JPH0212899B2 - - Google Patents

Info

Publication number
JPH0212899B2
JPH0212899B2 JP25343486A JP25343486A JPH0212899B2 JP H0212899 B2 JPH0212899 B2 JP H0212899B2 JP 25343486 A JP25343486 A JP 25343486A JP 25343486 A JP25343486 A JP 25343486A JP H0212899 B2 JPH0212899 B2 JP H0212899B2
Authority
JP
Japan
Prior art keywords
weight
porous body
limestone
formulation
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25343486A
Other languages
Japanese (ja)
Other versions
JPS63107876A (en
Inventor
Yukito Muraguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP25343486A priority Critical patent/JPS63107876A/en
Publication of JPS63107876A publication Critical patent/JPS63107876A/en
Publication of JPH0212899B2 publication Critical patent/JPH0212899B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は通気性多孔体及びその製造方法に係
り、特に珪質蝋石、石灰石、粘土という天然の安
価な原料を用い、焼成反応中に生ずるガラス相及
び固相反応を利用して得ることができる、細孔径
が均一な高特性通気性多孔体及びその製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-permeable porous body and a method for producing the same, and in particular uses natural and inexpensive raw materials such as siliceous waxite, limestone, and clay to reduce the amount of gas produced during the calcination reaction. The present invention relates to a high-performance air-permeable porous body with uniform pore diameters that can be obtained using glass phase and solid phase reactions, and a method for producing the same.

[従来の技術] セラミツクの通気性多孔体は、その通気性や材
料の化学的安定性を利用して、従来より、食品工
業、水処理、養殖業等の広範な分野において、フ
イルターやエアレーシヨン部材として実用されて
いる。
[Prior art] Ceramic porous bodies have been used as filters and aeration parts in a wide range of fields such as the food industry, water treatment, and aquaculture, by taking advantage of their breathability and chemical stability. It is put into practical use as

従来より提供されているセラミツクス多孔体の
製造方法を、その原理により分類すると次のよう
なものが挙げられる。
Conventionally available methods for manufacturing porous ceramic bodies can be classified according to their principles as follows.

焼成前空隙の利用 ポリウレタンフオーム原料中にセラミツク
原料を混合しておき、フオーム化してから焼
成し、樹脂成分を除去する。
Utilization of voids before firing Ceramic raw materials are mixed into polyurethane foam raw materials, formed into a foam, and then fired to remove the resin component.

ポリウレタンフオームにセラミツクスラリ
ーをコーテイングして焼成する。
Ceramic slurry is coated on polyurethane foam and fired.

粒状樹脂をパツクしておき、生じた空間に
セラミツクスラリーを流し込み焼成する。
The granular resin is packed, and the ceramic slurry is poured into the created space and fired.

焼成過程の空隙の利用 溶化開始前に焼結を止める。 Utilization of voids during firing process Stop sintering before the start of solution.

焼成あるいは揮発物質を添加して焼成す
る。
Calcination or addition of volatile substances.

粒子径分布の調整された骨材粒子に少量の
ガラス質フラツクス、結合材を添加して焼成
する。
A small amount of vitreous flux and a binder are added to aggregate particles with an adjusted particle size distribution and fired.

珪藻土等の多孔質原料を結合材と混合して
焼成する。
A porous raw material such as diatomaceous earth is mixed with a binder and fired.

ガラス分相利用(多孔質ガラス) ゾルーゲル法(シリカゲル等) 結晶内空隙の利用(ゼオライト等) これらの製造方法により生成される多孔体のお
およその細孔半径範囲を示すと第1図のようにな
る。
Using glass phase separation (porous glass) Sol-gel method (silica gel, etc.) Utilizing intracrystalline voids (zeolite, etc.) The approximate pore radius range of porous bodies produced by these manufacturing methods is shown in Figure 1. Become.

[発明が解決しようとする問題点] 従来の多孔体の製造方法のうち、焼成過程の
空隙を利用する方法は、細孔半径0.3〜50μm程度
の多様な用途を有する多孔体の製造に最適である
が、この方法のうち、は高い空隙率が得られ難
く、得られる多孔体は材質的に脆く、細孔が不規
則になり易い傾向がある。また、の方法は安く
多孔体を作るには良い方法であるが、この方法に
より得られる多孔体も細孔の大きさが不規則で脆
いものになり易い。の方法もまた工業的に有利
な方法とはいえないことから、従来においては、
大部分のものはの方法により製造されている。
[Problems to be solved by the invention] Among the conventional manufacturing methods for porous bodies, the method that utilizes voids during the firing process is most suitable for manufacturing porous bodies with pore radius of about 0.3 to 50 μm and which have various uses. However, with this method, it is difficult to obtain a high porosity, and the resulting porous body is brittle in terms of material and tends to have irregular pores. Further, although the method is a good method for producing porous bodies at a low cost, the porous bodies obtained by this method also tend to have irregular pore sizes and become brittle. This method is also not industrially advantageous, so conventionally,
Most of them are manufactured by this method.

しかしながら、の方法は、骨材(磁器質シヤ
モツト、アルミナ、チタニア、炭化珪素等)の平
均粒子径、粒子径分布を調整し、できる限り少量
のガラス質フラツクス(焼成中に骨材を結合する
もの)と粘土等の結合材を混合して焼成する必要
があるため、製造工程数が多く、低コストで効率
的に多孔体を製造することができないという欠点
がある。
However, in this method, the average particle size and particle size distribution of aggregates (porcelain shimoz, alumina, titania, silicon carbide, etc.) are adjusted, and as much as possible of vitreous flux (a material that binds aggregates during firing) is added. ) and a binder such as clay, which must be fired, requires a large number of manufacturing steps and has the disadvantage that porous bodies cannot be manufactured efficiently at low cost.

[問題点を解決するための手段及び作用] 本発明は細孔径が均一で安価に製造することが
できる通気性多孔体及び、このような多孔体を、
における原料粒度分布幅を狭くするための分級
操作を必要とせず、かつ、ガラス質フラツクス
や、燃焼物質(例えばおが屑など)を用いること
なく、安価な天然原料を用い、焼成反応中に生ず
るガラス相及び焼結反応を利用して製造する方法
を提供するものであつて、 SiO270〜88重量%、CaO5〜23重量%及び
Al2O35〜15重量%を含むことを特徴とする通気
性多孔体、 及び 珪質蝋石、石灰石及び粘土を、SiO270〜88重
量%、CaO5〜23重量%及びAl2O35〜15重量%と
なるように配合して成形し、1000℃以上で焼成す
ることを特徴とする通気性多孔体の製造方法、 を要旨とするものである。
[Means and effects for solving the problems] The present invention provides an air-permeable porous body that has uniform pore diameters and can be manufactured at low cost, and such a porous body,
It does not require a classification operation to narrow the particle size distribution width of the raw material, and it uses inexpensive natural raw materials without using glassy flux or combustion materials (such as sawdust), and the glass phase generated during the firing reaction. The present invention provides a method for manufacturing using a sintering reaction, comprising: 70 to 88% by weight of SiO 2 , 5 to 23% by weight of CaO;
An air permeable porous body characterized by containing 5-15% by weight of Al 2 O 3 and siliceous waxite, limestone and clay, 70-88% by weight of SiO 2 , 5-23% by weight of CaO and Al 2 O 3 5 The gist of the present invention is to provide a method for manufacturing a breathable porous body, which comprises blending and molding the mixture to a concentration of ~15% by weight, and firing at a temperature of 1000°C or higher.

即ち、本発明はCaO−Al2O3−SiO2系タイル素
地について、次のような研究を行つた結果完成さ
れたものである。
That is, the present invention was completed as a result of the following research on CaO- Al2O3 - SiO2- based tile substrates.

CaO−Al2O3−SiO2系の代表的な陶磁器として
は陶器質タイルがある。この素地のおおよその組
成はSiO258〜75重量%、Al2O313〜25重量%、
CaO5〜9重量%(組成範囲を第2図のIに示す)
で、原料は蝋石(パイロフイライト質、カオリン
質、Al2O3約13重量%以上)、石灰石及び粘土で
ある。第2図のの範囲の一例として、SiO273
重量%、Al2O320重量%、CaO7重量%組成の調
合(以下「A調合」と称す)のみかけ気孔率、収
縮率を第3図に示す。また、第2図のIの範囲外
のものの例として、珪質蝋石(パイロフイライト
質、カオリン質、Al2O3約13重量%以下)、石灰
石、粘土を用いたSiO274重量%、Al2O312重量
%、CaO14重量%組成の調合(以下「B調合」と
称す)の収縮率、みかけ気孔率を第3図に合せて
示す。第4図a,bにはA、B各調合のX線回折
パターンを、第5図a,bにはA,B各調合の細
孔径分布を各焼成温度に示す。
Ceramic tiles are a typical example of CaO−Al 2 O 3 −SiO 2 ceramics. The approximate composition of this substrate is SiO 2 58-75% by weight, Al 2 O 3 13-25% by weight,
CaO5-9% by weight (composition range is shown in I in Figure 2)
The raw materials are Rouseki (pyrophyllite, kaolin, Al 2 O 3 about 13% by weight or more), limestone, and clay. As an example of the range of Fig. 2, SiO 2 73
Figure 3 shows the apparent porosity and shrinkage of a formulation (hereinafter referred to as "Formulation A") having a composition of 20% by weight of Al 2 O 3 and 7% by weight of CaO. Further, as examples of those outside the range of I in Fig. 2, siliceous waxite (pyrophyllite, kaolin, about 13% by weight or less of Al 2 O 3 ), limestone, 74% by weight of SiO 2 using clay, The shrinkage rate and apparent porosity of a formulation containing 12% by weight of Al 2 O 3 and 14% by weight of CaO (hereinafter referred to as "Formulation B") are shown in FIG. FIGS. 4a and 4b show the X-ray diffraction patterns of each formulation A and B, and FIGS. 5a and 5b show the pore size distribution of each formulation A and B at each firing temperature.

これら第3〜5図を考察することにより、次の
ようなことが分る。
By considering these FIGS. 3 to 5, the following can be found.

即ち、第3図より、B調合の方が1200℃以下で
気孔率が大きく収縮率が小さい。
That is, from FIG. 3, formulation B has a higher porosity and a lower shrinkage rate at temperatures below 1200°C.

第4図よりA,B調合共にすでに1000℃ではゲ
ーレナイト(2CaO・Al2O3・SiO2)、ワラストナ
イト(CaO・SiO2)、アノルサイト(CaO・
Al2O3・2SiO2)、が生成しており、A調合では焼
成温度が高くなるにつれ、ゲーレナイト、ワラス
トナイトが消失してゆき、アノルサイトが多量に
生成されていく。同時にムライト(3Al2O3
2SiO2)、クリストバライト(SiO2)も多くなつ
ていく。一方、B調合では、ゲーレナイト、ワラ
ストナイト、アノルサイトが生成するのはA調合
と同様であるが、ワラストナイト生成量が多く、
一度生成されたこれら鉱物が焼成温度が高くなる
につれ、減少していく傾向がある。
From Figure 4, at 1000°C for both A and B formulations, gehlenite (2CaO・Al 2 O 3・SiO 2 ), wollastonite (CaO・SiO 2 ), anorthite (CaO・
(Al 2 O 3 .2SiO 2 ) is generated, and in formulation A, as the firing temperature increases, gehlenite and wollastonite disappear, and a large amount of anorthite is generated. At the same time, mullite (3Al 2 O 3
2SiO 2 ) and cristobalite (SiO 2 ) are also increasing. On the other hand, in formulation B, gehlenite, wollastonite, and anorthite are produced similarly to formulation A, but the amount of wollastonite produced is large;
Once produced, these minerals tend to decrease as the firing temperature increases.

なお、第4図a,b中の各記号は以下のものを
示す。
In addition, each symbol in FIGS. 4a and 4b indicates the following.

Q……クオーツ、C……カルサイト、F……フ
エルスパー、M……ムライト、P……パイロフイ
ライト、G……ゲーレナイト、Cr……クリスト
バライト、W……ワラストナイト、α−W……α
−ワラストナイト、A……アノルサイト。
Q...Quartz, C...Calcite, F...Felspar, M...Mullite, P...Pyrofluorite, G...Gerenite, Cr...Cristobalite, W...Wollastonite, α-W... α
-Wollastonite, A...Anorcite.

一般に、A調合のような、第2図のの範囲の
組成では、ゲーレナイト、ワラストナイトが生成
して消失する過程で、一時膨張が生じ、気孔率が
大きくなり、収縮率が小さくなることが知られて
いる(内装陶器質タイルではこの性質を利用して
寸法精度を良くしている)が、B調合でも同様に
一時膨張が生じ気孔率が大きくなつている。そし
て、第5図より、焼成温度が高くなるにつれ、細
孔径が大きくなるが、B調合はA調合に比べ、細
孔半径が大きくなるにつれ細孔径分布が均一にな
つていくという特徴があることが分る。
Generally, with compositions in the range shown in Figure 2, such as formulation A, temporary expansion occurs during the formation and disappearance of gehlenite and wollastonite, which increases the porosity and reduces the shrinkage rate. Although this is known (in interior ceramic tiles, this property is utilized to improve dimensional accuracy), temporary expansion occurs in the B formulation as well, increasing the porosity. As shown in Figure 5, the pore diameter increases as the firing temperature increases, but compared to formulation A, formulation B has the characteristic that as the pore radius increases, the pore size distribution becomes more uniform. I understand.

即ち、B調合では石灰石(CaCO3)の分解で
生じたCaOとパイロフイライト、カオリン鉱物の
分解で生じたAl2O3、SiO2成分と反応して生じる
ゲーレナイト、ワラストナイト、アノルサイトが
消失することにより、第2図のE点で示される共
融反応により、部分的に低融点の液相が生じ、こ
れが珪質蝋石中のクオーツ(石英(SiO2)、一部
クリストバライトへ転移)粒子を結合したため
に、細孔径の非常に均一な多孔体が形成されたも
のと推定される。逆にA調合では、反応生成物で
あるアノルサイトが多量に残つているため、共融
反応が生じ難く、細孔径分布の不規則なものにな
つたと考えられる。
That is, in formulation B, CaO and pyrophyllite produced by the decomposition of limestone (CaCO 3 ), Al 2 O 3 produced by the decomposition of kaolin mineral, and gehlenite, wollastonite, and anorthite produced by reacting with the two SiO components disappear. As a result, a eutectic reaction shown at point E in Figure 2 partially generates a liquid phase with a low melting point, which causes quartz (SiO 2 ) particles in the siliceous waxite (partially transformed to cristobalite) particles. It is presumed that a porous body with extremely uniform pore diameters was formed due to the combination of the pores. On the other hand, in Formulation A, since a large amount of anorsite, which is a reaction product, remains, it is thought that the eutectic reaction is difficult to occur, resulting in an irregular pore size distribution.

本発明者は、B調合のような傾向にある範囲を
求めるために、珪質蝋石、石灰石、粘土を用いて
種々の組成の調合試験をした結果、次のような知
見を得た。
In order to find a range that tends to be similar to the B formulation, the present inventor conducted formulation tests of various compositions using siliceous waxite, limestone, and clay, and as a result, the following findings were obtained.

(i) 第2図でE点に近い組成では1100℃以上で共
融反応が急激に進み気孔率が小さくなる。
(i) For compositions near point E in Figure 2, the eutectic reaction rapidly progresses at temperatures above 1100°C and the porosity decreases.

(ii) D点に近い組成では、高気孔率のものは得ら
れたが、細孔径が均一になり難く、また脆いも
のとなり易い。
(ii) With a composition close to point D, a product with high porosity was obtained, but it was difficult to make the pore diameter uniform and the product was likely to be brittle.

(iii) F点に近い組成では、気孔率が小さく気孔率
が均一になり難い。
(iii) If the composition is close to point F, the porosity is small and it is difficult to make the porosity uniform.

(iv) SiO2に近くなると、高気孔率は得られるも
のの脆くなり易い。
(iv) When it comes close to SiO 2 , high porosity can be obtained but it tends to become brittle.

以上の知見をもとに、種々検討を重ねた結果、
SiO270〜88重量%、CaO5〜23重量%及びAl2O35
〜15重量%、特に、気孔率、細孔の均一性、脆さ
の面からみて、SiO270〜80重量%、CaO10〜23
重量%、Al2O35〜15重量%、即ち第2図のに
示す範囲が最もよい範囲となることを見出した。
Based on the above knowledge, as a result of various studies,
SiO2 70-88% by weight, CaO5-23 % by weight and Al2O35
~15 wt%, especially in terms of porosity, pore uniformity, and brittleness, SiO2 70-80 wt%, CaO10-23
It has been found that the best range is 5 to 15% by weight of Al 2 O 3 , ie, the range shown in FIG.

従つて、本発明の通気性多孔体の成分組成は、
SiO270〜88重量%、CaO5〜23重量%及びAl2O35
〜15重量%に限定され、その細孔直径は0.3〜50μ
mの極めて均一なものである。
Therefore, the composition of the breathable porous body of the present invention is as follows:
SiO2 70-88% by weight, CaO5-23 % by weight and Al2O35
~15% by weight and its pore diameter is 0.3~50μ
m is extremely uniform.

しかして、このような本発明の通気性多孔体
は、天然原料で安価に供給される、珪質蝋石、好
ましくはパイロフイライト質及び/又はカオリン
質でAl2O3含量約13重量%以下のもの、石灰石及
び粘土を出発原料としてSiO270〜88重量%、
CaO5〜23重量%及びAl2O35〜15重量%の組成物
とし、必要に応じて有機性バインダー等の成形助
剤を添加して常法により成形し、この成形体を
1000℃以上で焼成することにより、焼成反応中に
生ずる液相と固相反応により細孔径の均一な通気
性多孔体として容易に製造することができる。
Therefore, the air-permeable porous body of the present invention is made of siliceous waxite, preferably pyrophyllite and/or kaolinite, which is a natural raw material and is supplied at low cost, and has an Al 2 O 3 content of about 13% by weight or less. SiO 2 70-88% by weight, using limestone and clay as starting materials;
A composition containing 5 to 23% by weight of CaO and 5 to 15% by weight of Al 2 O 3 is prepared, and if necessary, a molding aid such as an organic binder is added, and the molded product is molded by a conventional method.
By firing at a temperature of 1000°C or higher, a gas-permeable porous body with uniform pore diameter can be easily produced by the liquid phase and solid phase reactions that occur during the firing reaction.

ところで、多孔体の細孔径は、出発原料の粒子
径及び粒子径分布と密接な関連がある。本発明者
による試験の結果、珪質蝋石の粒度分布と石灰石
の粒度分布が近い程、焼成体の細孔径が均一にな
る傾向があることが分つた。従つて、珪質蝋石粒
度分布と石灰石粒度分布を任意の粒度にすること
で所望の一定の細孔径の多孔体が得られることに
なる。本発明の方法で用いる出発原料によれば通
常のボールミル細磨で得られたものを分級操作等
をすることなしにそのまま使用して、所望の粒度
のものとすることができる。
By the way, the pore diameter of the porous body is closely related to the particle diameter and particle diameter distribution of the starting material. As a result of tests conducted by the present inventor, it was found that the closer the particle size distribution of siliceous rouseki and the particle size distribution of limestone, the more uniform the pore diameter of the fired body tends to be. Therefore, by adjusting the siliceous waxite particle size distribution and the limestone particle size distribution to arbitrary particle sizes, a porous body with a desired constant pore diameter can be obtained. According to the starting materials used in the method of the present invention, those obtained by normal ball mill polishing can be used as they are without performing any classification operation to obtain the desired particle size.

[実施例] 以下実施例について説明する。[Example] Examples will be described below.

実施例 1 本発明の方法により多孔体の製造を行つた。用
いた原料の粒度分布を沈降法セデイグラフにより
測定した結果を第6図a〜cに示す。
Example 1 A porous body was manufactured by the method of the present invention. The particle size distribution of the raw materials used was measured by Sedigraph, a sedimentation method, and the results are shown in FIGS. 6a to 6c.

珪質蝋石は、ボールミルの細磨時間を6時間
(第6図aの)、9時間(同)及び9時間細磨
したものを撹拌式ミルで更に6時間細磨したもの
(同)を用いた。石灰石についてもボールミル
6時間細磨(第6図bの)、9時間細磨(同)
及び9時間細磨したものを撹拌式ミルで更に6時
間細磨したもの(同)を用いた。
The siliceous rouseki used was one that had been ground for 6 hours in a ball mill (as shown in Figure 6a), 9 hours (see the same figure), and one that had been ground for 9 hours in a stirring mill for an additional 6 hours (see Figure 6a). there was. For limestone, ball mill 6-hour fine polishing (Figure 6b) and 9-hour fine polishing (the same)
The same product was used after being polished for 9 hours and then further polished for 6 hours using a stirring mill.

粘土は、水ひ蛙目粘土(市販品。第6図cの
)とこれに撹拌式ミルで6時間細磨したもの
(同)を用いた。
As for the clay, used was a watermelon clay (commercially available product, shown in Figure 6c) which had been polished for 6 hours using a stirrer mill (same as above).

第7図に示す粒径分布の原料を用い、珪質蝋石
70.2重量%、石灰石22.1重量%、粘土7.7重量%の
割合で、泥漿混合後、乾燥し、PVA0.7重量%添
加して含水率7重量%で300Kgf/cm2にてプレス
成形した。焼成は電気炉で7℃/分で昇温し、第
7図に示す最高温度に1時間保持して行い、その
後炉内自然冷却した。
Using raw materials with the particle size distribution shown in Figure 7, siliceous Rouseki
After mixing slurry with a ratio of 70.2% by weight, 22.1% by weight of limestone, and 7.7% by weight of clay, it was dried, and after adding 0.7% by weight of PVA, it was press-molded at 300 kgf/cm 2 with a water content of 7% by weight. Firing was carried out in an electric furnace at a rate of 7° C./min, maintained at the maximum temperature shown in FIG. 7 for 1 hour, and then naturally cooled in the furnace.

多孔体の組成は、CaO14.0重量%、SiO274重量
%、Al2O312重量%である。
The composition of the porous body is 14.0% by weight of CaO, 74% by weight of SiO 2 , and 12% by weight of Al 2 O 3 .

得られた多孔体の細孔分布を第7図に示す。 The pore distribution of the obtained porous body is shown in FIG.

また、これらの多孔体の単位面積、単位厚さ当
りの空気透過量を第8図に示す。
Furthermore, the amount of air permeation per unit area and unit thickness of these porous bodies is shown in FIG.

第7図及び第8図より、本発明によれば、安価
な原料を用いて、均一な細孔径を有する通気性の
高い多孔体を製造することができることが明らか
である。
From FIGS. 7 and 8, it is clear that according to the present invention, a highly air permeable porous body having uniform pore diameters can be manufactured using inexpensive raw materials.

実施例 2 珪質蝋石−石灰石−粘土の1200℃焼成体
の片面に珪質蝋石−石灰石−粘土の泥漿を
含浸させ、1000℃で再焼成して、2層構造の多孔
体を製造した。
Example 2 One side of a siliceous waxite-limestone-clay fired body at 1200°C was impregnated with a slurry of siliceous roastite-limestone-clay and re-fired at 1000°C to produce a porous body with a two-layer structure.

第9図に、得られた2層構造多孔体の空気透過
量、含浸させた珪質蝋石−石灰石−粘土1
層の1000℃焼成体及び母材となる珪質蝋石−石
灰石−粘土の1200℃の焼成体の空気透過量を
示す。
Figure 9 shows the amount of air permeation through the obtained two-layer structure porous material, impregnated siliceous waxite-limestone-clay 1
The amount of air permeation is shown for the 1000°C fired body of the layer and the 1200°C fired body of siliceous waxite-limestone-clay as the base material.

第9図より、本発明によれば2層構造とするこ
とにより、同じ細孔径でもより低圧損の多孔体が
得られることが明らかである。
From FIG. 9, it is clear that according to the present invention, by adopting a two-layer structure, a porous body with lower pressure loss can be obtained even with the same pore diameter.

[発明の効果] 以上詳述した通り、本発明の通気性多孔体は、
SiO270〜80重量%、CaO5〜23重量%及びAl2O35
〜15重量%を含む、例えば、細孔直径0.3〜50μm
の極めて均一な細孔直径を有し、通気性の高い多
孔体であつて、フイルターあるいはエアレーシヨ
ン用部材として極めて有用である。
[Effects of the Invention] As detailed above, the breathable porous body of the present invention has the following features:
SiO2 70-80% by weight, CaO5-23 % by weight and Al2O35
~15% by weight, e.g. pore diameter 0.3-50μm
It has extremely uniform pore diameters and is highly breathable, making it extremely useful as a filter or aeration member.

しかして、このような本発明の通気性多孔体
は、珪質蝋石、石灰石及び粘土の安価な天然原料
を用いる本発明の方法により、低コストで効率的
に製造することができる。
Therefore, such an air-permeable porous body of the present invention can be efficiently manufactured at low cost by the method of the present invention using inexpensive natural raw materials such as siliceous waxite, limestone, and clay.

なお、本発明に係る多孔体は、焼成によりクリ
ストバライトを生成するため、材質的に200℃以
上の高温領域では使用できず、常温使用とする
が、食品工業、水処理、養殖業等の分野でのフイ
ルター、あるいはエアレーシヨン用部材として
は、何ら支障はない。
The porous body according to the present invention produces cristobalite when fired, so it cannot be used at high temperatures of 200°C or higher and is used at room temperature. However, it can be used in the food industry, water treatment, aquaculture, etc. There is no problem in using it as a filter or as an aeration member.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法により製造される多孔体の細孔
半径範囲を示す図、第2図はCaO−Al2O3−SiO2
系相平衡図、第3図はA調合及びB調合のみかけ
気孔率及び収縮率と焼成温度との関係を示すグラ
フ、第4図a,bは各々A調合及びB調合の粉末
X線回折パターンを示す図、第5図a,bは各々
A調合及びB調合の細孔径分布を示すグラフ、第
6図a,b及びcは各々実施例1で用いた原料の
粒度分布を示すグラフ、第7図は実施例1で得ら
れた多孔体の細孔分布を示すグラフ、第8図は実
施例1で得られた多孔体の空気透過量を示すグラ
フ、第9図は、実施例2で得られた2層構造多孔
体及び各層構成多孔体の空気透過量を示すグラフ
である。
Figure 1 is a diagram showing the pore radius range of a porous body produced by a conventional method, and Figure 2 is a diagram showing the pore radius range of a porous body produced by a conventional method .
System phase equilibrium diagram, Figure 3 is a graph showing the relationship between apparent porosity and shrinkage rate and firing temperature for formulations A and B, and Figures 4a and b are powder X-ray diffraction patterns for formulations A and B, respectively. Figures 5a and b are graphs showing the pore size distribution of formulations A and B, respectively; Figures 6a, b, and c are graphs each showing the particle size distribution of the raw materials used in Example 1; FIG. 7 is a graph showing the pore distribution of the porous body obtained in Example 1, FIG. 8 is a graph showing the air permeation amount of the porous body obtained in Example 1, and FIG. It is a graph showing the air permeation amount of the obtained two-layer structure porous body and each layer structure porous body.

Claims (1)

【特許請求の範囲】 1 SiO270〜88重量%、CaO5〜23重量%及び
Al2O35〜15重量%を含むことを特徴とする通気
性多孔体。 2 多孔体の細孔直径が0.3〜50μmであることを
特徴とする特許請求の範囲第1項に記載の通気性
多孔体。 3 珪質蝋石、石灰石及び粘土を、SiO270〜88
重量%、CaO5〜23重量%及びAl2O35〜15重量%
となるように配合して成形し、1000℃以上で焼成
することを特徴とする通気性多孔体の製造方法。
[Claims] 1 SiO 2 70 to 88% by weight, CaO 5 to 23% by weight, and
A breathable porous body characterized by containing 5 to 15% by weight of Al 2 O 3 . 2. The breathable porous body according to claim 1, wherein the porous body has a pore diameter of 0.3 to 50 μm. 3 Siliceous waxite, limestone and clay, SiO 2 70~88
wt%, CaO5-23 wt% and Al2O3 5-15 wt%
1. A method for producing a breathable porous body, which comprises mixing and molding the materials so that the following results are obtained, and firing the materials at a temperature of 1000°C or higher.
JP25343486A 1986-10-24 1986-10-24 Gas permeable porous body and manufacture Granted JPS63107876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25343486A JPS63107876A (en) 1986-10-24 1986-10-24 Gas permeable porous body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25343486A JPS63107876A (en) 1986-10-24 1986-10-24 Gas permeable porous body and manufacture

Publications (2)

Publication Number Publication Date
JPS63107876A JPS63107876A (en) 1988-05-12
JPH0212899B2 true JPH0212899B2 (en) 1990-03-29

Family

ID=17251344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25343486A Granted JPS63107876A (en) 1986-10-24 1986-10-24 Gas permeable porous body and manufacture

Country Status (1)

Country Link
JP (1) JPS63107876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131446A (en) * 2004-11-04 2006-05-25 Kaneki Seitosho:Kk Method for manufacturing porous ceramic, porous ceramic and tile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002176B1 (en) * 1988-02-26 1991-04-06 가부시기가이샤 이낙스 Gas-permeable porousbody its production and pressure casting mold
JP5255836B2 (en) * 2005-07-06 2013-08-07 靖雄 芝崎 Method for producing ceramic porous body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131446A (en) * 2004-11-04 2006-05-25 Kaneki Seitosho:Kk Method for manufacturing porous ceramic, porous ceramic and tile

Also Published As

Publication number Publication date
JPS63107876A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
AU693534B2 (en) Synthesis of microporous ceramics
EP0889862B1 (en) Pyrolysis of ceramic precursors to nanoporous ceramics
US5852088A (en) Nanoporous ceramics with catalytic functionality
US4904291A (en) Process for the manufacture of open porous sintered bodies being prepronderantly composed of glass ceramics
US4965230A (en) Alumina porous body and production of the same
EP0684217B1 (en) Microporous ceramics and synthesis thereof
US3312558A (en) Calcium hexaluminate articles
JPS63139062A (en) Ceramic abrasive particle, manufacture and surface abrading method
JPH0212899B2 (en)
JPS61106430A (en) Ceramic die for blow-molding glass article
RU2101259C1 (en) Feedstock composition for producing porous permeable ceramic material featuring high heat resistance
JPH04108678A (en) Production of porous ceramics
RU2055054C1 (en) Concrete mix
JP2800134B2 (en) Manufacturing method of porous ceramics
JPH09268085A (en) Production of silicon carbide porous body
KR100646247B1 (en) Fabrication method of porous sialon
KR920008776B1 (en) Process for the preparation of alumina porous body
KR910002579B1 (en) Alumina porous body and production of the same
SU933653A1 (en) Process for making filtering ceramic
JP2000272951A (en) Production of alumina ceramic sintered compact having low dielectric loss
JPS61291468A (en) Manufacture of porous ceramic body
SU1347370A1 (en) Method of producing mullite-corundum refractory articles
JPH01224282A (en) Thermal shock-resistant porous ceramic and production thereof
KR100562990B1 (en) Method of preparing porous sialon
JPH06171977A (en) Production of porous glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term