JPH02129027A - Oxide superconductor composition and production thereof - Google Patents

Oxide superconductor composition and production thereof

Info

Publication number
JPH02129027A
JPH02129027A JP63281911A JP28191188A JPH02129027A JP H02129027 A JPH02129027 A JP H02129027A JP 63281911 A JP63281911 A JP 63281911A JP 28191188 A JP28191188 A JP 28191188A JP H02129027 A JPH02129027 A JP H02129027A
Authority
JP
Japan
Prior art keywords
composition
superconducting
oxide superconductor
followed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63281911A
Other languages
Japanese (ja)
Other versions
JPH0521850B2 (en
Inventor
Takashi Masako
隆志 眞子
Yuichi Shimakawa
祐一 島川
Yoshimi Kubo
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63281911A priority Critical patent/JPH02129027A/en
Priority to EP89120517A priority patent/EP0368210B1/en
Priority to DE68921144T priority patent/DE68921144T2/en
Publication of JPH02129027A publication Critical patent/JPH02129027A/en
Publication of JPH0521850B2 publication Critical patent/JPH0521850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title composition with low content of toxic Tl, capable of continuously controlling its superconductivity transition temperature and also giving sharp superconductivity transition by mutually mixing each powder of Tl2O3, BaO, CaO, Y2O3 and CuO at specified ratio followed by press forming and then by heat treatment of the resulting form at specified temperature. CONSTITUTION:Each powder of Tl2O3, BaO, CaO, Y2O3 and CuO is weighed so as to result in a composition ratio of the formula (0.1<=x<=0.8) followed by mutual mixing. The resultant mixture is then put to press forming followed by heat treatment of the resulting form at 875-915 deg.C, thus obtaining the objective oxide superconductor composition of the formula. This composition can continuously control its superconductivity transition temperature through controlling the x value and also gives sharp superconductivity transition; therefore, being suitable in the form of e.g., a thermosensor. Wrapping the press form with a gold leaf in sintering will further improve the superconducting characteristics of said composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種の超伝導応用装置や超伝導素子に使用さ
れる酸化物超伝導材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to oxide superconducting materials used in various superconducting application devices and superconducting elements.

(従来の技術) 超伝導材料として現在実用化されているものとして、金
属・合金系超伝導材料、化合物超伝導材料などがある。
(Prior Art) Superconducting materials currently in practical use include metal/alloy superconducting materials and compound superconducting materials.

超伝導材料はジョセフソン素子などのエレクトロニクス
デバイスや超伝導磁石用のコイルなどを作るのに用いら
れ、特にジョセフソン接合の高感度性、高精度性、低雑
音性を利用した5QUIDや精密計測への応用の他、ジ
ョセフソン接合の高速応答性と低消費電力性に着目した
電子計算機への応用が期待されている。
Superconducting materials are used to make electronic devices such as Josephson elements and coils for superconducting magnets, and are particularly useful for 5QUID and precision measurement that utilize the high sensitivity, high precision, and low noise properties of Josephson junctions. In addition to applications in electronic computers, Josephson junctions are expected to have applications that focus on their high-speed response and low power consumption.

超伝導材料の超伝導転移温度Tcは、できるだけ高いこ
とが望まれるが、30にのTcを持つLa−Ba−Cu
−0系酸化物超伝導体の発見以来、90に級のBa−Y
−Cu−0系、110に級のB1−3r−Ca−Cu−
0系、120に級のTl−Ba−Ca−Cu−○系など
が相次いで発見されてきた。液体窒素温度をはるかに越
えたTcをもつ材料の発見は、実用材料としての期待を
ますます高めている。
It is desired that the superconducting transition temperature Tc of the superconducting material is as high as possible, but La-Ba-Cu with a Tc of 30
Since the discovery of -0-based oxide superconductors, Ba-Y
-Cu-0 series, 110 grade B1-3r-Ca-Cu-
0 series, 120 grade Tl-Ba-Ca-Cu-○ series, etc. have been discovered one after another. The discovery of a material with a Tc that far exceeds the temperature of liquid nitrogen has raised expectations for its use as a practical material.

(発明が解決しようとする問題点) 本発明が解決しようとしている問題点は次の2点である
(Problems to be Solved by the Invention) The following two problems are to be solved by the present invention.

まず第一に、TI系超超伝導体、現在量も高い超伝導転
移温度Tcを持つことで知られているが、主構成元素で
あるT1には強い毒性があるためその取扱は容易ではな
い。しかし、たとえば120にのTcを持つことで知ら
れているT12Ba2Ca2Cu301oにおいては、
全重量のうち約40%がT1元素の重量で占められてお
り、物質の作製には細心の注意が必要となる。もしTc
を下げずにTIの含有量を減らすことができれば、作製
作業に伴う危険性を軽減することができ、また希少元素
であるT1の節約もできるようになる。
First of all, TI-based superconductors, the current amount of which is known to have a high superconducting transition temperature Tc, are difficult to handle because their main constituent element T1 is highly toxic. . However, for example, in T12Ba2Ca2Cu301o, which is known to have a Tc of 120,
Approximately 40% of the total weight is occupied by the T1 element, and great care is required in the preparation of the substance. If Tc
If the TI content can be reduced without lowering the TI content, the risks associated with the manufacturing work can be reduced, and the rare element T1 can also be saved.

第二に、Tcは物質に固有のものであり、磁場をかけな
い場合には常にほぼ一定の値である。構成元素の組成比
を変化させると見かけ上超伝導転移温度が下がるがこれ
は、超伝導に転移する体積分率が減少し、転移が鈍化す
るためである。任意の温度で、全体積がシャープに超伝
導転移する物質を得ることができれば、温度センサーを
はじめとする多くの応用が開けて(る。
Second, Tc is inherent to a substance and always remains approximately constant when no magnetic field is applied. Changing the composition ratio of the constituent elements apparently lowers the superconducting transition temperature, but this is because the volume fraction that transitions to superconductivity decreases and the transition slows down. If it were possible to obtain a material whose total volume undergoes a sharp superconducting transition at a given temperature, it would open up many applications, including temperature sensors.

そこで本発明の目的は、Tl系超伝導体中のT1含有量
を従来の物よりも減らすとともに、116に以下の任意
の温度で、鋭い超伝導転移を示す酸化物超伝導体組成物
及びその作製方法を提供することにある。
Therefore, the object of the present invention is to provide an oxide superconductor composition that reduces the T1 content in a Tl-based superconductor compared to conventional ones and exhibits a sharp superconducting transition at any temperature below 116°C, and an oxide superconductor composition thereof. The object of the present invention is to provide a manufacturing method.

(問題点を解決するための手段) 本発明は、TIBaz(Cat−xYx)3cu40y
なる組成式で0.1≦x≦0.8なる組成を875℃〜
915℃で焼結すればTcを連続的に変えることができ
ること.Tlの含有率が従来の物の約半分になること、
及び焼結の際にプレス成形体を金箔で包むことにより上
記組成物の特性がさらに向上することを見いだしたもの
である。
(Means for solving the problems) The present invention provides TIBaz (Cat-xYx) 3cu40y
With the composition formula 0.1≦x≦0.8, from 875℃
Tc can be changed continuously by sintering at 915°C. The Tl content is about half that of the conventional one,
It has also been discovered that the properties of the composition can be further improved by wrapping the press-formed body with gold foil during sintering.

(作用) 従来の超伝導体T12Ba2Ca2Cu3010は、1
20にで超伝導に転移する。この組成物の全重量のうち
36%がT1の重量である。しかるに例えば、TlBa
2(Cao9Y0.1)3 Cu4Oyなる組成物は1
14にで、シャープな超伝導転移を示すが、Tlの重量
は全重量の19%にすぎない。Xの値を増して行くと転
移温度は低下して行くが、転移の鋭さは変わらず、転移
後は全体積の約80%が超伝導状態になっていることが
確認された。
(Function) The conventional superconductor T12Ba2Ca2Cu3010 has 1
It transitions to superconductivity at around 20 years old. Of the total weight of this composition, 36% is the weight of T1. However, for example, TlBa
The composition 2(Cao9Y0.1)3 Cu4Oy is 1
No. 14 shows a sharp superconducting transition, but the weight of Tl is only 19% of the total weight. As the value of X increases, the transition temperature decreases, but the sharpness of the transition remains unchanged, and it was confirmed that approximately 80% of the total volume is in a superconducting state after the transition.

(実施例) 以下実施例により、本発明を具体的に説明する。出発原
料として純度99.9%以上の酸化タリウム(T120
3)、酸化バリウム(Bad)、酸化カルシウム(Ca
b)、酸化イツトリウム(Y2O2)、酸化第2銅(C
ub)を使用し第1表に示す配合比になるように各々秤
量した。次に秤量した各材料を乳鉢でよく混合した後、
プレスして5mmX10mmX1mmのプレス体を作成
した。このプレス体を金箔で包み、酸素雰囲気中で87
5℃〜915℃で3〜10時間焼結した。
(Example) The present invention will be specifically described below with reference to Examples. Thallium oxide (T120) with a purity of 99.9% or more is used as a starting material.
3), barium oxide (Bad), calcium oxide (Ca
b), yttrium oxide (Y2O2), cupric oxide (C
ub), and each was weighed so as to have the blending ratio shown in Table 1. Next, after mixing the weighed ingredients thoroughly in a mortar,
A pressed body of 5 mm x 10 mm x 1 mm was created by pressing. This pressed body was wrapped in gold foil and placed in an oxygen atmosphere for 87 days.
Sintering was performed at 5°C to 915°C for 3 to 10 hours.

第1表の範囲の焼結体について抵抗率、超伝導体積分率
の測定を行い超伝導特性を評価した。
The resistivity and superconducting volume fraction of the sintered bodies in the range shown in Table 1 were measured to evaluate the superconducting properties.

抵抗率測定は直流4端子法によって行った。電極は金を
スパッタリング法にて取り付はリードとして錫メツキ銅
線を用いた。
Resistivity measurement was performed by a DC 4-terminal method. The electrodes were sputtered with gold, and the leads were attached using tin-plated copper wire.

超伝導体積分率は交流帯磁率測定より求めた。The superconducting volume fraction was determined by AC magnetic susceptibility measurement.

交流帯磁率はコイルの中にサンプルをいれコイルのLの
変化を測定することによって行った。体積分率は、同体
積、同じ形状の鉛の4.2KにおけるΔLを100とし
て算出した。抵抗測定は室温から抵抗が0になる温度ま
で、帯磁率測定は室温から4.2Kまで行った。
AC magnetic susceptibility was measured by placing a sample in a coil and measuring the change in L of the coil. The volume fraction was calculated by setting ΔL at 4.2K of lead having the same volume and shape as 100. Resistance measurements were carried out from room temperature to the temperature at which resistance becomes 0, and magnetic susceptibility measurements were carried out from room temperature to 4.2K.

第1表に配合比と抵抗が0になる臨界温度4.2にでの
超伝導相の割合を示す。プレス成形体を金箔で包まずに
焼成した場合は焼成中にT1が消失するため、組成ずれ
が生じ、体積分率がやや低下する。Xの範囲については
、Xが0.1未満では、超伝導特性はほとんど変化しな
いためTcを制御使用とする本発明の目的には不適当で
ある。またXが0.8を越えると室温から462Kまで
超伝導を示さなくなるため実用的でない。焼結温度につ
いては875℃未満では、本組成物よりも結晶周期の短
いTlBa2(Ca1−xYx)Cu20゜やTlBa
2(Ca1−xYx)2Cu30.との混合物ができる
ため100に以上のTcを示す体積分率が低くなる。ま
た910℃を越えると分解が起こるため体積分率が低下
する。
Table 1 shows the blending ratio and the proportion of the superconducting phase at the critical temperature of 4.2 at which the resistance becomes zero. If the press-formed body is fired without being wrapped in gold foil, T1 disappears during firing, resulting in a compositional deviation and a slight decrease in volume fraction. Regarding the range of X, if X is less than 0.1, the superconducting properties hardly change, and therefore it is inappropriate for the purpose of the present invention, which uses Tc for control. Moreover, if X exceeds 0.8, superconductivity will not be exhibited from room temperature to 462K, which is not practical. Regarding the sintering temperature, if the temperature is lower than 875°C, TlBa2(Ca1-xYx)Cu20° or TlBa2(Ca1-xYx)Cu20°, which has a shorter crystal period than this composition,
2(Ca1-xYx)2Cu30. Since a mixture with Tc is formed, the volume fraction exhibiting Tc of 100 or more becomes low. Moreover, when the temperature exceeds 910° C., decomposition occurs and the volume fraction decreases.

第1表 (発明の効果) 本発明の組成物は従来の材料に比べT1の含有量が少な
く、Xの値により連続的にTcを変えても、鋭い超伝導
転移を示すため、超伝導材料として非常に実用性の高い
ものである。
Table 1 (Effects of the Invention) The composition of the present invention has a lower T1 content than conventional materials, and even if Tc is continuously changed depending on the value of X, it exhibits a sharp superconducting transition. It is extremely practical.

Claims (2)

【特許請求の範囲】[Claims] 1.Tl_1Ba_2(Ca_1_−_xY_x)_3
Cu_4O_yと表した酸化物超伝導体組成物において
0.1≦x≦0.8なる範囲にあることを特徴とする酸
化物超伝導体組成物。
1. Tl_1Ba_2(Ca_1_-_xY_x)_3
An oxide superconductor composition expressed as Cu_4O_y, characterized in that the oxide superconductor composition is in the range of 0.1≦x≦0.8.
2.Tl_2O_3,BaO,CaO,Y_2O_3,
CuO粉末を特許請求の範囲第1項記載の組成となるよ
う混合し、プレス成形した後、875℃から915℃の
温度範囲で熱処理することを特徴とする酸化物超伝導体
組成物の製造方法。
2. Tl_2O_3, BaO, CaO, Y_2O_3,
A method for producing an oxide superconductor composition, which comprises mixing CuO powder to have the composition set forth in claim 1, press-molding, and then heat-treating at a temperature range of 875°C to 915°C. .
JP63281911A 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof Granted JPH02129027A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63281911A JPH02129027A (en) 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof
EP89120517A EP0368210B1 (en) 1988-11-07 1989-11-06 An oxide superconductor composition and a process for the production thereof
DE68921144T DE68921144T2 (en) 1988-11-07 1989-11-06 Oxide superconductor composition and process for its manufacture.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281911A JPH02129027A (en) 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof

Publications (2)

Publication Number Publication Date
JPH02129027A true JPH02129027A (en) 1990-05-17
JPH0521850B2 JPH0521850B2 (en) 1993-03-25

Family

ID=17645672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281911A Granted JPH02129027A (en) 1988-11-07 1988-11-07 Oxide superconductor composition and production thereof

Country Status (1)

Country Link
JP (1) JPH02129027A (en)

Also Published As

Publication number Publication date
JPH0521850B2 (en) 1993-03-25

Similar Documents

Publication Publication Date Title
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPH02129027A (en) Oxide superconductor composition and production thereof
JPH02129028A (en) Oxide superconductor composition and production thereof
JPH02129029A (en) Oxide superconductor composition and production thereof
JPH02129026A (en) Oxide superconductor composition and production thereof
JPH038754A (en) Oxide superconductor composition and production thereof
JPH02255529A (en) Oxide superconductor composition and production thereof
JP2679124B2 (en) Oxide superconductor composition
JPH02107556A (en) Production of oxide superconductor composition
JPH02129025A (en) Oxide superconductor composition and production thereof
JPH038717A (en) Oxide superconductor composition and production thereof
JP2727565B2 (en) Superconductor manufacturing method
JP2745888B2 (en) Manufacturing method of oxide superconductor
JPH038719A (en) Oxide superconductor composition and production thereof
JPH02107555A (en) Production of oxide superconductor composition
JPH038755A (en) Oxide superconductor composition and production thereof
JP2696690B2 (en) Oxide superconducting material
JPH01176223A (en) Oxide superconductor composition
JPS63282154A (en) Production of oxide superconductor
JPH02208225A (en) Oxide superconductor
JPH0512288B2 (en)
JPH04317457A (en) Production of oxide superconductor composition
JPH0570125A (en) Production of thallium-based oxide superconductor
JPS63297220A (en) Oxide superconductor composition
JPH04317411A (en) Production of oxide superconductor composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees