JP2000272951A - Production of alumina ceramic sintered compact having low dielectric loss - Google Patents

Production of alumina ceramic sintered compact having low dielectric loss

Info

Publication number
JP2000272951A
JP2000272951A JP8381399A JP8381399A JP2000272951A JP 2000272951 A JP2000272951 A JP 2000272951A JP 8381399 A JP8381399 A JP 8381399A JP 8381399 A JP8381399 A JP 8381399A JP 2000272951 A JP2000272951 A JP 2000272951A
Authority
JP
Japan
Prior art keywords
alumina
weight
raw material
dielectric loss
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8381399A
Other languages
Japanese (ja)
Inventor
Shigeharu Matsubayashi
重治 松林
Hidehiro Endo
英宏 遠藤
Masato Inayoshi
正人 稲吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8381399A priority Critical patent/JP2000272951A/en
Publication of JP2000272951A publication Critical patent/JP2000272951A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high-purity/dense alumina ceramic sintered compact having low dielectric loss useful for a semiconductor production apparatus and a liquid crystal producing apparatus, etc., requiring electrical insulating properties in a high high-frequency electric field. SOLUTION: A powdery raw material comprising 99.5-99.9 wt.% of an alumina raw material in which >=95 wt.% based on the whole alumina amount of alumina raw material powder having 0.1-3.0 μm as its particle diameter distribution exists and 20-45 wt.% of the whole alumina particles having 0.1-1.07 μm, 1.0-2.0 μm and 2.0-3.0 μm particle diameters exist and 0.1-0.5 wt..% of the rest of at least one or more sintering auxliaries selected from SiO2, MgO and rare earth element oxides is formulated with a dispersion medium composed of water, a dispersant, a pH adjuster and a binder and subjected to slip casting to give a molding product, which is retained at 1,550-1,650 deg.C maximum temperature for >=2 hours and sintered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度アルミナ質
セラミックスに関し、特に電気絶縁性を要求される半導
体製造装置や液晶製造装置などに用いられる緻密な低誘
電損アルミナ質セラミックス焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity alumina ceramics, and more particularly to the manufacture of dense low dielectric loss alumina ceramics used for semiconductor manufacturing equipment and liquid crystal manufacturing equipment requiring electrical insulation. About the method.

【0002】[0002]

【従来の技術】高純度で緻密なアルミナ質焼結体は、耐
熱性・耐薬品性・耐プラズマ性などを有し、電気抵抗値
が大きく電気絶縁性に優れているため、半導体製造装
置、液晶製造装置などを中心とした用途開発が行われて
いる。これらの部材に適用する場合、必要となる特性と
しては高純度で緻密な焼結体組織を有し、かつ1MHz
を超える高周波の交流電界で発生する誘電分極に伴う誘
電消費エネルギーが小さいこと(低誘電損)が必要とな
る。誘電損失を大きくする原因として焼結体中に含まれ
ているアルカリ金属がある。
2. Description of the Related Art A high-purity dense alumina sintered body has heat resistance, chemical resistance, plasma resistance, etc., and has a large electric resistance and excellent electric insulation. Applications are being developed mainly for liquid crystal manufacturing equipment. When applied to these members, the required characteristics include a high-purity, dense sintered body structure and 1 MHz
It is required that the dielectric consumption energy associated with the dielectric polarization generated by a high-frequency AC electric field exceeding the above (low dielectric loss) is small. As a cause of increasing the dielectric loss, there is an alkali metal contained in the sintered body.

【0003】アルミナ質焼結体中にアルカリ金属が多く
含まれている原因としては、使用する原料中に含まれて
いる場合と粉砕・成形・成形体(素地)加工・焼成など
の焼結体製造プロセス中に混入する場合とが考えられ
る。これらを回避するためには、特開平10−1204
61号公報に見られるようにアルカリ金属の含有量が1
000ppm(=0.1重量%)より少ないローソーダ
の高純度(99.9%以上)アルミナ原料を用いる必要
があった。そのため、ローソーダ(低アルカリ)アルミ
ナ質焼結体を得るには大幅なコスト増を招くという課題
があった。
A large amount of alkali metal is contained in the alumina-based sintered body because it is contained in the raw material to be used and the sintered body such as pulverization, molding, molding (substrate) processing, firing, etc. It is conceivable that it is mixed during the manufacturing process. In order to avoid these problems, Japanese Patent Application Laid-Open No.
No. 61, the content of alkali metal is 1
It was necessary to use a high-purity (99.9% or more) alumina raw material having a low soda content of less than 000 ppm (= 0.1% by weight). Therefore, there has been a problem that a large increase in cost is required to obtain a low-soda (low alkali) alumina-based sintered body.

【0004】[0004]

【発明が解決しようとする課題】本発明は、アルミナ原
料にNaやKなどのアルカリ金属酸化物の含有量が低い
ローソーダアルミナ原料を用い、アルミナ純度が99.
5%以上と高く、かつ原料調製〜成形〜焼結までの作業
工程における製造コストを大幅に低減することが可能な
低誘電損アルミナ質セラミックスを提供することを目的
とする。
According to the present invention, a low soda alumina raw material having a low content of alkali metal oxides such as Na and K is used as the alumina raw material, and the alumina purity is 99.
It is an object of the present invention to provide a low dielectric loss alumina ceramic which is as high as 5% or more and can greatly reduce the production cost in the working steps from raw material preparation to molding to sintering.

【0005】[0005]

【課題を解決するための手段】本発明は、アルミナ原料
粉末の粒子径分布として0.1〜3.0μmに全アルミ
ナ量の95重量%以上が存在し、粒子径が0.1〜1.
0μm、1.0〜2.0μm、2.0〜3.0μmの各
範囲に全アルミナ量の20〜45重量%が存在するアル
ミナ原料を99.5〜99.9重量%と残部がSi
2、MgO、CaO、希土類酸化物の中から選ばれた
1種以上の焼結助剤0.1〜0.5重量%とからなる粉
末原料を水、分散剤、pH調整剤とバインダーからなる
分散媒に混合し鋳込み成形することにより、稠密な成形
体を得た後に、最高温度1550〜1650℃で2時間
以上保持し焼結するアルミナ質セラミックス焼結体の製
造方法である。
According to the present invention, the alumina raw material powder has a particle diameter distribution of 0.1 to 3.0 μm in which 95% by weight or more of the total alumina amount is present, and the particle diameter is 0.1 to 1.
99.5 to 99.9% by weight of the alumina raw material having 20 to 45% by weight of the total amount of alumina in each range of 0 μm, 1.0 to 2.0 μm, and 2.0 to 3.0 μm, with the balance being Si
A powder raw material comprising 0.1 to 0.5% by weight of at least one sintering aid selected from O 2 , MgO, CaO and rare earth oxides is prepared from water, a dispersant, a pH adjuster and a binder. This is a method for producing an alumina-based ceramics sintered body in which a dense molded body is obtained by mixing with a dispersing medium and cast-molded, and then held and sintered at a maximum temperature of 1550 to 1650 ° C. for 2 hours or more.

【0006】[0006]

【発明の実施の形態】アルミナ原料粉末の粒子径分布と
して0.1〜3.0μmに全アルミナ量の95重量%未
満が存在する場合、0.1μm未満の粒子が過多のとき
鋳込み成形時のスラリー流動性が低下するため好ましく
なく、3.0μm超の粒子が過多の場合は焼結時の緻密
化が困難となるため不適である。アルミナ粒子径につい
て0.1〜1.0μmの範囲が20重量%未満の場合は
焼結性が低下し高密度焼結体が得られず、45重量%超
のときは鋳込み成形用泥漿の粘度が高く、高濃度化が困
難となるため不適である。アルミナ粒子径について1.
0〜2.0μmの範囲が20重量%未満の場合は焼結性
が低下し高密度焼結体が得られず、45重量%超のとき
は鋳込み成形時の成形体の稠密化が困難となるため不適
である。アルミナ粒子径について2.0〜3.0μmの
範囲が20重量%未満の場合は鋳込み成形時の成形体の
稠密化が困難となり、45重量%超のときは焼結性が低
下し高密度焼結体が得られないため不適である。これら
の各範囲に全アルミナ量のそれぞれ20〜45重量%が
存在するアルミナ原料を他の粒径域も含めて全アルミナ
がスラリーを構成する粉末原料全体の99.5重量%未
満の場合、目的とする高純度かつ低誘電損アルミナ質セ
ラミックス焼結体が得られず、99.9重量%超の場合
は焼結助剤の量が0.1重量%未満に制限されることに
なるため、焼結性の低下が避けられないため好ましくな
い。
BEST MODE FOR CARRYING OUT THE INVENTION When the alumina material powder has a particle size distribution of less than 95% by weight of the total amount of alumina in 0.1 to 3.0 μm, when the number of particles less than 0.1 μm is excessive, the casting time during casting is reduced. It is not preferable because the fluidity of the slurry is lowered. If the particle size is more than 3.0 μm, it is not suitable because it becomes difficult to densify at the time of sintering. When the alumina particle diameter is less than 20% by weight in the range of 0.1 to 1.0 μm, the sinterability is deteriorated and a high-density sintered body cannot be obtained. And it is difficult to increase the concentration. About alumina particle diameter
If the range of 0 to 2.0 μm is less than 20% by weight, the sinterability is reduced and a high-density sintered body cannot be obtained, and if it exceeds 45% by weight, it is difficult to make the compact at the time of casting. Therefore, it is not suitable. If the alumina particle size in the range of 2.0 to 3.0 μm is less than 20% by weight, it is difficult to densify the compact at the time of casting. It is unsuitable because no aggregate can be obtained. In the case where the alumina raw material in which each of these ranges contains 20 to 45% by weight of the total amount of alumina, including all other alumina particles, is less than 99.5% by weight of the entire powder raw material constituting the slurry, A high-purity and low dielectric loss alumina ceramic sintered body cannot be obtained, and if it exceeds 99.9% by weight, the amount of the sintering aid is limited to less than 0.1% by weight. This is not preferable because a decrease in sinterability cannot be avoided.

【0007】SiO2、MgO、CaO、希土類酸化物
の中から選ばれた1種以上の焼結助剤を添加量を0.1
重量%未満とする場合は前記の如くアルミナ焼結時の助
剤添加効果の低下が避けられないため好ましくなく、
0.5重量%超を添加する場合は得られるアルミナ質セ
ラミックス焼結体の高純度かつ低誘電損の特徴を損ねる
ため不適である。これらの原料粉末を水、分散剤、pH
調整剤とバインダーからなる分散媒に混合し鋳込み成形
することに関し、水は脱イオン水または精製水がpHの
制御が容易で好ましく、分散剤としては特に限定される
ものではないが、市販のポリカルボン酸アンモニウム塩
の水溶液が好適に用いられ、とりわけNaやK等の混入
が無いものが適している。pH調製剤としては特に限定
するものではないが、塩化アンモニウム、ジエチルアミ
ン等が代表的でありここでもNaやK等の混入が無いも
のが適している。バインダーは水溶性またはエマルジョ
ンタイプのいずれも使用可能であるが、鋳込み時の鋳型
の耐久性を向上させるためには、水溶性のバインダーで
は目詰まりが起こり易く好ましくなくアクリル系エマル
ジョンが好適に用いられる。
One or more sintering aids selected from among SiO 2 , MgO, CaO and rare earth oxides are added in an amount of 0.1
If the amount is less than 10% by weight, it is not preferable because the effect of adding the auxiliary agent at the time of alumina sintering cannot be avoided as described above.
Addition of more than 0.5% by weight is not suitable because the resulting alumina-based ceramics sintered body loses the characteristics of high purity and low dielectric loss. Water, dispersant, pH
With respect to mixing and casting in a dispersion medium consisting of a modifier and a binder, water is preferably deionized water or purified water because the pH can be easily controlled, and the dispersant is not particularly limited. An aqueous solution of an ammonium carboxylate is preferably used, and one containing no Na or K is particularly suitable. Although the pH adjuster is not particularly limited, ammonium chloride, diethylamine, etc. are typical, and here, those containing no Na, K or the like are suitable. As the binder, either a water-soluble or emulsion type can be used, but in order to improve the durability of the casting mold at the time of casting, a water-soluble binder is not easily clogged easily, and an acrylic emulsion is preferably used. .

【0008】本発明の成形方法としては、分散媒に分散
浮遊させて吸水型へ注入し脱水固化させる公知の鋳込み
成形法が用いられる。次に、焼成方法としてガス燃焼式
シャトルキルン炉や抵抗加熱式電気炉にて最高温度15
50〜1650℃の範囲内で2時間以上保持する。15
50℃未満では緻密化が十分には進行せず、1650℃
超では異常な粒成長が発生し焼結体密度の低下をきたす
ため好ましくない。2時間未満の焼成では、肉厚品や大
型形状品では焼けムラの発生する可能性が高いため好ま
しくない。鋳込み用スラリーとしては、分散媒量13〜
17重量%が好ましい。13重量%未満のスラリーは調
製が困難で、17重量%超の分散媒量では着肉固化が進
行し難いからである。
As the molding method of the present invention, there is used a known casting method in which the material is dispersed and suspended in a dispersion medium, injected into a water absorbing mold, and dehydrated and solidified. Next, as a firing method, use a gas-fired shuttle kiln furnace or a resistance heating type electric furnace at a maximum temperature of 15 ° C.
Hold at 50 to 1650 ° C. for 2 hours or more. Fifteen
If the temperature is lower than 50 ° C., the densification does not proceed sufficiently, and 1650 ° C.
If it is excessively large, abnormal grain growth occurs and the density of the sintered body decreases, which is not preferable. Baking for less than 2 hours is not preferred because thick or large-sized products are more likely to cause burn unevenness. As the slurry for casting, the amount of the dispersion medium is 13 to
17% by weight is preferred. This is because it is difficult to prepare a slurry of less than 13% by weight, and it is difficult for solidification to proceed with a dispersion medium amount of more than 17% by weight.

【0009】一般的な高純度・易焼結アルミナ原料とは
異なり、粒子径分布として0.1〜3.0μmに使用す
る全アルミナの95重量%以上が存在し、かつ粒子径が
0.1〜1.0μm、1.0〜2.0μm、2.0〜
3.0μmの各範囲に全アルミナ量の20〜45重量%
の粒子が存在するアルミナ99.5〜99.9重量%
と、残部がSiO2、MgO、CaO、希土類酸化物の
中から選ばれた1種以上からなる焼結助剤0.1〜0.
5重量%とからなる粉末原料を用いることによって、鋳
込み成形に使用するための濃厚なスラリー調製が容易に
できる。本発明の配合径によれば、粒子径で5〜10倍
前後の微粉・粗粒の配合を行なう効果が生じ、スラリー
の流動性に優れ、かつ得られる成形体密度も高く、焼結
時の線方向収縮も少なくすることができる。一方、同じ
焼成条件でも2.0〜3.0μmの比較的粗いアルミナ
原料が少なくとも20重量%含まれていることによっ
て、焼結体組織中の個々の粒成長速度を大きくできる。
このことによって、焼結体加工時の快削性を確保し、電
気絶縁性に関しても焼結体の全構成粒子の比表面積が小
さくなることにより比誘電率(εr)や誘電損失(ta
nδ)を小さくすることが容易になる。
[0009] Unlike ordinary high-purity and easily sintered alumina raw materials, 95% by weight or more of the total alumina used in a particle size distribution of 0.1 to 3.0 µm is present, and the particle size is 0.1%. ~ 1.0 μm, 1.0 ~ 2.0 μm, 2.0 ~
20 to 45% by weight of the total amount of alumina in each range of 3.0 μm
99.5 to 99.9% by weight of alumina containing particles of
And a sintering aid having a balance of at least one selected from SiO 2 , MgO, CaO and rare earth oxides.
By using the powder raw material of 5% by weight, it is possible to easily prepare a thick slurry for use in casting. According to the compounding diameter of the present invention, the effect of mixing fine powder and coarse particles having a particle diameter of about 5 to 10 times is produced, the fluidity of the slurry is excellent, and the obtained compact density is high, Linear shrinkage can also be reduced. On the other hand, even under the same sintering conditions, since at least 20% by weight of a relatively coarse alumina raw material of 2.0 to 3.0 μm is included, the growth rate of each grain in the sintered body structure can be increased.
As a result, the free-cutting property at the time of processing the sintered body is ensured, and the relative dielectric constant (ε r ) and the dielectric loss (ta) are also reduced with respect to the electrical insulating property because the specific surface area of all the constituent particles of the sintered body is reduced.
nδ) can be easily reduced.

【0010】[0010]

【実施例】以下、本発明の実施例を示す。Embodiments of the present invention will be described below.

【0011】アルミナ質セラミックス原料として、純度
99.5%、平均粒径1.4μm、粒子径が0.1〜
1.0μm、1.0〜2.0μm、2.0〜3.0μm
の各範囲にそれぞれ全アルミナ量の25、40、33重
量%が存在し、Na2Oを0.2重量%含有するアルミ
ナ原料99.75重量%に、SiO2を0.20重量%
とMgOを0.05重量%を焼結助剤として添加した組
成を用いた。成形方法は公知の鋳込み成形法を用いた。
スラリー濃度は84重量%、吸水型として気孔率40体
積%の石膏型を用い、□200×t30mmの成形体を
得た。成形体密度は2.71g/cm3であった。これ
を抵抗加熱式電気炉で1620℃×4時間保持し、□1
78×t26mmの健全な焼結体を得た。この焼結体の
物性としては、JIS−R1601に準拠した3点曲げ
強さ360MPa、ヤング率375GPa、嵩密度3.
88g/cm3、熱膨張率7.5×10-6/K、吸水率
0.02%であった。研削時の抵抗値は500Nとアル
ミナ質セラミックスの通常の焼結体加工に支障の出ない
範囲であった。ここで、研削時の抵抗は以下の加工性評
価条件にて実施した。切り込み速度60mm/mi
n.、ダイヤモンド砥石粗さ#120、砥石径φ8mm
コアドリル、砥石周速60m/min.、総切り込み量
としては10mm深さを連続10穴とした。このときの
キスラー動力計への負荷応力を3回平均し測定した。
As a raw material of alumina ceramics, the purity is 99.5%, the average particle size is 1.4 μm, and the particle size is 0.1 to 0.1%.
1.0 μm, 1.0 to 2.0 μm, 2.0 to 3.0 μm
25, 40, and 33% by weight of the total amount of alumina exist in each range, and 99.75% by weight of an alumina raw material containing 0.2% by weight of Na 2 O and 0.20% by weight of SiO 2
A composition in which 0.05% by weight of MgO and MgO were added as a sintering aid was used. As a molding method, a known casting method was used.
A gypsum mold having a slurry concentration of 84% by weight and a porosity of 40% by volume as a water-absorbing mold was used to obtain a molded product of □ 200 × t30 mm. The compact density was 2.71 g / cm 3 . This is kept in a resistance heating type electric furnace at 1620 ° C. × 4 hours, and □ 1
A sound sintered body of 78 × t26 mm was obtained. The physical properties of the sintered body include a three-point flexural strength of 360 MPa, a Young's modulus of 375 GPa, and a bulk density of 3.000 according to JIS-R1601.
88 g / cm 3, the coefficient of thermal expansion 7.5 × 10 -6 / K, was 0.02% water absorption. The resistance value at the time of grinding was 500 N, which was in a range that would not hinder normal processing of a sintered body of alumina ceramics. Here, the resistance during grinding was performed under the following workability evaluation conditions. Cutting speed 60mm / mi
n. , Diamond whetstone roughness # 120, whetstone diameter φ8mm
Core drill, whetstone peripheral speed 60 m / min. The total depth of cut was 10 mm depth and 10 continuous holes. The stress applied to the Kistler dynamometer at this time was averaged three times and measured.

【0012】また、この焼結体の電気的な特性として、
10MHzの交流周波数では、比誘電率εr=8.5、
誘電損失tanδ=0.0040を示した。100MH
zの交流高周波数領域において、比誘電率εr=8.
5、誘電損失tanδ=0.0050といずれも低い値
が得られ、周波数に依存しないことも併せて確認した。
The electrical characteristics of the sintered body include:
At an AC frequency of 10 MHz, the relative permittivity ε r = 8.5,
The dielectric loss tan δ was 0.0040. 100MH
In the AC high frequency region of z, the relative dielectric constant ε r = 8.
5, a low value of dielectric loss tan δ = 0.0050 was obtained, and it was also confirmed that the value did not depend on the frequency.

【0013】比較例として、純度99.8%、平均粒径
0.6μm、粒子径が0.1〜1.0μm、1.0〜
2.0μm、2.0〜3.0μmの各範囲にそれぞれ全
アルミナ量の75、10、5重量%が存在するローソー
ダ(Na2Oを0.06重量%含有)アルミナ原料9
9.75重量%用い、これにSiO2を0.20重量%
とMgOを0.05重量%焼結助剤として添加した組成
を用いた。成形方法としては噴霧造粒後の顆粒をラバー
等に充填し静水圧加圧することにより前記と同じ形状の
成形体とした。これを電気炉で1620℃×4時間保持
し焼成し、焼結体(□162×t24mm)を得た。こ
の焼結体の物性を測定した結果、JIS−R1601に
準拠した3点曲げ強さ240MPa、ヤング率360G
Pa、嵩密度3.88g/cm3、熱膨張率7.8×1
-6/K、吸水率0.06%であった。前記実施例と同
一条件で研削時の抵抗を求めたが、10穴連続加工中に
5穴目で砥石の破損を生じた。それまでの平均抵抗値は
750Nと高く、加工時に切り込み時の送り速度や砥石
寿命に関し慎重な条件出しが必要となる抵抗であった。
電気的な特性として、10MHzの交流周波数では、比
誘電率εr=9.8、誘電損失tanδ=0.0110
を示した。100MHzの交流高周波数領域において
は、比誘電率εr=9.4、誘電損失tanδ=0.0
160といずれも高い値を示し、周波数に応じて、いず
れも大きく変動した。
As comparative examples, the purity is 99.8%, the average particle diameter is 0.6 μm, the particle diameter is 0.1 to 1.0 μm,
Raw soda (containing 0.06% by weight of Na 2 O) alumina raw material in which 75, 10, and 5% by weight of the total amount of alumina are present in the respective ranges of 2.0 μm and 2.0 to 3.0 μm 9
9.75% by weight and 0.20% by weight of SiO 2
And MgO as a sintering aid of 0.05% by weight. As a molding method, the granules after spray granulation were filled in rubber or the like and subjected to hydrostatic pressure to obtain a molded body having the same shape as described above. This was held at 1620 ° C. × 4 hours in an electric furnace and fired to obtain a sintered body (□ 162 × t24 mm). As a result of measuring the physical properties of the sintered body, a three-point bending strength of 240 MPa and a Young's modulus of 360 G according to JIS-R1601 were obtained.
Pa, bulk density 3.88 g / cm 3 , coefficient of thermal expansion 7.8 × 1
0 -6 / K, water absorption 0.06%. The resistance during grinding was determined under the same conditions as in the above example, but the grinding wheel was broken at the fifth hole during the continuous processing of 10 holes. The average resistance value up to that time was as high as 750 N, and it was a resistance that required careful setting of the feed speed at the time of cutting and the life of the grindstone during processing.
As electrical characteristics, at an AC frequency of 10 MHz, the relative permittivity ε r = 9.8 and the dielectric loss tan δ = 0.0110
showed that. In an AC high frequency region of 100 MHz, the relative dielectric constant ε r = 9.4 and the dielectric loss tan δ = 0.0
All of them showed a high value of 160, and varied greatly depending on the frequency.

【0014】以上のことから、前記実施例では10およ
び100MHzの周波数領域の比誘電率、誘電損失とも
比較例より顕著に低く、良好な結果が得られた。
From the above, the relative permittivity and the dielectric loss in the frequency range of 10 and 100 MHz in the above-described embodiment are significantly lower than those in the comparative example, and good results were obtained.

【0015】[0015]

【発明の効果】本発明によれば、低誘電損アルミナ質セ
ラミックスに関し、焼結及び加工時の安定生産性を確保
しつつ、電気絶縁性と交流高周波電界での誘電消費エネ
ルギーの低減を達成できた。この結果、製造コストの低
減も併せて図れた。
According to the present invention, low dielectric loss alumina ceramics can achieve electrical insulation and reduction of dielectric energy consumption in an AC high frequency electric field while securing stable productivity during sintering and processing. Was. As a result, the manufacturing cost was also reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒子径分布として0.1〜3.0μmに
全アルミナ粒子の95重量%以上が存在し、かつ粒子径
が0.1〜1.0μm、1.0〜2.0μm、2.0〜
3.0μmの各範囲に全アルミナ粒子の20〜45重量
%が存在するアルミナ99.5〜99.9重量%と、残
部がSiO2、MgO、CaO、希土類酸化物の中から
選ばれた1種以上からなる焼結助剤0.1〜0.5重量
%とからなる粉末原料を、水、分散剤、pH調整剤とバ
インダーからなる分散媒に混合し、次いで鋳込み成形
し、得られた成形体を最高温度1550〜1650℃で
2時間以上焼結することを特徴とするアルミナ質セラミ
ックス焼結体の製造方法。
1. A particle diameter distribution of 0.1 to 3.0 μm in which 95% by weight or more of all alumina particles are present and a particle diameter of 0.1 to 1.0 μm, 1.0 to 2.0 μm, .0
99.5% to 99.9% by weight of alumina in which 20 to 45% by weight of the total alumina particles are present in each range of 3.0 μm, and the remainder is selected from among SiO 2 , MgO, CaO, and rare earth oxides. A powdered raw material comprising 0.1 to 0.5% by weight of a sintering aid composed of at least one kind was mixed with water, a dispersant, a dispersion medium composed of a pH adjuster and a binder, and then cast and molded. A method for producing an alumina ceramic sintered body, comprising sintering a molded body at a maximum temperature of 1550 to 1650 ° C. for 2 hours or more.
JP8381399A 1999-03-26 1999-03-26 Production of alumina ceramic sintered compact having low dielectric loss Withdrawn JP2000272951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8381399A JP2000272951A (en) 1999-03-26 1999-03-26 Production of alumina ceramic sintered compact having low dielectric loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8381399A JP2000272951A (en) 1999-03-26 1999-03-26 Production of alumina ceramic sintered compact having low dielectric loss

Publications (1)

Publication Number Publication Date
JP2000272951A true JP2000272951A (en) 2000-10-03

Family

ID=13813129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8381399A Withdrawn JP2000272951A (en) 1999-03-26 1999-03-26 Production of alumina ceramic sintered compact having low dielectric loss

Country Status (1)

Country Link
JP (1) JP2000272951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304010B2 (en) * 2004-02-23 2007-12-04 Kyocera Corporation Aluminum oxide sintered body, and members using same for semiconductor and liquid crystal manufacturing apparatuses
WO2014197246A1 (en) * 2013-06-04 2014-12-11 H.C. Starck Inc. Slip and pressure casting of refractory metal bodies
CN113213900A (en) * 2021-06-23 2021-08-06 中国铝业股份有限公司 Dispersible alumina and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304010B2 (en) * 2004-02-23 2007-12-04 Kyocera Corporation Aluminum oxide sintered body, and members using same for semiconductor and liquid crystal manufacturing apparatuses
WO2014197246A1 (en) * 2013-06-04 2014-12-11 H.C. Starck Inc. Slip and pressure casting of refractory metal bodies
KR20160011675A (en) * 2013-06-04 2016-02-01 에이치. 씨. 스타아크 아이앤씨 Slip and pressure casting of refractory metal bodies
KR101675713B1 (en) 2013-06-04 2016-11-11 에이치. 씨. 스타아크 아이앤씨 Slip and pressure casting of refractory metal bodies
CN113213900A (en) * 2021-06-23 2021-08-06 中国铝业股份有限公司 Dispersible alumina and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0171034B1 (en) Vitrified grinding wheel
JP5186638B2 (en) Abrasive grains based on molten spherical corundum
EP2752395A1 (en) A porous glass ceramic composition and method for manufacturing the same
Ganesh Development of β-SiAlON based ceramics for radome applications
KR950011676B1 (en) Grinding particles and manufacturing method of ceramic
Li et al. Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics
JPH0572341B2 (en)
JP2000272951A (en) Production of alumina ceramic sintered compact having low dielectric loss
KR101866319B1 (en) Process for manufacturing high density slip-cast fused silica bodies
JP2000128625A (en) Aluminous ceramic sintered compact and its production
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
GB2075488A (en) High density silicon oxynitride
CN109053176B (en) Chromium-containing mullite refractory material and preparation method thereof
KR101200718B1 (en) Fabrication method of high density & high fracture toughness silica radome
JPH07237958A (en) High-strength porcelain and production thereof
JPH0544428B2 (en)
KR101343808B1 (en) Composite for low temperature sinterable porcelain and manufacturing method of low temperature sinterable porcelain
JP3368960B2 (en) SiC refractory
JP3176143B2 (en) Partially stabilized zirconia sintered body
JP3027721B2 (en) Porous plug refractory and manufacturing method thereof
KR100328916B1 (en) Method for preparing silica radome by slip casting process
KR100328943B1 (en) Method for preparing silica radome by slip casting process
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2023049464A (en) pottery base material
KR100328917B1 (en) Method for preparing silica radome by wet isostatic process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606