JPH02129029A - Oxide superconductor composition and production thereof - Google Patents

Oxide superconductor composition and production thereof

Info

Publication number
JPH02129029A
JPH02129029A JP63281913A JP28191388A JPH02129029A JP H02129029 A JPH02129029 A JP H02129029A JP 63281913 A JP63281913 A JP 63281913A JP 28191388 A JP28191388 A JP 28191388A JP H02129029 A JPH02129029 A JP H02129029A
Authority
JP
Japan
Prior art keywords
composition
superconducting
temperature
oxide superconductor
followed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63281913A
Other languages
Japanese (ja)
Other versions
JPH0521851B2 (en
Inventor
Takashi Masako
隆志 眞子
Yuichi Shimakawa
祐一 島川
Yoshimi Kubo
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63281913A priority Critical patent/JPH02129029A/en
Priority to EP89120517A priority patent/EP0368210B1/en
Priority to DE68921144T priority patent/DE68921144T2/en
Publication of JPH02129029A publication Critical patent/JPH02129029A/en
Publication of JPH0521851B2 publication Critical patent/JPH0521851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title composition giving sharp superconductivity transition and capable of continuously controlling its superconductivity transition temperature by mutually mixing each powder of Tl2O3, BaO, CaO, Y2O3 and CuO at specified ratio followed by press forming and then by heat treatment of the resulting form a specified temperature. CONSTITUTION:Each powder of Tl2O3, BaO, CaO, Y2O3 and CuO is weighed so as to result in a composition ratio of the formula (0.1<=x<=0.8) followed by mutual mixing. The resultant mixture is then put to press forming followed by heat treatment of the resulting form at 870-910 deg.C, thus obtaining the objective oxide superconductor composition of the formula. This composition can continuously control its superconductivity transition temperature through controlling the x value and also gives sharp superconductivity transition; therefore, being suitable in the form of e.g., thermosensor. Wrapping the press form with a gold leaf in sintering will further improve the superconducting characteristics of said composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種の超伝導応用装置や超伝導素子に使用さ
れる酸化物超伝導材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to oxide superconducting materials used in various superconducting application devices and superconducting elements.

(従来の技術) 超伝導材料として現在実用化されているものとして、金
属・合金系超伝導材料、化合物超伝導材料などがある。
(Prior Art) Superconducting materials currently in practical use include metal/alloy superconducting materials and compound superconducting materials.

超伝導材料はジョセフソン素子などのエレクトロニクス
デバイスや超伝導磁石用のコイルなどを作るのに用いら
れ、特にジョセフソン接合の高感度性、高精度性、低雑
音性を利用した5QUIDや精密計測への応用の他、ジ
ョセフソン接合の高速応答性と低消費電力性に着目した
電子計算機への応用が期待されている。
Superconducting materials are used to make electronic devices such as Josephson elements and coils for superconducting magnets, and are particularly useful for 5QUID and precision measurement that utilize the high sensitivity, high precision, and low noise properties of Josephson junctions. In addition to applications in electronic computers, Josephson junctions are expected to have applications that focus on their high-speed response and low power consumption.

超伝導材料の超伝導転移温度Tcは、できるだけ高いこ
とが望まれるカミ30にのTcを持つLa−Ba−Cu
−0系酸化物超伝導体の発見以来、90に級のBa−Y
−Cu−0系、110に級のB1−3r−Ca−Cu−
○系、120に級のTl−Ba−Ca−Cu−○系など
が相次いで発見されてきた。液体窒素温度をはるかに越
えたTcをもつ材料の発見は、実用材料としての期待を
ますます高めている。
The superconducting transition temperature Tc of the superconducting material is desired to be as high as possible.
Since the discovery of -0-based oxide superconductors, Ba-Y
-Cu-0 series, 110 grade B1-3r-Ca-Cu-
○ series, 120 grade Tl-Ba-Ca-Cu-○ series, etc. have been discovered one after another. The discovery of a material with a Tc that far exceeds the temperature of liquid nitrogen has raised expectations for its use as a practical material.

(発明が解決しようとする問題点) 超伝導転移温度Tcは物質に固有のものであり、磁場を
かけない場合には常にほぼ一定の値である。構成元素の
組成比を変化させると見かけ上超伝導転移温度が下がる
がこれは、超伝導に転移する体積分率が減少し、転移が
鈍化するためである。任意の温度で、全体積がシャープ
に超伝導転移する物質を得ることができれば、温度セン
サーをはじめとする多くの応用が開けてくる。
(Problems to be Solved by the Invention) The superconducting transition temperature Tc is unique to a substance, and is always a substantially constant value when no magnetic field is applied. Changing the composition ratio of the constituent elements apparently lowers the superconducting transition temperature, but this is because the volume fraction that transitions to superconductivity decreases and the transition slows down. If we can obtain a material whose total volume undergoes a sharp superconducting transition at a given temperature, it will open up many applications, including temperature sensors.

そこで本発明の目的は、116に以下の任意の温度で、
鋭い超伝導転移を示す酸化物超伝導体組成物及びその作
製方法を提供することにある。
Therefore, the object of the present invention is to: 116 at any temperature below.
An object of the present invention is to provide an oxide superconductor composition exhibiting a sharp superconducting transition and a method for producing the same.

(問題点を解決するための手段) 本発明は、TlBa2(Ca1− xYx)2Cu30
yなる組成式で0.1≦x≦0.8なる組成を870℃
〜910℃で焼結すればTcを連続的に変えることがで
きること、及び焼結の際にプレス成形体を金箔で包むこ
とにより上記組成物の特性がさらに向上することを見い
だしたものである。
(Means for solving the problems) The present invention provides TlBa2(Ca1-xYx)2Cu30
The composition of 0.1≦x≦0.8 with the composition formula y is 870℃
It was discovered that Tc can be changed continuously by sintering at ~910°C, and that the properties of the composition can be further improved by wrapping the press-formed body with gold foil during sintering.

(作用) 例えば、TlBa2(CaO17Yo、3)2Cu30
.なる組成物は90にで、TlBa2(CaO14YO
,6)2Cu30.なる組成物は40にでそれぞれシャ
ープな超伝導転移を示し、転移後は全体積の80%以上
が超伝導状態になっていることが確認された。
(Action) For example, TlBa2(CaO17Yo, 3)2Cu30
.. The composition is 90% TlBa2(CaO14YO
,6)2Cu30. It was confirmed that each of the compositions exhibited a sharp superconducting transition at 40°C, and that more than 80% of the total volume was in a superconducting state after the transition.

(実施例) 以下実施例により、本発明を具体的に説明する。出発原
料として純度99.9%以上の酸化タリウム(T120
3)、酸化バリウム(Bad)、酸化カルシウム(Ca
O)、酸化イツトリウム(Y2O2)、酸化第2銅(C
ub)を使用し第1表に示す配合比になるように各々秤
量した。次に秤量した各材料を乳鉢でよく混合した後、
プレスして5mmX10mmX1mmのプレス体を作成
した。このプレス体を金箔で包み、酸素雰囲気中で87
0℃〜910℃で1〜10時間焼結した。
(Example) The present invention will be specifically described below with reference to Examples. Thallium oxide (T120) with a purity of 99.9% or more is used as a starting material.
3), barium oxide (Bad), calcium oxide (Ca
O), yttrium oxide (Y2O2), cupric oxide (C
ub), and each was weighed so as to have the blending ratio shown in Table 1. Next, after mixing the weighed ingredients thoroughly in a mortar,
A pressed body of 5 mm x 10 mm x 1 mm was created by pressing. This pressed body was wrapped in gold foil and placed in an oxygen atmosphere for 87 days.
Sintering was performed at 0°C to 910°C for 1 to 10 hours.

第1表の範囲の焼結体について抵抗率、超伝導体積分率
の測定を行い超伝導特性を評価した。
The resistivity and superconducting volume fraction of the sintered bodies in the range shown in Table 1 were measured to evaluate the superconducting properties.

抵抗率測定は直流4端子法によって行った。電極は金を
スパッタリング法にて取り付はリードとして錫メツキ銅
線を用いた。
Resistivity measurement was performed by a DC 4-terminal method. The electrodes were sputtered with gold, and the leads were attached using tin-plated copper wire.

超伝導体積分率は交流帯磁率測定より求めた。The superconducting volume fraction was determined by AC magnetic susceptibility measurement.

交流帯磁率はコイルの中にサンプルをいれコイルのLの
変化を測定することによって行った。体積分率は、同体
積、同じ形状の鉛の4.2KにおけるΔLを100とし
て算出した。抵抗測定は室温から抵抗が0になる温度ま
で、帯磁率測定は室温から4.2Kまで行った。
AC magnetic susceptibility was measured by placing a sample in a coil and measuring the change in L of the coil. The volume fraction was calculated by setting ΔL at 4.2K of lead having the same volume and shape as 100. Resistance measurements were carried out from room temperature to the temperature at which resistance becomes 0, and magnetic susceptibility measurements were carried out from room temperature to 4.2K.

第1表に配合比と抵抗が0になる臨界温度4.2にでの
超伝導相の割合を示す。プレス成形体を金箔で包まずに
焼成した場合は焼成中にT1が消失するため、組成ずれ
が生じ、体積分率がやや低下する。Xの範囲については
、Xが0.1未満では、超伝導特性はほとんど変化しな
いため本発明の目的には不適当である。またXが0.8
を越えると室温から4.2Kまで超伝導を示さなくなる
ため実用的でない。焼結温度については870℃未満で
は、本組成物よりも結晶周期の短いTlBa2(Cal
−xYx)Cu20.との混合物ができるため100に
以上のTcを示す体積分率が低くなる。また910℃を
越えると分解が起こるため体積分率が低下する。
Table 1 shows the blending ratio and the proportion of the superconducting phase at the critical temperature of 4.2 at which the resistance becomes zero. If the press-formed body is fired without being wrapped in gold foil, T1 disappears during firing, resulting in a compositional deviation and a slight decrease in volume fraction. Regarding the range of X, if X is less than 0.1, the superconducting properties hardly change, and this is inappropriate for the purpose of the present invention. Also, X is 0.8
If the temperature exceeds this temperature, superconductivity will not be exhibited from room temperature to 4.2K, which is not practical. Regarding the sintering temperature, when the temperature is lower than 870°C, TlBa2 (Cal
-xYx)Cu20. Since a mixture with Tc is formed, the volume fraction exhibiting Tc of 100 or more becomes low. Moreover, when the temperature exceeds 910° C., decomposition occurs and the volume fraction decreases.

第1表 (発明の効果) 本発明の組成物はXの値により連続的にTcを制御でき
、しかも鋭い超伝導転移を示すため、超伝導材料として
非常に実用性の高いものである。
Table 1 (Effects of the Invention) The composition of the present invention allows Tc to be continuously controlled by the value of X and exhibits a sharp superconducting transition, so it is highly practical as a superconducting material.

Claims (2)

【特許請求の範囲】[Claims] 1.Tl_1Ba_2(Ca_1_−_xY_x)_2
Cu_3O_yと表した酸化物超伝導体組成物において
0.1≦x≦0.8なる範囲にあることを特徴とする酸
化物超伝導体組成物。
1. Tl_1Ba_2(Ca_1_-_xY_x)_2
An oxide superconductor composition expressed as Cu_3O_y, characterized in that the oxide superconductor composition is in the range of 0.1≦x≦0.8.
2.Tl_2O_3,BaO,CaO,Y_2O_3,
CuO粉末を特許請求の範囲第1項記載の組成となるよ
う混合し、プレス成形した後、870℃から910℃の
温度範囲で熱処理することを特徴とする酸化物超伝導体
組成物の製造方法。
2. Tl_2O_3, BaO, CaO, Y_2O_3,
A method for producing an oxide superconductor composition, which comprises mixing CuO powder to have the composition set forth in claim 1, press-molding, and then heat-treating at a temperature range of 870°C to 910°C. .
JP63281913A 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof Granted JPH02129029A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63281913A JPH02129029A (en) 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof
EP89120517A EP0368210B1 (en) 1988-11-07 1989-11-06 An oxide superconductor composition and a process for the production thereof
DE68921144T DE68921144T2 (en) 1988-11-07 1989-11-06 Oxide superconductor composition and process for its manufacture.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281913A JPH02129029A (en) 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof

Publications (2)

Publication Number Publication Date
JPH02129029A true JPH02129029A (en) 1990-05-17
JPH0521851B2 JPH0521851B2 (en) 1993-03-25

Family

ID=17645700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281913A Granted JPH02129029A (en) 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof

Country Status (1)

Country Link
JP (1) JPH02129029A (en)

Also Published As

Publication number Publication date
JPH0521851B2 (en) 1993-03-25

Similar Documents

Publication Publication Date Title
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPH02129028A (en) Oxide superconductor composition and production thereof
JPH02129029A (en) Oxide superconductor composition and production thereof
JPH02129027A (en) Oxide superconductor composition and production thereof
JPH02129026A (en) Oxide superconductor composition and production thereof
JPH02255529A (en) Oxide superconductor composition and production thereof
JPH038754A (en) Oxide superconductor composition and production thereof
JP2679124B2 (en) Oxide superconductor composition
JPH02129025A (en) Oxide superconductor composition and production thereof
JPH02107556A (en) Production of oxide superconductor composition
JPH038717A (en) Oxide superconductor composition and production thereof
JPH038719A (en) Oxide superconductor composition and production thereof
JPH038755A (en) Oxide superconductor composition and production thereof
JPH02107555A (en) Production of oxide superconductor composition
JP2696690B2 (en) Oxide superconducting material
JP2745888B2 (en) Manufacturing method of oxide superconductor
JP2696691B2 (en) Oxide superconducting material
JPS63282154A (en) Production of oxide superconductor
JPH04317457A (en) Production of oxide superconductor composition
JPH0512288B2 (en)
JPH01286928A (en) Oxide superconductor composition and production thereof
JPH04275919A (en) Production of oxide superconductive material
JPH0570125A (en) Production of thallium-based oxide superconductor
JPS63291815A (en) Production of superconductor
JPH04317411A (en) Production of oxide superconductor composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees