ジアミン類を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing corresponding alicyclic diamines by hydrogenating aromatic diamines as raw materials.

従来の技術 従来、芳香族ジアミン類を水素添加するには、ルテニウ
ム、ロジウムなどの貴金属を触媒として用いるか、アル
カリ変性したコバルトを触媒に用いる方法が知られてい
る。特開昭55−108839号公報および米国特許第
3.959.374号にはルテニウムを触媒とする方法
が、特開昭62−228J)44号公報(EP2317
88)にはルテニウムとロジウムから成る触媒がそれぞ
れ開示されている。このうちルテニウム触媒を用いる方
法が工業的に広く用いられているが、触媒のルテニウム
が非常に高価であるため、水素添加の効率、触媒の活性
保持等が常に望まれている。
BACKGROUND ART Conventionally, in order to hydrogenate aromatic diamines, a method is known in which a noble metal such as ruthenium or rhodium is used as a catalyst, or alkali-modified cobalt is used as a catalyst. JP-A-55-108839 and US Pat. No. 3,959,374 disclose a method using ruthenium as a catalyst, and JP-A-62-228J) 44 (EP 2317)
88) discloses catalysts consisting of ruthenium and rhodium, respectively. Among these methods, methods using ruthenium catalysts are widely used industrially, but since the ruthenium catalyst is very expensive, efficiency of hydrogenation, retention of catalyst activity, etc. are always desired.

この課題を解決するためには第一に原料の芳香族アミン
類に含まれる被毒原因の微潰副生物の除去が不可欠であ
った。
In order to solve this problem, it was first essential to remove the micro-crushed by-products that caused poisoning and were contained in the raw aromatic amines.

また、水素添加の際に生成する多数の副生成物が時に触
媒を被覆し、触媒活性を低下させることが多いので、反
応工程中にこれら副生物の生成を抑制することも重要な
課題であった。
In addition, many by-products generated during hydrogenation often coat the catalyst and reduce the catalytic activity, so it is also an important issue to suppress the formation of these by-products during the reaction process. Ta.

従来、これらの問題に対して取られていた手段は原料の
芳香族アミン類の精製、方よび被毒触媒を補うために新
規ルテニウム触媒の反応系への補給という二つの方法で
ある。
Conventionally, two methods have been taken to address these problems: purification of aromatic amines as raw materials and replenishment of a new ruthenium catalyst to the reaction system to supplement the poisoned catalyst.

原料の精製については、再結晶法、蒸溜法などが採用さ
れていた。しかしながら、再結晶法では再結ロスによる
収量の低下あるいは溶媒の回収、固体粉末の取扱いなど
の副次的問題が多く発生し、結果的には生産効率の低下
、処理費用増加という不利な情況を招くことになる。ま
た、蒸留法については、一般に芳香族アミン類は沸点が
高く酸化物などの不純分を釜残として除くには仕込アミ
ンをほとんど留出させることを意味するため、熱エネル
ギーの面からの損失は無視しえない。いずれにしても、
従来の原料精製は技術的に煩雑な工程を伴い、生産の経
済性という面からも必ずしも有効な方法ではない。他方
、ルテニウム触媒の補給は水素添加の経費の上昇と密接
に関連しているので好ましい手段ではなく、特に新規ル
テニウム触媒の補給は長期的に観れば、触媒の入れかえ
を意味するので得策ではない。
Recrystallization and distillation methods were used to purify raw materials. However, the recrystallization method has many side problems such as a decrease in yield due to recrystallization loss, recovery of solvent, and handling of solid powder, resulting in a disadvantageous situation such as a decrease in production efficiency and an increase in processing costs. I will invite you. In addition, regarding the distillation method, aromatic amines generally have a high boiling point, and in order to remove impurities such as oxides as residue, most of the charged amine must be distilled out, so the loss in terms of thermal energy is I can't ignore it. In any case,
Conventional raw material refining involves technically complicated steps and is not necessarily an effective method from the economic standpoint of production. On the other hand, replenishing ruthenium catalyst is not a preferable method because it is closely associated with an increase in the cost of hydrogenation, and in particular, replenishing new ruthenium catalyst is not a good idea in the long run because it means replacing the catalyst.

こういう背景から、従来の技術は工業的製法としては必
ずしも充分ではなく、さらに有利な製法の開発が望まれ
ている。
Against this background, the conventional techniques are not necessarily sufficient as industrial production methods, and there is a desire to develop a more advantageous production method.

発明が解決しようとする課題 本発明は、パラジウムおよびルテニウムの触媒の組合せ
が副反応の抑制および触媒の活性保持に有用であるとい
う知見にもとづき、脂環式ジアミン類の新規製法を提供
することにある。
Problems to be Solved by the Invention The present invention aims to provide a new method for producing alicyclic diamines based on the knowledge that a combination of palladium and ruthenium catalysts is useful for suppressing side reactions and maintaining catalyst activity. be.

課題を解決するための手段 本発明は、芳香族ジアミン類をパラジウムとルテニウム
触媒の存在下に水素添加することを特徴とする脂環式ジ
アミン類の製法に関する。
Means for Solving the Problems The present invention relates to a method for producing alicyclic diamines, which is characterized by hydrogenating aromatic diamines in the presence of a palladium and ruthenium catalyst.

ここで芳香族ジアミン順としては、次式(1)および(
II)で示される化合物が例示される。
Here, the order of aromatic diamines is the following formula (1) and (
A compound represented by II) is exemplified.

(式中、Rは水素または低級アルキルを表わす)〔式中
、Xは単結合、−o−、−s−、−so、−5o2−ま
たはCR’R2−(式中、R1およびR2は同一または
異なって水素または低級アルキルを表わす)を表わし、
Rは前記と同義である〕 ここで、式(1)および([1)における低級アルキル
とは、直鎖または分岐状の炭素数1〜4のメチル、エチ
ル、プロピル、イソプロピル、ブチル、イソブチル、5
ec−ブチル、tert−ブチル等があげられる。
(In the formula, R represents hydrogen or lower alkyl) or differently hydrogen or lower alkyl);
R has the same meaning as above] Here, the lower alkyl in formulas (1) and ([1)] refers to linear or branched C1-C4 methyl, ethyl, propyl, isopropyl, butyl, isobutyl, 5
Examples include ec-butyl and tert-butyl.

触媒のパラジウムとルテニウムの組成重量比は0001
/1〜2/lが好ましく、触媒の使用量は金属部として
、原料のジアミンに対して0.0001〜0.05重量
部、好ましくは0.001〜0.01重量部である。ま
たこれら触媒は通常担体に支持されており、担体として
は例えば、アルミナ、珪藻土等が例示される。
The composition weight ratio of palladium and ruthenium in the catalyst is 0001
/1 to 2/l is preferable, and the amount of the catalyst used is 0.0001 to 0.05 parts by weight, preferably 0.001 to 0.01 parts by weight, based on the diamine as the raw material. Further, these catalysts are usually supported by a carrier, and examples of the carrier include alumina, diatomaceous earth, and the like.

反応は無溶媒あるいは反応に関与しない溶媒中で行われ
る。適当な溶媒としては、例えばジオキサン、テトラヒ
ドロフラン等のエーテル類が好ましく用いられ、原料の
ジアミンに対して0〜5重量部、好ましくは1〜3重量
部使用される。また水素添加反応における水素圧はlO
〜300 kg/ei、好ましくは35〜200kg/
cI11である。
The reaction is carried out without a solvent or in a solvent that does not participate in the reaction. As a suitable solvent, ethers such as dioxane and tetrahydrofuran are preferably used, and are used in an amount of 0 to 5 parts by weight, preferably 1 to 3 parts by weight, based on the diamine as the raw material. Also, the hydrogen pressure in the hydrogenation reaction is lO
~300 kg/ei, preferably 35-200 kg/ei
It is cI11.

反応温度は通常100〜230℃であり、0.5〜6時
間で反応は終了する。反応終了後、目的化合物は通常の
単離・精製法、例えば触媒を濾過した後、減圧蒸留によ
り高純度で得ることができる。
The reaction temperature is usually 100 to 230°C, and the reaction is completed in 0.5 to 6 hours. After the reaction is completed, the target compound can be obtained in high purity by conventional isolation and purification methods, for example, by filtering the catalyst and then distilling it under reduced pressure.

なお、本発明の製法において、触媒のパラジウムおよび
ルテニウムのそれぞれの役割は異なると考えられる。す
なわち、パラジウムは主として触媒被毒物質を攻撃し、
これを無毒化するのに有効であり、ルテニウムは芳香環
への水素添加にを効である。
In addition, in the production method of the present invention, the respective roles of palladium and ruthenium as catalysts are considered to be different. That is, palladium primarily attacks catalyst poisoning substances,
Ruthenium is effective in detoxifying aromatic rings, and ruthenium is effective in hydrogenating aromatic rings.

従って実施に当たっては、原料ジアミンに対して両触媒
を同時に使用するか、もしくは予めパラジウムで処理し
てからルテニウムを使用することが好ましい。よって水
素添加の操作は所定の雫のパラジウムおよびルテニウム
を含有する触媒を用いてオートクレーブ中で回分式に運
転される場合と固定床水素添加装置で連続的に流入させ
る場合の二つの方法がある。
Therefore, in practice, it is preferable to use both catalysts simultaneously for the raw material diamine, or to treat the raw material diamine with palladium before using ruthenium. Therefore, there are two methods for hydrogenation: one is a batch operation in an autoclave using a catalyst containing predetermined drops of palladium and ruthenium, and the other is a fixed bed hydrogenation device in which the catalyst is continuously introduced.

ところで両触媒を混合形態で使用するか、あるいはまた
パラジウムとルテニウムの処理を別々に二段階に分割す
るかは、工業的実施に当たって重要な選択である。
However, it is an important choice in industrial practice whether to use both catalysts in a mixed form or whether to separate the treatment of palladium and ruthenium into two stages.

一般に、回分式反応器で処理する場合は混合形態による
方法が有利である。また、連続的に多量の芳香族ジアミ
ンを処理するに当り、−堪の反応器ですませたいときは
混合形態によって処理するのが好ましく、二基の反応器
によるときは二段階処理によることができる。
In general, mixed mode processes are advantageous when working in batch reactors. In addition, when continuously treating a large amount of aromatic diamine, it is preferable to process in a mixed form if one wants to use only one reactor, and if two reactors are used, a two-step process can be used. .

いずれにしても、原料アミンはパラジウムとルテニウム
触媒に同時、または先にパラジウムに接触させることが
効率的であるといえる。
In any case, it can be said that it is efficient to bring the raw amine into contact with palladium and the ruthenium catalyst simultaneously or with palladium first.

本発明により、反応完結に必要な触媒量の減少、反応温
度の低下、反応所要時間の短縮等反応を効率的に行うこ
とが可能となり、副反応生成物が抑止され結果的にルテ
ニウム触媒の寿命をさらに延ばすことができる。
The present invention makes it possible to efficiently carry out the reaction by reducing the amount of catalyst required to complete the reaction, lowering the reaction temperature, shortening the time required for the reaction, suppressing side reaction products, and resulting in a longer life of the ruthenium catalyst. can be extended further.

本発明により得られる脂環式ジアミン類は、ポリアミド
樹脂、非変色性ポリウレタン樹脂、エポキシ樹脂用硬化
剤等の原料として有用な化合物である。
The alicyclic diamines obtained by the present invention are useful compounds as raw materials for polyamide resins, non-discoloring polyurethane resins, curing agents for epoxy resins, and the like.

以下に本発明の態様を実験例および実施例によって説明
する。
Aspects of the present invention will be explained below using experimental examples and examples.

実験例1  ルテニウム触媒単独の場合内容積500m
1の攪拌装置付オートクレーブに、粗3.37−シメチ
ルー4.4′−ジアミノジフェニルメタン(以下、MD
Tと記す)100g、溶媒としてジオキサン200g、
触媒として0.5%ルテニウム−アルミナ触媒(日本エ
ンゲルハルト社製)20gを仕込んだ。水素置換を行っ
た後水素圧力を50kg/cjとし攪拌しながら200
℃に昇温、その後直ちに水素圧力を100 kg/cI
Itとして水素吸収の進行を減圧度を目安として測定し
た。水素圧力を100kg/cdとした時点(始点)を
基準として反応の進行を測定し、減圧が限界に達した時
点を終点とした。すなわち、反応の所要時間は始点から
の経過時間であり、反応率は終点の減圧度を基準にして
算出した。
Experimental example 1 In case of ruthenium catalyst alone, internal volume 500m
Crude 3.37-dimethyl-4.4'-diaminodiphenylmethane (hereinafter referred to as MD
(denoted as T) 100g, dioxane 200g as a solvent,
As a catalyst, 20 g of a 0.5% ruthenium-alumina catalyst (manufactured by Nippon Engelhard) was charged. After hydrogen substitution, the hydrogen pressure was set to 50 kg/cj and the mixture was heated to 200 ml while stirring.
The temperature was raised to ℃, and then the hydrogen pressure was immediately increased to 100 kg/cI.
The progress of hydrogen absorption was measured as It, using the degree of reduced pressure as a guide. The progress of the reaction was measured based on the point at which the hydrogen pressure was set to 100 kg/cd (starting point), and the point at which the pressure reduction reached its limit was defined as the end point. That is, the time required for the reaction is the elapsed time from the starting point, and the reaction rate was calculated based on the degree of pressure reduction at the end point.

以後、室温まで冷却し脱圧窒素置換を行い、内容物をN
α5Cのp紙(東洋濾紙社製)を用いて減圧濾過した。
Thereafter, the contents were cooled to room temperature and replaced with depressurized nitrogen.
It was filtered under reduced pressure using α5C p paper (manufactured by Toyo Roshi Co., Ltd.).

p液は濃縮後ガスクロマトグラフィーを用いて純度を分
析した。
After concentration, the p liquid was analyzed for purity using gas chromatography.

ここに出発原料として用いた粗MDTの純度はガスクロ
マトグラフィーによって94.5%、その他は不純物で
あった。不純物にはメチレン基をはさんで三個のトルイ
ジン核が結合した化合物および少量の高縮合物としての
タールが含まれていた。
The purity of the crude MDT used here as a starting material was 94.5% as determined by gas chromatography, and the rest was impurities. The impurities included a compound in which three toluidine nuclei were bonded with methylene groups in between, and a small amount of tar as a high condensate.

14とした。すなわら、回収の度毎に新規ルテニウム触
媒1.0gを追加り粗MDT  100g、ジオキサン
200gを新たに仕込み反応を繰り返した。
It was set at 14. That is, each time of recovery, 1.0 g of new ruthenium catalyst was added, 100 g of crude MDT and 200 g of dioxane were newly charged, and the reaction was repeated.

結果を第1表に示す。The results are shown in Table 1.

第    1    表 シルメタン(HMDT)の含量の比をもって収率とした
。これを実験番号11とする。
Table 1 The ratio of the content of silmethane (HMDT) was defined as the yield. This is designated as experiment number 11.

以下、回収した触媒に1.0gの新規ルテニウム触媒を
追加し上記同様、粗MDT  100g、溶媒ジオキサ
ン200gを仕込んでHMDTを合成した。水素圧10
0 kg/c++1.温度200℃に設定した時点を基
準にして反応の進行時間を測定し、生成物の分析を行う
手法は上記と同様である。これを実験12とする。
Thereafter, 1.0 g of a new ruthenium catalyst was added to the recovered catalyst, and 100 g of crude MDT and 200 g of solvent dioxane were charged in the same manner as above to synthesize HMDT. Hydrogen pressure 10
0 kg/c++1. The reaction progress time is measured based on the time when the temperature is set at 200° C., and the method of analyzing the product is the same as described above. This will be referred to as Experiment 12.

このような操作をくりかえし行い、以下実験13゜実験
例2  パラジウム−ルテニウム触媒の場合実験例1に
準じて粗MDT  100g、溶媒としてジオキサン2
00g、触媒として0.5%パラジウム−アルミナおよ
び0.5%ルテニウム−アルミナ(いずれも日本エンゲ
ルハルト社製)を1=10の重量比率に混合した触媒2
0gを仕込んだ。
These operations were repeated, and the following Experiment 13゜Experiment Example 2 In the case of palladium-ruthenium catalyst, 100 g of crude MDT and dioxane 2 as a solvent were added according to Experiment Example 1.
00g, catalyst 2 in which 0.5% palladium-alumina and 0.5% ruthenium-alumina (both manufactured by Nippon Engelhard) were mixed at a weight ratio of 1=10.
0g was charged.

以下:HMDTの合成、反応の進行の測定、濾過回収、
繰り返し実験の要領は実験例1にもとすく。
The following: synthesis of HMDT, measurement of reaction progress, filtration collection,
The details of the repeated experiment can be found in Experimental Example 1.

すなわち、繰り返しのつど触媒を新規に1.0g追加し
、粗MDT  100g、ジオキサン200gを仕込ん
で反応を追跡した。
That is, in each repetition, 1.0 g of new catalyst was added, 100 g of crude MDT, and 200 g of dioxane were charged, and the reaction was monitored.

結果を第2表に示す。The results are shown in Table 2.

第    2    表 ロマトグラフィーの測定からは認められなかった。Table 2 It was not detected by chromatographic measurements.

第二段階は上記処理液を出発原料として実験例1の操作
を繰り返した。
In the second step, the operation of Experimental Example 1 was repeated using the above treatment liquid as a starting material.

その結果を第3表に示す。The results are shown in Table 3.

第    3    表 実験例3  二段階処理の場合 第一段階において粗MDT  loog、ジオキサン3
00g、5%パラジウム−アルミナの触媒2.0gの割
合で、オートクレーブに仕込み水素置換を行った後、水
素圧力を50kg/cjとし攪拌しつつ150℃に昇温
した。150℃に達してから60分放置し、以後冷却し
て第一段階の処理を終了した。この操作によってMDT
の損失はガスク実験例1〜3は芳香族ジアミン(MDT
)を原料としてこれを水素添加する時、ルテニウムを単
独で用いる場合とパラジウム−ルテニウムで処理する場
合とを比較したものである。
Table 3 Experimental Example 3 In the case of two-stage treatment, in the first stage crude MDT loog, dioxane 3
00g and 2.0g of 5% palladium-alumina catalyst were charged into an autoclave and replaced with hydrogen.Then, the hydrogen pressure was set to 50kg/cj and the temperature was raised to 150°C with stirring. After reaching 150° C., it was left to stand for 60 minutes, and then cooled to complete the first stage treatment. With this operation, MDT
Gask Experimental Examples 1 to 3 show the loss of aromatic diamine (MDT).
) is used as a raw material for hydrogenation, and a comparison is made between using ruthenium alone and treating it with palladium-ruthenium.

実験例1によってルテニウム触媒の活性が急速に低下す
ることがわかる。すなわち、2〜3回の繰り返しにより
活性が半減することが、反応率の所定水準の所要時間の
比較から明らかである。
Experimental Example 1 shows that the activity of the ruthenium catalyst decreases rapidly. That is, it is clear from a comparison of the time required for a given level of reaction rate that the activity is halved by repeating the reaction 2 to 3 times.

他方、実験例2によれば失活の速度はかなり緩慢である
。これはパラジウム−ルテニウム触媒のため水素添加の
被毒物質の無毒化が顕著なためであると解釈できる。
On the other hand, according to Experimental Example 2, the rate of deactivation is quite slow. This can be interpreted to be because the palladium-ruthenium catalyst significantly detoxifies poisonous substances during hydrogenation.

また、同様の傾向は実験例3によっても実証される。予
め、第一段階で原料の粗MDTを水素添加処理しておけ
ば第二段階でのルテニウム触媒は活性がよく保持されて
いることは繰り返し実験(32,33,34)において
所定の反応率に到達する時間が近似していることからも
明らかである。実験例2および3のいずれの方法におい
ても、パラジウム−ルテニウムの組合せ効果が明瞭であ
る。
Further, a similar tendency is also demonstrated by Experimental Example 3. Repeated experiments (32, 33, 34) have shown that if the crude MDT raw material is hydrogenated in advance in the first stage, the activity of the ruthenium catalyst in the second stage is well maintained at a given reaction rate. This is clear from the fact that the arrival times are similar. In both the methods of Experimental Examples 2 and 3, the palladium-ruthenium combination effect is clear.

以上の実験例の結果から、芳香族ジアミンを出発原料と
して、これを水素添加し脂環式ジアミンを合成するに当
り、パラジウム−ルテニウムの触媒を用いて、水素添加
をすれば、常にルテニウム触媒の活性を高水準に保持し
つつ、効率的に反応を進行させることができることが実
証された。
From the results of the above experimental examples, when hydrogenating an aromatic diamine as a starting material to synthesize an alicyclic diamine, if hydrogenation is performed using a palladium-ruthenium catalyst, the ruthenium catalyst will always be It was demonstrated that the reaction could proceed efficiently while maintaining a high level of activity.

実施例 内容積500m1の攪拌装置付オートクレーブに、粗M
DT (純度94.5%>100g、溶媒としてジオキ
サン200g、触媒として0.5%パラジウム−アルミ
ナおよび0.5%ルテニウム−アルミナを1=IOに混
合した触媒50gを仕込んだ。
Example: In an autoclave with a stirring device and an internal volume of 500 m1, crude M
DT (purity 94.5%>100 g, 200 g of dioxane as a solvent, and 50 g of a catalyst prepared by mixing 0.5% palladium-alumina and 0.5% ruthenium-alumina in a ratio of 1=IO) were charged.

水素置換を行った後、水素圧力を50kg/cutとし
て攪拌しながら180℃に昇温、その後直ちに水素圧力
を100 kg/catとして反応を開始させた。
After hydrogen substitution, the temperature was raised to 180° C. with stirring at a hydrogen pressure of 50 kg/cut, and then the hydrogen pressure was immediately raised to 100 kg/cut to start the reaction.

同条件で3時間反応した後室温まで冷却した。After reacting under the same conditions for 3 hours, it was cooled to room temperature.

脱圧後窒素置換を行い、触媒を減圧ρ過により除去した
。ρ液は減圧下に溶媒を留去することにより淡褐色粘性
液106.3 gを得た。ガスクロマトグラフィーによ
り測定した結果HMDTfi度は90.1%であった。
After depressurizing, nitrogen substitution was performed, and the catalyst was removed by filtration under reduced pressure. The solvent of the ρ solution was distilled off under reduced pressure to obtain 106.3 g of a pale brown viscous liquid. As a result of measurement by gas chromatography, the HMDTfi degree was 90.1%.

仕込粗MDT中のMDT含量を基準として、生成したH
MDTの反応収率は96.4%であった。
Based on the MDT content in the raw MDT, the generated H
The reaction yield of MDT was 96.4%.

粗HMDTを減圧蒸留し、129〜131 tl:10
.3amHgの留分を94.3g(純度97.8%)を
得た。
Crude HMDT was distilled under reduced pressure to 129-131 tl: 10
.. 94.3 g (purity 97.8%) of a 3 amHg fraction was obtained.

蒸留精製を含め、収率は90.7%であった。Including distillation purification, the yield was 90.7%.

得られたHMDTは、標品のHMDT (商品名:ラロ
ミンC260;BASF社製)とガスクロマドグラフィ
ー、マススペクトル、核磁気共鳴スペクトルおよび赤外
線吸収スペクトルの各分析値がいずれも一致した。
The obtained HMDT had analytical values of gas chromatography, mass spectrum, nuclear magnetic resonance spectrum, and infrared absorption spectrum that all agreed with standard HMDT (trade name: Laromin C260; manufactured by BASF).

発明の効果 本発明により芳香族ジアミン類からの指通式ジアミン類
の新規な製法が提供される。
Effects of the Invention The present invention provides a novel method for producing finger-type diamines from aromatic diamines.

Claims (3)

【特許請求の範囲】[Claims] (1)芳香族ジアミン類をパラジウムとルテニウム触媒
の存在下に水素添加することを特徴とする脂環式ジアミ
ン類の製法。
(1) A method for producing alicyclic diamines, which comprises hydrogenating aromatic diamines in the presence of a palladium and ruthenium catalyst.
(2)パラジウムとルテニウム触媒の共存下に水素添加
することを特徴とする請求項(1)記載の製法。
(2) The production method according to claim (1), characterized in that hydrogenation is carried out in the coexistence of palladium and ruthenium catalysts.
(3)パラジウム触媒の存在下に反応させ、次いでルテ
ニウム触媒の存在下に水素添加することを特徴とする請
求項(1)記載の製法。
(3) The method according to claim (1), characterized in that the reaction is carried out in the presence of a palladium catalyst, and then hydrogenation is carried out in the presence of a ruthenium catalyst.
JP63280913A 1988-11-07 1988-11-07 Method for producing alicyclic diamines Expired - Lifetime JPH0830045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280913A JPH0830045B2 (en) 1988-11-07 1988-11-07 Method for producing alicyclic diamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280913A JPH0830045B2 (en) 1988-11-07 1988-11-07 Method for producing alicyclic diamines

Publications (2)

Publication Number Publication Date
JPH02129152A true JPH02129152A (en) 1990-05-17
JPH0830045B2 JPH0830045B2 (en) 1996-03-27

Family

ID=17631683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280913A Expired - Lifetime JPH0830045B2 (en) 1988-11-07 1988-11-07 Method for producing alicyclic diamines

Country Status (1)

Country Link
JP (1) JPH0830045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196957A (en) * 2008-02-25 2009-09-03 Nippon Soda Co Ltd Chlorination method and method for detecting end point of the reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196957A (en) * 2008-02-25 2009-09-03 Nippon Soda Co Ltd Chlorination method and method for detecting end point of the reaction

Also Published As

Publication number Publication date
JPH0830045B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
EP1857434B1 (en) Method for producing xylylenediamine
JPS5827262B2 (en) Seizouhouhou
RU2181358C2 (en) Method of synthesis of sertraline from chiral tetralone
US3935264A (en) Hydrogenation of dinitrotoluene to toluene diamine
US4717774A (en) Process for the preparation of toluene diamines
JPH02129152A (en) Production of alicyclic diamines
JP3038271B2 (en) Method for producing 3-aminopropanol
JP2526611B2 (en) Purification method of dialkylaminoethanol
JPH026441A (en) Method for manufacturing a polycyclohexyl amine
CA1059534A (en) Process for preparing n&#39;, n&#39;-disubstituted acid hydrazides
JPH0329781B2 (en)
US4978792A (en) Process for producing aminobenzylamine
JPH0227334B2 (en)
KR860002165B1 (en) The process for preparing of amino benzylamine
JPS63303967A (en) Manufacture of 4-hydroxy-2,2,6,6- tetramethylpiperidine
JP3443583B2 (en) Method for producing cis-2,6-dimethylpiperazine
JPH0597778A (en) Production of 2-aminoindane and its salts
CA2019407C (en) Stereoselective hydrogenation process
JPS63145274A (en) Production of piperidine
JPH0670012B2 (en) Process for producing 2- or 3-aminomethylpiperidine
CN110668976A (en) Rivastigmine optical isomeric intermediate and synthetic method of (R) -rivastigmine
CN117603129A (en) Method for preparing 2-substituted pyridine from succinic acid diester
JPH0625111A (en) Production of 3-aminomethyl-3,5,5-trialkylcyclohexylamine
JP2002001118A (en) Activated platinum catalyst and method for production of amine by using the same
JPH0446263B2 (en)