JPH0670012B2 - Process for producing 2- or 3-aminomethylpiperidine - Google Patents

Process for producing 2- or 3-aminomethylpiperidine

Info

Publication number
JPH0670012B2
JPH0670012B2 JP60093354A JP9335485A JPH0670012B2 JP H0670012 B2 JPH0670012 B2 JP H0670012B2 JP 60093354 A JP60093354 A JP 60093354A JP 9335485 A JP9335485 A JP 9335485A JP H0670012 B2 JPH0670012 B2 JP H0670012B2
Authority
JP
Japan
Prior art keywords
aminomethylpiperidine
reaction
yield
solvent
aminomethylpyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60093354A
Other languages
Japanese (ja)
Other versions
JPS61251659A (en
Inventor
義男 井口
俊成 名畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP60093354A priority Critical patent/JPH0670012B2/en
Publication of JPS61251659A publication Critical patent/JPS61251659A/en
Publication of JPH0670012B2 publication Critical patent/JPH0670012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogenated Pyridines (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は2−又は3−アミノメチルピペリジンを製造す
る方法に関する。さらに詳しく述べると、遊離の2−又
は3−アミノメチルピペリジン(以下、単に2−又は3
−アミノメチルピペリジンという。)を溶媒の存在下又
は無溶媒下、ロジウム系水素化触媒にて接触水素化を行
なうことを特徴とするものである。
TECHNICAL FIELD The present invention relates to a method for producing 2- or 3-aminomethylpiperidine. More specifically, free 2- or 3-aminomethylpiperidine (hereinafter simply referred to as 2- or 3-
-Aminomethylpiperidine. ) Is catalytically hydrogenated with a rhodium-based hydrogenation catalyst in the presence or absence of a solvent.

本発明により得られた2−又は3−アミノメチルピペリ
ジンは医薬中間体として有用なものである。
The 2- or 3-aminomethylpiperidine obtained by the present invention is useful as a pharmaceutical intermediate.

従来技術 2−アミノメチルピリジン又はその酢酸塩の接触水素化
による2−アミノメチルピペリジンの製法は、例えばC.
A.55,528e(1961)によれば酢酸溶媒下PtO2にて核水素
化を行ない、2−アミノメチルピペリジンを収率64%で
得ている。又、3−アミノメチルピペリジンの製法は、
JOC26巻,3805〜3808(1961)によれば、酢酸又はアンモ
ニアの存在下、RuO2にて核水素化を行ない3−アミノメ
チルピペリジンを酢酸使用の場合は収率78%、アンモニ
ア使用の場合収率68%で得ている。
Prior art A method for producing 2-aminomethylpiperidine by catalytic hydrogenation of 2-aminomethylpyridine or its acetate is described in, for example, C.
According to A.55,528e (1961), nuclear hydrogenation was carried out with PtO 2 in an acetic acid solvent to obtain 2-aminomethylpiperidine in a yield of 64%. Also, the production method of 3-aminomethylpiperidine is
According to JOC Vol. 26, 3805-3808 (1961), nuclear hydrogenation was carried out with RuO 2 in the presence of acetic acid or ammonia, and 3-aminomethylpiperidine yield was 78% when acetic acid was used, and yield when ammonia was used. The rate is 68%.

これらの方法では、酢酸、アンモニア等を使用するため
工程が煩雑となり、又収率も低く工業的規模の製造法に
は適さない。
In these methods, acetic acid, ammonia and the like are used, so that the process becomes complicated, and the yield is low, which is not suitable for an industrial scale production method.

本発明が解決しようとする問題点 本発明者らは、かかる欠点を解決し、工業的な製造法に
ついて鋭意検討を重ねた結果、2−又は3−アミノメチ
ルピリジンを溶媒の存在下、又は無溶媒下、ロジウム系
水素化触媒を使用し接触水素化を行なうことにより高収
率で効率良く製造できることを見い出し本発明を完成し
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Present Invention The present inventors have solved such drawbacks and have conducted intensive studies on an industrial production method. As a result, 2- or 3-aminomethylpyridine was added in the presence of a solvent or without a solvent. The present inventors have completed the present invention by discovering that catalytic hydrogenation can be carried out efficiently in a high yield by using a rhodium-based hydrogenation catalyst in a solvent.

問題点を解決するための手段 本発明に使用される溶媒としては、水、メタノール、エ
タノール、シクロヘキサン、ジオキサン等通常接触水素
化反応に使用される溶媒はほとんど使用でき、又無溶媒
でも反応することができる。溶媒使用量としては特に制
限はないが、経済性を考慮すると原料の0.5〜1.5倍(重
量)が好ましい。
Means for Solving the Problems As the solvent used in the present invention, most of the solvents usually used in the catalytic hydrogenation reaction such as water, methanol, ethanol, cyclohexane and dioxane can be used, and the solvent can be used without a solvent. You can The amount of solvent used is not particularly limited, but is preferably 0.5 to 1.5 times (weight) of the raw material in consideration of economy.

本発明に使用される触媒は、通常液相還元に使用される
ケイソウ土、活性炭、アルミナ等に5〜20%担持させた
ロジウム系水素化触媒を使用する。その使用量は原料に
対し0.1〜5%(重量)が好ましい。
As the catalyst used in the present invention, a rhodium-based hydrogenation catalyst supported on diatomaceous earth, activated carbon, alumina or the like, which is usually used for liquid phase reduction, in an amount of 5 to 20% is used. The amount used is preferably 0.1 to 5% (weight) with respect to the raw material.

反応温度としては通常50〜200℃、好ましくは80〜130℃
である。
The reaction temperature is usually 50 to 200 ° C, preferably 80 to 130 ° C.
Is.

反応圧力は高くても差し支えないが、100kg/cm2以下で
充分であり20〜50kg/cm2の範囲が好ましい。本発明に従
えば、水素化に要する時間は1〜6時間であり、反応終
了後触媒を別し、その液を蒸留により分離精製を行
なえば容易に高純度の2−又は3−アミノメチルピペリ
ジンを得ることができる。収率としては、2−アミノメ
チルピペリジンでは97%であり、3−アミノメチルピペ
リジンでは95%と非常に高い値を得ることが可能であ
る。
The reaction pressure may be high, but 100 kg / cm 2 or less is sufficient, and a range of 20 to 50 kg / cm 2 is preferable. According to the present invention, the time required for hydrogenation is 1 to 6 hours, and after completion of the reaction, the catalyst is separated and the liquid is separated and purified by distillation to easily obtain high-purity 2- or 3-aminomethylpiperidine. Can be obtained. The yield is 97% for 2-aminomethylpiperidine and 95% for 3-aminomethylpiperidine, which is a very high value.

他の貴金属触媒を使用して同様に2−アミノメチルピペ
リジンの核水素化を行なったが、パラジウムカーボンを
使用して行なった場合は収率80%で反応時間も11時間と
長く、又ルテニウムカーボンを使用した場合は反応が進
行しなかった。このように他の貴金属触媒に較べてRh系
触媒では収率が顕著に向上することがわかる。
Nuclear hydrogenation of 2-aminomethylpiperidine was similarly performed using other noble metal catalysts, but when using palladium carbon, the yield was 80% and the reaction time was 11 hours, which was long, and ruthenium carbon was used. The reaction did not proceed when was used. Thus, it can be seen that the yield is significantly improved with the Rh-based catalyst as compared with other noble metal catalysts.

発明の効果 前述したように従来の方法に比べ本発明の方法による効
果を列挙すれば第一に従来の方法に較べ非常に収率が良
い。
EFFECTS OF THE INVENTION As described above, when the effects of the method of the present invention are listed as compared with the conventional method, firstly, the yield is much better than that of the conventional method.

第二に水素吸収速度が早く、反応時間が短い。第三に高
選択的に反応が進行し、沸点近似の未反応原料が残らな
い為、簡単な蒸留により高純度の目的物を得ることが出
来る。
Second, the hydrogen absorption rate is fast and the reaction time is short. Thirdly, since the reaction proceeds with high selectivity and no unreacted raw material close to the boiling point remains, a high-purity target product can be obtained by simple distillation.

このように本発明は非常に工業的に有利な製造法であ
る。
Thus, the present invention is a very industrially advantageous manufacturing method.

以下実施例により説明するが、本発明はこれに限定され
るものではない。
Examples will be described below, but the present invention is not limited thereto.

実施例−1 内容積3000mlのステンレス製電磁攪拌式オートクレーブ
に2−アミノメチルピリジン1000g、溶媒として水500
g、5%ロジウム−カーボン10gを入れ、それに水素を導
入して圧力を40kg/cm2、温度110℃にて水素添加反応を
行なった。1時間20分で水素吸収はなくなり反応が終了
した。室温迄冷却後、水素を追い出し、触媒を別した
後蒸留を行ない、100mmHgで沸点118℃〜120℃の2−ア
ミノメチルピペリジン1024g(収率97%、純度99%)を
得た。未反応2−アミノメチルピリジンは認められなか
った。
Example 1 In a stainless steel magnetic stirring type autoclave having an internal volume of 3000 ml, 1000 g of 2-aminomethylpyridine and 500 as water as a solvent.
g, 5% rhodium-carbon (10 g) was introduced, and hydrogen was introduced into the mixture to carry out hydrogenation reaction at a pressure of 40 kg / cm 2 and a temperature of 110 ° C. After 1 hour and 20 minutes, hydrogen absorption disappeared and the reaction was completed. After cooling to room temperature, hydrogen was driven off, the catalyst was separated, and distillation was carried out to obtain 1024 g (yield 97%, purity 99%) of 2-aminomethylpiperidine having a boiling point of 118 ° C. to 120 ° C. at 100 mmHg. Unreacted 2-aminomethylpyridine was not found.

実施例−2 実施例−1における2−アミノメチルピリジンのかわり
に3−アミノメチルピリジン1000gを用い他は実施例−
1と同様に反応および後処理を行ない500mmHgで沸点114
〜118℃の3−アミノメチルピペリジン1003g(収率95
%,純度99%)を得た。未反応3−アミノメチルピペリ
ジンは認められなかった。
Example-2 In the place of 2-aminomethylpyridine in Example-1, 1000 g of 3-aminomethylpyridine was used, and the other examples-
Reaction and post-treatment are carried out in the same manner as in 1, and boiling point is 114 at 500 mmHg.
100 g of 3-aminomethylpiperidine at ~ 118 ° C (yield 95
%, Purity 99%). Unreacted 3-aminomethylpiperidine was not found.

実施例−3 実施例−1で用いた水溶媒を使用せず無溶媒下で2−ア
ミノメチルピリジン1500g、5%ロジウムカーボン15gを
入れ、それに水素を導入して圧力を40kg/cm2、温度110
℃にて水素添加反応を行なった。3時間20分で水素の吸
収はなくなり反応が終了した。室温迄冷却後、水素を追
い出し、触媒を別した後、蒸留を行ない2−アミノメ
チルピリジン1003g(収率95%,純度99%)を得た。未
反応2−アミノメチルピペリジンは認められなかった。
EXAMPLE -3 in Example 1 to water solvent not used in the absence of a solvent using placed 2-aminomethylpyridine 1500 g, 5% rhodium carbon 15 g, it 40 kg / cm 2 pressure by introducing hydrogen, temperature 110
The hydrogenation reaction was performed at ° C. After 3 hours and 20 minutes, the absorption of hydrogen disappeared and the reaction was completed. After cooling to room temperature, hydrogen was driven off, the catalyst was separated, and distillation was carried out to obtain 1003 g of 2-aminomethylpyridine (yield 95%, purity 99%). Unreacted 2-aminomethylpiperidine was not found.

(比較例−1) 内容積3000mlのステンレス製電磁攪拌式オートクレーブ
に2−アミノメチルピリジン1000g、溶媒水500g、5%
パラジウム−カーボン50gを入れ、それに水素を導入し
て圧力を40kg/cm2、温度130℃にて水素添加反応を行な
った。11時間で水素の吸収はなくなり、反応が終了し
た。室温迄冷却後水素を追い出し触媒を別した後、蒸
留を行ない2−アミノメチルピペリジン844g(収率80
%,純度95%)を得た。未反応2−アミノメチルピリジ
ン80g(回収率8%)が回収された。残りは高沸、釜残
であった。
(Comparative Example-1) 1000 g of 2-aminomethylpyridine, 500 g of solvent water, 5% in a magnetic stirring type autoclave made of stainless steel with an internal volume of 3000 ml
Palladium-carbon (50 g) was put therein, and hydrogen was introduced thereinto to carry out a hydrogenation reaction at a pressure of 40 kg / cm 2 and a temperature of 130 ° C. After 11 hours, the absorption of hydrogen disappeared and the reaction was completed. After cooling to room temperature, hydrogen was removed and the catalyst was separated, followed by distillation to obtain 844 g of 2-aminomethylpiperidine (yield: 80
%, Purity 95%) was obtained. Unreacted 2-aminomethylpyridine 80 g (recovery rate 8%) was recovered. The rest was high boiling and was left in the kettle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】遊離の2−又は3−アミノメチルピリジン
をロジウム系水素化触媒の存在下接触水素化することを
特徴とする2−又は3−アミノメチルピペリジンの製造
法。
1. A process for producing 2- or 3-aminomethylpiperidine, which comprises catalytically hydrogenating free 2- or 3-aminomethylpyridine in the presence of a rhodium-based hydrogenation catalyst.
JP60093354A 1985-04-30 1985-04-30 Process for producing 2- or 3-aminomethylpiperidine Expired - Lifetime JPH0670012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093354A JPH0670012B2 (en) 1985-04-30 1985-04-30 Process for producing 2- or 3-aminomethylpiperidine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093354A JPH0670012B2 (en) 1985-04-30 1985-04-30 Process for producing 2- or 3-aminomethylpiperidine

Publications (2)

Publication Number Publication Date
JPS61251659A JPS61251659A (en) 1986-11-08
JPH0670012B2 true JPH0670012B2 (en) 1994-09-07

Family

ID=14079938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093354A Expired - Lifetime JPH0670012B2 (en) 1985-04-30 1985-04-30 Process for producing 2- or 3-aminomethylpiperidine

Country Status (1)

Country Link
JP (1) JPH0670012B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061533A1 (en) * 2006-12-27 2008-07-03 Saltigo Gmbh Process for the preparation of 2-aminomethylpiperidine
JP5115762B2 (en) * 2010-02-12 2013-01-09 有機合成薬品工業株式会社 Process for producing 4-formylpiperidine acetal derivative
CN113896676B (en) * 2021-11-10 2023-02-10 河北工业大学 Method for preparing 2-aminomethyl piperidine by selective hydrogenolysis of 2, 5-bis (aminomethyl) furan

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125273A (en) * 1976-04-14 1977-10-20 Nec Corp Semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ChemicalAbstracts,76〔21〕(1972)抄録番号126792x

Also Published As

Publication number Publication date
JPS61251659A (en) 1986-11-08

Similar Documents

Publication Publication Date Title
US4885389A (en) Process for manufacturing p-aminophenol
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
JPH0670012B2 (en) Process for producing 2- or 3-aminomethylpiperidine
JP3038271B2 (en) Method for producing 3-aminopropanol
JP2984047B2 (en) Method for producing 1-amino-4-alkoxybenzenes
JP2811065B2 (en) Method for producing benzylamine
US4582922A (en) Process for the preparation of methyl N-methylanthranilate
EP0007738A1 (en) Process for producing 2-amino-4-acylaminophenyl ether and 2,4-diaminophenyl ether
JP2002539083A (en) Method for producing cyclohexanecarboxylic acid using [2 + 4] Diels-Alder reaction
JPH0816101B2 (en) Process for producing 3,5-dichloropyridine
JP2508155B2 (en) Process for producing 4-biphenylacetic acid
CA2019407C (en) Stereoselective hydrogenation process
JP2952702B2 (en) Method for producing 3-amino-1-benzylpyrrolidine
JP2996713B2 (en) Process for producing 2,3-cyclohexenopyridine
JP3744019B2 (en) Process for producing 1,3-diamino-4,6-dialkoxybenzene and salts thereof
JPH0558618B2 (en)
JPH0637481B2 (en) Method for producing piperidine
JP2684406B2 (en) Method for producing 1,2,4-trimethylpiperazine
JPH08109170A (en) Production of hexahydropyridazine
JP2762106B2 (en) Method for producing 3-hydroxypyrrolidine
JPH0597778A (en) Production of 2-aminoindane and its salts
JP2727359B2 (en) 4,4'-Difluorodibenzylamine and process for producing the same
JPH0446263B2 (en)
JPH0450297B2 (en)
JPS62114972A (en) Production of n-methylhomopiperazine