KR100328917B1 - Method for preparing silica radome by wet isostatic process - Google Patents

Method for preparing silica radome by wet isostatic process Download PDF

Info

Publication number
KR100328917B1
KR100328917B1 KR1019970074908A KR19970074908A KR100328917B1 KR 100328917 B1 KR100328917 B1 KR 100328917B1 KR 1019970074908 A KR1019970074908 A KR 1019970074908A KR 19970074908 A KR19970074908 A KR 19970074908A KR 100328917 B1 KR100328917 B1 KR 100328917B1
Authority
KR
South Korea
Prior art keywords
silica
radome
molded
molding
distilled water
Prior art date
Application number
KR1019970074908A
Other languages
Korean (ko)
Other versions
KR19990055005A (en
Inventor
전명철
김선욱
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1019970074908A priority Critical patent/KR100328917B1/en
Publication of KR19990055005A publication Critical patent/KR19990055005A/en
Application granted granted Critical
Publication of KR100328917B1 publication Critical patent/KR100328917B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Abstract

PURPOSE: A method for preparing a silica radome using the wet hydrostatic pressure molding is provided, to prevent the input of the impurities at the interface with the molded one by employing a rubber mold, to enhance the relative density and strength of the molded one by filling up the pores between the fused silica particles with the fumed silica, and to improve the mechanical strength of the molded one. CONSTITUTION: The method comprises the steps of mixing the fused silica powder whose specific surface area is increased by ball milling and from which metals and alkali ions are removed by acid washing and water washing, and the fumed silica with a specific surface area of 20-300 m2/g in the ratio of 70:30 to 99:1 by weight; mixing them with distilled water to make the ratio of the total silica to distilled water be 5:95 to 70:30 by weight; adding a dispersant, a binder and a plasticizer to the solution and dispersing them to prepare a silica sol; spray drying the silica sol to granulate it; molding the granulated one at a rubber mold and isotactic pressure molding the molded one by hydrostatic pressure molding; and drying, calcining and sintering the obtained one to prepare a silica radome. Preferably the binder is a poly(vinyl alcohol) with a molecular weight of 5,000-500,000; the plasticizer is a polyalcohol; the spray drying is carried out at 100-250 deg.C; and the hydrostatic pressure is maintained to be 0.1-3 ton/cm2.

Description

습식정수압성형법을 이용한 실리카레이돔의 제조방법{Method for preparing silica radome by wet isostatic process}Method for preparing silica radome by wet hydrostatic molding method {Method for preparing silica radome by wet isostatic process}

본 발명은 습식정수압성형법을 이용한 실리카레이돔의 제조방법에 관한 것으로, 보다 상세하게는 초고속으로 비행하는 미사일에 사용될 수 있는 실리카레이돔을 용융실리카에 퓸드실리카(fumed silica)를 첨가하고 불순물을 인위적으로 제거한 후 고무몰드에서 습식정수압성형하여 제조하는 방법에 관한 것이다.The present invention relates to a method for producing silica radome using wet hydrostatic molding, and more particularly, fumed silica is added to molten silica and impurities are added to a silica radome which can be used for a missile flying at high speed. After removal, the present invention relates to a wet hydrostatic molding in a rubber mold.

일반적으로 레이돔(radome)이라 함은 항공기 등의 외부레이더 안테나용 덮개를 말하는 것으로서 레이더의 안테나를 외장하여 보호해주는 구조재이다.Generally, a radome is a cover for an external radar antenna such as an aircraft, and is a structural material that protects an external radar antenna.

이러한 레이돔이 레이더의 안테나를 효과적으로 보호할 수 있기 위해서는 안테나의 전기적인 작용에 대한 간섭이 아주 작아야 한다.In order for such a radome to effectively protect the radar antenna, the interference of the antenna's electrical behavior must be very small.

특히 마하3 내지 마하5의 초음속도를 가지는 초고속미사일용 레이더에 사용되는 레이돔의 경우에는 500-800℃범위의 고온영역에서의 기계적 물성 및 전기적 물성과 가혹한 환경조건인 비와 모래에 의한 침식에 대한 내성도 고려하여야 한다.Especially in the case of radome used in the super high speed missile radar having the supersonic speed of Mach 3 to Mach 5, the mechanical and electrical properties in the high temperature range of 500-800 ° C and the erosion by rain and sand, which are harsh environmental conditions Immunity should also be considered.

플라스틱으로 만든 레이돔은 마하3이하의 초음속도영역에서는 정상적인 작동을 하지만 마하3보다 고속으로 비행하는 미사일에 사용하는 경우에는 정상적인 작동을 하지 못한다.Radomes made of plastic operate normally in supersonic speeds below Mach 3 but not in missiles flying at higher speeds than Mach 3.

따라서 마하3이상의 고속으로 비행하는 미사일에는 세라믹재료로 만든 레이돔을 사용하여야 한다.Therefore, missiles flying at Mach 3 or higher speeds should use radome made of ceramic material.

종래에 고속으로 비행하는 미사일에 사용하기 위한 세라믹레이돔의 재료로는 알루미나(Al2O3), 슬립캐스팅한 용융실리카(slip-casted fused-silica) 및 코디어라이트(cordierite) 등을 사용하여 왔다.Conventionally, alumina (Al 2 O 3 ), slip-casted fused silica, and cordierite have been used as ceramic radome materials for use in high-speed missiles. .

알루미나의 경우 열충격저항성이 낮은 반면 유전상수가 커서 고온에서 사용할 때 열에 의한 충격을 많이 받게 되고 유전손실이 크다는 단점이 있다.Alumina has a low thermal shock resistance, but a large dielectric constant has a disadvantage of being subjected to a lot of heat shock and high dielectric loss when used at high temperatures.

코디어라이트의 경우 알루미나의 특성과 슬립캐스팅한 용융실리카의 특성의 중간적인 특성을 나타낸다. 따라서 600℃ 또는 그 이상의 온도에서 사용될 경우 tanδ의 손실이 0.01이상이 되어 유전손실이 상대적으로 높다는 단점이 있다.In the case of cordierite, there is an intermediate characteristic between the properties of alumina and that of slip cast molten silica. Therefore, when used at a temperature of 600 ℃ or more has a disadvantage that the loss of tanδ is more than 0.01, the dielectric loss is relatively high.

슬립캐스팅으로 제조된 용융실리카의 경우 열충격저항성이 우수하고 유전상수가 매우 낮은 특성을 가지고 있어 고속미사일용 레이돔으로 널리 사용되고 있다. 그러나 슬립캐스팅한 용융실리카는 환경조건인 비와 모래에 의한 침식에 약하다는 단점이 있다.Molten silica manufactured by slip casting has excellent thermal shock resistance and has a very low dielectric constant, so it is widely used as a radome for high speed missiles. However, slip cast molten silica has a disadvantage of being vulnerable to erosion by rain and sand, which are environmental conditions.

슬립캐스팅한 용융실리카가 비와 모래에 의한 침식에 약한 것은 용융실리카의 기계적 강도가 낮기 때문이다.The slip cast molten silica is weak to rain and sand erosion because of the low mechanical strength of the molten silica.

용융실리카의 기계적 강도가 낮은 것은 용융실리카를 성형한 후 1150-1200℃의 고온에서 소성할 경우 용융실리카내에 존재하는 불순물들로 인하여 용융실리카가 결정화되므로 소성후 냉각공정에서 열팽창계수가 일치하기 않아 용융실리카가 파괴되기 때문에 저온에서 소성을 하게 되는데, 이러한 저온소성에 의하여 용융실리카는 저밀도의 미세구조를 가지게 되고 그 결과 비와 모래에 의한 침식 등에 약해지는 문제점이 발생한다.The low mechanical strength of the molten silica melts because the thermal expansion coefficient does not coincide in the cooling process after firing because the molten silica is crystallized due to impurities present in the molten silica when the molten silica is molded and calcined at a high temperature of 1150-1200 ° C. Since the silica is destroyed, it is calcined at a low temperature. By this low temperature baking, the molten silica has a low density microstructure, and as a result, there is a problem of weakening rain and sand erosion.

종래에는 실리카레이돔을 제조할 때 슬립캐스팅공법을 사용하여 왔다.Conventionally, a slip casting method has been used to prepare silica radome.

슬립캐스팅공법은 이형제를 바른 석고재의 몰드속에 세라믹스분말 등을 물로 현탁한 액상의 슬립을 흘려넣어 슬립의 수분을 석고에 흡수시킨 후 몰드를 제거하고 건조시켜 얻어지는 성형체를 완전히 건조시킨 후 소결하여 제품을 생산하는 방법이다.In the slip casting method, a slip of a liquid suspended in ceramic powder or the like is poured into a mold of a plaster material coated with a release agent to absorb the moisture of the slip into the gypsum, the mold is removed and dried, and then the product is completely dried and then sintered. How to produce.

상기와 같은 슬립캐스팅법으로 용융실리카를 제조하는 경우 다음과 같은 문제점이 있다.When manufacturing the molten silica by the slip casting method as described above has the following problems.

첫째, 몰드인 석고의 표면과 성형체가 직접 접촉함으로써 석고로부터 알칼리계 불순물이 성형체표면으로 흡착하는 현상이 발생하고, 다른 세라믹스와는 달리 실리카를 원료로 사용하는 경우에는 1100℃이상의 고온에서 소성하는 과정에서 성형체표면에 흡착된 알칼리성분이 실리카성형체의 결정화를 유발하여 소결체가 파괴되는 현상이 발생하게 된다.First, the direct contact between the surface of the gypsum, which is a mold, and the molded body occurs, in which alkali-based impurities are adsorbed from the gypsum to the surface of the molded body, and unlike other ceramics, when silica is used as a raw material, the process is calcined at a high temperature of 1100 ° C. or higher. In this case, the alkali component adsorbed on the surface of the molded body causes the crystallization of the silica molded body, resulting in the destruction of the sintered body.

따라서 성형체표면에 흡착된 알칼리성분을 기계적인 가공을 통해 제거하여야 한다.Therefore, the alkali component adsorbed on the surface of the molded body should be removed through mechanical processing.

둘째, 석고몰드에 의한 성형체제조시 성형체의 착육층의 두께가 증가할수록 수분의 확산경로가 길어져 두꺼운 착육체를 원하는 경우 공정시간이 길어진다.Second, when manufacturing the molded body by the gypsum mold, the thickness of the layer of the molded body increases, the longer the diffusion path of water, the longer the process time if you want a thicker body.

셋째, 착육층의 두께를 정밀하게 제어하기 힘들어 성형체자체나 소성 후의 소결체를 기계적으로 가공하여 원하는 치수를 가지도록 하여야 하는데, 소성 후 기계적 가공을 하는 것은 별도의 공정을 요하고 별도의 시간이 소요되므로 경제성이 떨어진다.Third, it is difficult to precisely control the thickness of the ground layer so that the molded body itself or the sintered body after firing should be mechanically processed to have a desired dimension.Because mechanical processing after firing requires a separate process and takes additional time. Economical low.

넷째, 슬립캐스팅법으로 제조된 성형체는 일반적으로 기계적 강도가 약하여 가공시 파괴될 위험이 크다.Fourth, the molded article produced by the slip casting method is generally weak in mechanical strength, so there is a high risk of breakage during processing.

상기의 문제점을 해결하기 위한 본 발명은 습식정수압성형법을 이용하여 성형체의 기계적 강도를 높이며, 석고몰드대신 고무몰드를 이용함으로써 성형체와의 접촉면에서 불순물의 유입이 일어나지 않도록 하고, 퓸드실리카분말을 첨가하여 비교적 입자가 큰 용융실리카입자간 기공을 메워줌으로써 소결성을 향상시키는 실리카레이돔의 제조방법을 제공함을 목적으로 한다.The present invention for solving the above problems is to increase the mechanical strength of the molded body by using the wet hydrostatic molding method, by using a rubber mold instead of the gypsum mold to prevent the inflow of impurities from the contact surface with the molded body, and added fumed silica powder It is an object of the present invention to provide a method for producing silica radome which improves sinterability by filling pores between molten silica particles having relatively large particles.

본 발명은 볼밀링에 의한 분쇄로 비표면적이 증가되고 산세와 수세를 통하여 금속 및 알칼리이온이 제거된 용융실리카분말과 비표면적이 20-300㎡/g인 퓸드실리카를 용융실리카:퓸드실리카의 질량비가 70:30 내지 99:1에 속하고 전체실리카:증류수의 질량비가 5:95 내지 70:30에 속하도록 증류수에 혼합한 후 분산제, 가소제, 결합제를 첨가하여 분산시킴으로써 실리카졸을 제조한 다음, 상기 실리카졸을 분무건조하여 과립화시킨 후 고무몰드에서 성형하고 정수압성형법을 이용하여 등방압성형을 실시한 다음, 형성된 실리카성형체를 건조, 하소, 소결하여 실리카레이돔을제조하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법이다.The present invention relates to a molten silica powder in which a specific surface area is increased by grinding by ball milling and metal and alkali ions are removed through pickling and washing, and a fumed silica having a specific surface area of 20-300 m 2 / g is melted silica: fumed silica. The silica sol was prepared by mixing in distilled water so that the mass ratio of 70:30 to 99: 1 and the mass ratio of total silica: distilled water to 5:95 to 70:30 and then dispersing by adding a dispersant, a plasticizer and a binder. Next, the silica sol is spray-dried to granulate and then molded in a rubber mold and subjected to isostatic pressure molding using hydrostatic pressure molding method, followed by drying, calcining and sintering the formed silica molded body to produce a silica radome. Silica radome is manufactured by hydrostatic pressing method.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

실리카레이돔의 재료인 용융실리카분말은 증류수와 1:100 내지 200:100의 질량비로 혼합한 후 볼밀링하여 용융실리카수용액의 평균입도가 1㎛이하이며 보다 바람직하게는 0.5㎛이하가 되도록 입자를 분쇄한다. 분쇄물의 입도분포는 라디안분포가 되는 것이 바람직하다.Molten silica powder, which is a material of silica radome, is mixed with distilled water in a mass ratio of 1: 100 to 200: 100, followed by ball milling to pulverize the particles so that the average particle size of the molten silica aqueous solution is 1 µm or less and more preferably 0.5 µm or less. do. The particle size distribution of the pulverized product is preferably a radian distribution.

볼밀링에 의하여 용융실리카입자들의 크기가 감소하여 새로운 표면이 노출됨으로써 용융실리카의 비표면적이 상대적으로 증가하여 수세과정에서 불순물제거효과가 커지게 된다. 따라서 용융실리카를 많이 분쇄할수록 수세과정에서 물과 접촉하는 면적이 커져 불순물의 제거효과가 커지게 된다.Ball milling reduces the size of the molten silica particles and exposes a new surface, so that the specific surface area of the molten silica is relatively increased, thereby increasing the effect of removing impurities during washing. Therefore, as the molten silica is pulverized, the area in contact with water increases in the washing process, thereby increasing the effect of removing impurities.

볼밀링하여 얻어진 용융실리카슬러리는 수분을 제거한 다음 산세를 행하는데, 용융실리카슬러리를 산수용액에 용해시켜 금속성분을 제거한 후 여과를 하여 액상인 금속성분이 용해된 산수용액을 제거한다.The molten silica slurry obtained by ball milling removes water and then pickles. The molten silica slurry is dissolved in an acid solution to remove metal components, followed by filtration to remove an acid solution in which a liquid metal component is dissolved.

여과한 후 2차증류수를 사용한 수세(water washing)공정을 연속적으로 실시한다. 수세작업은 용융실리카층을 통과한 수용액에서 산기가 검출되지 않을 때까지 계속한다.After filtration, a water washing process using secondary distilled water is continuously performed. The washing operation is continued until no acid is detected in the aqueous solution passing through the molten silica layer.

산세와 수세를 마친 용융실리카덩어리는 건조기를 이용하여 수분을 완전히 제거하여 준다.After the pickling and washing, the molten silica lump is completely removed using a dryer.

산세와 수세공정을 거친 용융실리카덩어리는 불순물의 양이 감소하는데 특히철성분과 최초의 용융실리카분말에 존재하던 나트륨, 칼륨, 칼슘 등 알칼리원소의 양이 절반 이하로 감소한다. 이는 산세과정에서 철성분이 용출되고 수세과정에서 알칼리이온이 제거되기 때문이다.After the pickling and washing process, the molten silica mass decreases the amount of impurities. In particular, the amount of alkali elements such as sodium, potassium, and calcium in the first molten silica powder is reduced to less than half. This is because iron is eluted during pickling and alkali ions are removed during washing.

특히 볼밀링에 의해 용융실리카의 비표면적이 증가하여 증류수와 접촉하는 면적이 커지므로 알칼리이온의 제거효과가 커지게 된다.In particular, the ball milling increases the specific surface area of the molten silica, which increases the area of contact with distilled water, thereby increasing the effect of removing alkali ions.

금속 및 알칼리이온들은 용융실리카를 고온에서 소성하는 과정에서 실리카의 결정화를 심하게 유발시키므로 이들 원소를 제거함으로써 궁극적으로 실리카의 결정화를 억제할 수 있어 용융실리카의 소성온도를 증가시킬 수 있다.Metals and alkali ions cause crystallization of silica severely in the process of calcining molten silica at high temperature, and thus removing these elements may ultimately suppress the crystallization of silica, thereby increasing the calcining temperature of molten silica.

상기의 공정을 거친 용융실리카는 평균입도를 0.1㎛이하로 떨어뜨리기가 어려운데 이는 분쇄공정의 특성상 볼밀공정으로는 용융실리카를 0.1㎛이하의 입도로 분쇄하기 어렵기 때문이다.The molten silica that has undergone the above process is difficult to drop the average particle size to 0.1㎛ or less because it is difficult to grind the melted silica to a particle size of 0.1㎛ or less by the ball mill process.

그러므로 불순물의 제거로 소성온도를 상승시키는 것만으로는 용융실리카의 고밀도화에 한계가 있게 된다.Therefore, only by raising the firing temperature by removing impurities, there is a limit to the densification of the molten silica.

따라서 본 발명에서는 용융실리카의 고밀도화를 위하여 초미세비정질실리카를 첨가하여 성형체의 소결성을 향상시키며, 초미세비정질 실리카분말로는 비표면적이 20-300?SP>?/SP>/g사이에 속하는 퓸드실리카를 사용한다.Therefore, in the present invention, to increase the density of the molten silica, ultrafine silica is added to improve the sinterability of the molded body, and the ultrafine silica powder has a specific surface area of 20-300? SP>? / SP> / g. Use desilica.

본 발명에 사용될 수 있는 퓸드실리카로는 이산화규소(silica dioxide)를 원료로 하며 비표면적이 50㎡/g이며 평균입자크기가 40nm인 에어로실 OX-50(Aero- sil OX-50: 독일 데구사 제품, 이하 '에어로실 OX-50'이라 함) 등이 있다.The fumed silica that can be used in the present invention is made of silicon dioxide and has a specific surface area of 50 m 2 / g and an average particle size of 40 nm. Conventional products, hereinafter referred to as 'Aerosil OX-50').

산세와 수세를 거친 용융실리카와 퓸드실리카를 증류수에 혼합하여 분산시킴으로써 실리카슬러리를 제조한다.Silica slurry is prepared by mixing and dispersing the molten silica and fumed silica which have undergone pickling and washing with distilled water.

이때 용융실리카:퓸드실리카의 질량비가 70:30 내지 99:1에 속하도록 하고, 전체실리카:증류수의 질량비는 5:95 내지 70:30의 범위내에 속하도록 한다.At this time, the mass ratio of molten silica: fumed silica is in the range of 70:30 to 99: 1, and the mass ratio of total silica: distilled water is in the range of 5:95 to 70:30.

용융실리카에 대해 퓸드실리카의 양이 지나치게 많으면 소결성은 상대적으로 우수해지나 등방압성형시 성형밀도가 오히려 저하되는 문제점이 있다. 이는 성형체의 미세구조의 구성상 평균입도가 상대적으로 큰 용융실리카입자들 사이의 공극을 평균입도가 훨씬 작은 퓸드실리카가 채워줌으로써 성형밀도가 높아지게 되는데, 이들 한계를 벗어나면 오히려 성형밀도가 낮아져 미세입자에 의한 소결성상승효과를 성형밀도가 상쇄시키게 되기 때문이다.When the amount of fumed silica is too high relative to the molten silica, the sinterability is relatively excellent, but there is a problem in that the molding density is lowered during isostatic pressing. This results in higher molding density by filling the voids between molten silica particles having a relatively larger average particle size in the structure of the molded body with fumed silica having a smaller average particle size. This is because the molding density cancels out the effect of increasing the sinterability due to the particles.

따라서 용융실리카:퓸드실리카의 최적비율은 질량비로 70:30 내지 99:1에 속하도록 하는 것이 바람직하다.Therefore, it is preferable that the optimum ratio of molten silica: fumed silica belongs to 70:30 to 99: 1 by mass ratio.

제조된 용융실리카와 퓸드실리카의 혼합물을 증류수와 혼합하고 분산성을 증진시키기 위하여 유기물분산제를 첨가한다. 유기물분산제의 첨가량은 0.3%가 바람직하다.The prepared mixture of molten silica and fumed silica is mixed with distilled water and an organic dispersant is added to enhance dispersibility. The addition amount of the organic substance dispersant is preferably 0.3%.

또한 결합제와 가소제를 첨가한 후 최종적으로 균일혼합기(Homogenizer)를 이용하여 분산을 완료한다.In addition, after adding the binder and the plasticizer, the dispersion is finally completed using a homogenizer.

결합제로는 분자량이 5,000-500,000인 폴리비닐알콜(polyvinyl alcohol; 이하 "PVA"라 함) 등을 사용하고 PVA를 사용하는 경우 첨가량은 0.05-2%가 바람직하다. 가소제로는 폴리알콜 등을 사용하고 폴리알콜을 사용하는 경우 첨가량은 0.1-0.5%가 바람직하다.As a binder, when the molecular weight is 5,000-500,000, polyvinyl alcohol (hereinafter referred to as "PVA") and the like are used, and PVA is preferably added in an amount of 0.05-2%. As a plasticizer, polyalcohol etc. are used, and when polyalcohol is used, the addition amount is preferably 0.1-0.5%.

상기 혼합물을 블렌더에서 혼합해주면 상당한 유동성을 가지는 슬러리가 되며, 얻어진 실리카슬러리는 점도가 매우 낮고 용융실리카분말과 퓸드실리카가 균질하게 분포된 상태이다.When the mixture is mixed in a blender, a slurry having considerable fluidity is obtained, and the obtained silica slurry has a very low viscosity and a homogeneous distribution of molten silica powder and fumed silica.

제조한 슬러리는 습식등방압성형에 적합한 과립형태로 만들기 위하여 분무건조기를 이용하여 100-250℃에서 분무건조하여 과립화시키고 과립화된 복합실리카분말 일정량을 고무몰드에 채워넣는다. 이때 진동장치를 이용하여 몰드내부에 골고루 채워지도록 하면 더욱 효과적이다.The prepared slurry is granulated by spray drying at 100-250 ° C. using a spray dryer to form granules suitable for wet isostatic molding, and a certain amount of the granulated composite silica powder is filled in a rubber mold. At this time, it is more effective to be evenly filled in the mold using a vibrator.

분말은 고무몰드내에 다 채운 후 진공펌프를 이용하여 몰드내의 공기를 충분히 제거하고 몰드에 물이 들어가지 않도록 몰드를 밀봉하여 준다.After the powder is filled in the rubber mold, a vacuum pump is used to sufficiently remove the air in the mold and seal the mold so that water does not enter the mold.

실리카분말이 채워진 몰드는 정수압성형장치를 이용하여 0.1-3톤/㎠의 압력을 가하여 등방압성형을 실시하고 성형공정을 거친 실리카형성체는 몰드에서 제거한 후 시간당 100℃씩 승온하여 900℃에서 20시간이상 유지하여 하소한다.The mold filled with silica powder isostatically formed by applying a pressure of 0.1-3 ton / cm2 using a hydrostatic pressure molding apparatus, and the silica-form after the molding process is removed from the mold and heated up by 100 ° C per hour to 20 ° C at 900 ° C. Maintain over time and calcinate.

900℃에서의 하소과정을 통하여 실리카의 구조수는 완전히 제거되는데, 이는 고온에서 소성시 잔류 수산화(OH)기가 실리카의 결정화인자로 작용하기 때문이다.The calcination process at 900 ° C. completely removes the structure water of the silica, since the residual hydroxide (OH) group acts as a crystallization factor of the silica when calcined at a high temperature.

하소공정을 거친 성형체의 상대밀도는 혼합비율에 따라 차이는 있으나 최고 75%의 상대밀도가 얻어지는데 이는 슬립캐스팅한 성형체보다 평균적으로 5%이상 높은 값이다.The relative density of the molded product after the calcination process varies depending on the mixing ratio, but a relative density of up to 75% is obtained, which is 5% higher than the average of the slip casted product.

이같은 성형체의 높은 밀도는 상대적으로 기계적인 가공성을 용이하게 하고 또한 실리카성형체의 표면으로 불순물이 유입되는 공정이 없기 때문에 소성시 성형체의 표면이 결정화될 가능성이 전혀 없다.The high density of such shaped bodies facilitates relatively mechanical workability and there is no possibility of crystallization of the surface of the shaped bodies upon firing since there is no process of introducing impurities into the surface of the silica shaped bodies.

1100-1200℃에서 소결하며, 1100-1200℃에서 30분 이내로 소성한 후 상온까지 냉각하여 주면 실리카레이돔의 제조가 완료된다.After sintering at 1100-1200 ° C, firing at 1100-1200 ° C within 30 minutes, and cooling to room temperature, the production of silica radome is completed.

이하 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

[실시예]EXAMPLE

순도 99.5%이상의 용융실리카분말에 증류수를 질량비로 1:1로 칭량하여 혼합하고 SUS제 쟈(Jar)와 볼(ball)을 이용하여 볼밀링한다.Distilled water is weighed 1: 1 by mass ratio to molten silica powder with a purity of 99.5% or more, and is ball milled using a jar made of SUS and a ball.

볼밀링하여 얻어진 슬러리는 수분을 충분히 제거한 후 10부피%의 염산수용액으로 산세하고 2차증류수로 수세하고, 수세를 마친 용융실리카덩어리는 110℃에서 건조기로 24시간이상 건조시켰다.The slurry obtained by ball milling was sufficiently removed with water, washed with 10% by volume aqueous hydrochloric acid solution, washed with secondary distilled water, and washed with silica. The molten silica mass was dried at 110 ° C. for more than 24 hours.

퓸드실리카로는 시중에서 시판되는 저가의 에어로실 OX-50(Aero-sil OX-50;독일 데구사 제품)을 사용한다.As fumed silica, a commercially available low-cost aerosil OX-50 (Aero-sil OX-50, manufactured by Degusa, Germany) is used.

에어로실 OX-50과 증류수를 1:10의 질량비로 혼합한 후 블렌더(blender)를 이용하여 분산시켜 실리카용액을 제조하고, 실리카용액에 앞서 제조한 용융실리카를 11:9의 질량비로 첨가한다.Aerosil OX-50 and distilled water are mixed at a mass ratio of 1:10 and dispersed using a blender to prepare a silica solution, and the previously prepared molten silica is added to the silica solution at a mass ratio of 11: 9.

용융실리카와 에어로실 OX-50이 증류수에 혼합된 형태인 실리카슬러리의 분산성을 증진시키기 위하여 유기물분산제를 0.3% 첨가하며, 결합제로서 PVA를 1% 첨가하고, 가소제로 글리세린을 0.3% 첨가한다.In order to improve the dispersibility of the silica slurry in which molten silica and aerosil OX-50 are mixed in distilled water, 0.3% of organic matter dispersant is added, 1% of PVA is added as a binder, and 0.3% of glycerin is added as a plasticizer.

상기 혼합물은 1차적으로 고속블렌더에 넣고 10분간 혼합한 후 균일혼합기에서 혼합물을 분산시켜 점도가 매우 낮고 균질하게 분산된 실리카슬러리를 만든다.The mixture is first put into a high speed blender and mixed for 10 minutes, and then dispersed in a homogeneous mixer to make a very low and homogeneously dispersed silica slurry.

제조한 실리카슬러리는 분무건조기를 이용하여 150℃에서 분무건조하여 과립화시킨 후 과립화된 실리카를 고무몰드에 채우고 진공펌프를 이용하여 몰드내의 공기를 충분히 제거하고 몰드를 밀봉한다.The prepared silica slurry is granulated by spray drying at 150 ° C. using a spray dryer, and then the granulated silica is filled into a rubber mold, and the air in the mold is sufficiently removed using a vacuum pump to seal the mold.

밀봉한 몰드는 정수압성형장치를 이용하여 1톤/㎠의 압력을 가하여 등방압성형을 실시한 후 실리카 성형체를 몰드에서 제거하여 900℃까지 시간당 100℃로 승온하여 900℃에서 20시간 유지하면서 하소한다.The sealed mold is subjected to isostatic molding by applying a pressure of 1 ton / cm 2 using a hydrostatic pressure molding apparatus, and then the silica molded body is removed from the mold, heated to 100 ° C per hour to 900 ° C, and calcined while maintaining at 900 ° C for 20 hours.

하소후 1150℃에서 2시간동안 소결하며, 1200℃에서 30분간 소성한다. 소결과 소성후에는 로냉각으로 상온까지 냉각한다.After calcination, the product was sintered at 1150 ° C. for 2 hours and calcined at 1200 ° C. for 30 minutes. After sintering and firing, cool to room temperature by furnace cooling.

상기의 공정에 의하여 얻어진 소결체를 XRD(X-Ray Diffraction Meter)로 분석한 결과 결정상인 크리스토발라이트(Cristobalite)의 양이 1%미만이며, 소결체의 상대밀도는 93%이다.As a result of analyzing the sintered compact obtained by the above process by XRD (X-Ray Diffraction Meter), the amount of cristobalite as a crystal phase is less than 1%, and the relative density of the sintered compact is 93%.

용융실리카분말만을 이용하여 여러 소성조건으로 제조한 소결체의 최대밀도가 88%인 것과 비교할 때 소결체의 밀도가 5%이상 증가한 것이다.The density of the sintered compact increased by more than 5% compared with that of the sintered compact produced by various firing conditions using only molten silica powder of 88%.

상기와 같은 본 발명은 석고몰드 대신 고무몰드를 사용함으로써 성형체표면의 불순물유입을 방지하여 소성시 성형체표면의 결정화가 방지되고, 습식정수압성형법으로 성형체를 제조함으로써 성형체의 기계적 강도가 높아져 성형체의 가공작업이 용이하며, 용융실리카의 입자간 기공을 퓸드실리카가 메워줌으로써 성형체의 상대밀도 및 강도가 증진되고 소결이 촉진되는 효과가 있다.As described above, the present invention prevents the introduction of impurities on the surface of the molded body by using a rubber mold instead of the gypsum mold, thereby preventing the crystallization of the surface of the molded body during firing, and by manufacturing the molded body by a wet hydrostatic molding method, the mechanical strength of the molded body is increased, thereby processing the molded body. This facilitates the fumed silica filling the intergranular pores of the molten silica, thereby improving the relative density and strength of the molded body and promoting sintering.

따라서 상기의 방법으로 제조된 실리카레이돔은 기계적 강도가 높아 종래의실리카레이돔과 달리 비와 모래에 의한 침식에 강한 특성을 가진다.Therefore, the silica radome produced by the above method has a high mechanical strength, unlike the conventional silica radome has a strong characteristic against erosion by rain and sand.

Claims (8)

볼밀링에 의한 분쇄로 비표면적이 증가되고 산세와 수세를 통하여 금속 및 알칼리이온이 제거된 용융실리카분말과 비표면적이 20-300㎡/g인 퓸드실리카(fumed silica)를 용융실리카:퓸드실리카의 질량비가 70:30 내지 99:1에 속하고 전체실리카:증류수의 질량비가 5:95 내지 70:30에 속하도록 증류수에 혼합한 후 분산제, 가소제, 결합제를 첨가하여 분산시킴으로써 실리카졸을 제조한 다음, 상기 실리카졸을 분무건조하여 과립화시킨 후 고무몰드에서 성형하고 정수압성형법을 이용하여 등방압성형을 실시한 다음, 형성된 실리카성형체를 건조, 하소, 소결하여 실리카레이돔을 제조하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.Molten silica powder with a specific surface area increased by grinding by ball milling and metal and alkali ions removed through pickling and washing with fumed silica having a specific surface area of 20-300 m 2 / g Silica sol was prepared by mixing in distilled water so that the mass ratio of the silica was in the range of 70:30 to 99: 1 and the mass ratio of the total silica: distilled water was in the range of 5:95 to 70:30, and then added by dispersing agent, plasticizer and binder. Next, the silica sol is spray-dried to granulate, molded in a rubber mold and subjected to isostatic molding using hydrostatic pressure molding, and then drying, calcining, and sintering the formed silica molded body to produce a silica radome. Method for preparing silica radome using wet hydrostatic molding method. 제1항에 있어서, 결합제는 분자량 5,000-500,000인 폴리비닐알콜을 사용하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.The method of claim 1, wherein the binder is a polyvinyl alcohol having a molecular weight of 5,000 to 500,000. 제2항에 있어서, 폴리비닐알콜은 0.05-2%를 첨가하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.3. The method of claim 2, wherein the polyvinyl alcohol is added by 0.05-2%. 제1항에 있어서, 가소제는 폴리알콜을 사용하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.The method of claim 1, wherein the plasticizer uses polyalcohol. 제4항에 있어서, 폴리알콜은 0.1-0.5%를 첨가하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.5. The method of claim 4, wherein the polyalcohol is added 0.1-0.5%. 제4항에 있어서, 폴리알콜은 글리세린을 사용하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.[5] The method of claim 4, wherein the polyalcohol uses glycerin. 제1항에 있어서, 분무건조하여 과립화시킬 때 분무건조온도를 100-250℃로 하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.The method for producing silica radome using the wet hydrostatic molding method according to claim 1, wherein the spray drying temperature is 100-250 ° C when granulating by spray drying. 제1항에 있어서, 정수압성형시 압력을 0.1-3톤/㎠으로 하는 것을 특징으로 하는 습식정수압성형법을 이용한 실리카레이돔의 제조방법.The method for producing silica radome using the wet hydrostatic pressing method according to claim 1, wherein the hydrostatic pressure is 0.1-3 ton / cm2.
KR1019970074908A 1997-12-27 1997-12-27 Method for preparing silica radome by wet isostatic process KR100328917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970074908A KR100328917B1 (en) 1997-12-27 1997-12-27 Method for preparing silica radome by wet isostatic process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970074908A KR100328917B1 (en) 1997-12-27 1997-12-27 Method for preparing silica radome by wet isostatic process

Publications (2)

Publication Number Publication Date
KR19990055005A KR19990055005A (en) 1999-07-15
KR100328917B1 true KR100328917B1 (en) 2002-08-13

Family

ID=37479056

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970074908A KR100328917B1 (en) 1997-12-27 1997-12-27 Method for preparing silica radome by wet isostatic process

Country Status (1)

Country Link
KR (1) KR100328917B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718197A (en) * 2019-03-20 2020-09-29 山东工业陶瓷研究设计院有限公司 Thin quartz ceramic component and efficient preparation method thereof
CN110981456B (en) * 2019-12-27 2022-03-29 山东鲁阳浩特高技术纤维有限公司 Nano microporous heat insulation plate and preparation method thereof

Also Published As

Publication number Publication date
KR19990055005A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
US20140179509A1 (en) Porous glass ceramic composition and method for manufacturing the same
JPH0218309B2 (en)
KR20110083681A (en) Method for producing ito sintered body and method for producing ito sputtering target
KR100328917B1 (en) Method for preparing silica radome by wet isostatic process
KR101866319B1 (en) Process for manufacturing high density slip-cast fused silica bodies
KR100328916B1 (en) Method for preparing silica radome by slip casting process
KR100328923B1 (en) Method for preparing silica radome by direct coagulation casting process
KR100302230B1 (en) Method for producing silica radome using wet hydrostatic pressure molding process
KR100328919B1 (en) Method for preparing silica radome by wet isostatic process
KR100328918B1 (en) Method for preparing silica radome by wet isostatic process
KR100302231B1 (en) Method for producing silica radome using sol-gel process
CN114644525A (en) Composite sagger added with waste materials and preparation method thereof
KR100328921B1 (en) Method for preparing silica radom by sol-gel process
KR100328920B1 (en) Method for preparing silica radome by sol-gel process
KR100302229B1 (en) Method for producing silica radome using slip casting process
KR100328943B1 (en) Method for preparing silica radome by slip casting process
KR20070066729A (en) Fabrication method of high density & high fracture toughness silica radome
KR100328945B1 (en) Method for preparing silica radome by direct coagulation casting process
KR100328944B1 (en) Method for preparing silica radome by direct coagulation casting process
KR100328922B1 (en) Method for preparing silica radome by sol-gel process
KR100328924B1 (en) Method for preparing silica radome by direct coagulation casting process
KR100328942B1 (en) Method for preparing silica radome by slip casting process
KR100417682B1 (en) A composition for molding silica sleeve and a method of preparing silica sleeve therefrom
KR100419060B1 (en) A method of preparing silica sleeve for hearth roll by sol-gel process
KR100419062B1 (en) A method of preparing silica sleeve for hearth roll by slip casting

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070306

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee