JPH0212899A - Manufacture of non-woven cloth for radio wave absorber - Google Patents

Manufacture of non-woven cloth for radio wave absorber

Info

Publication number
JPH0212899A
JPH0212899A JP16404488A JP16404488A JPH0212899A JP H0212899 A JPH0212899 A JP H0212899A JP 16404488 A JP16404488 A JP 16404488A JP 16404488 A JP16404488 A JP 16404488A JP H0212899 A JPH0212899 A JP H0212899A
Authority
JP
Japan
Prior art keywords
polymer fibers
woven cloth
high polymer
radio wave
conductive high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16404488A
Other languages
Japanese (ja)
Inventor
Takashi Kizaki
木崎 誉志
Tetsuji Inui
乾 哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16404488A priority Critical patent/JPH0212899A/en
Priority to EP89100020A priority patent/EP0323826B1/en
Priority to DE68928378T priority patent/DE68928378T2/en
Priority to US07/293,495 priority patent/US5081455A/en
Publication of JPH0212899A publication Critical patent/JPH0212899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To obtain non-woven cloth for radio wave absorber having high mechanical strength and desirable radio wave absorbing properties by blending conductive high polymer fibers plated with a metal and non-conductive high polymer fibers, and feeding the blended fibers to shape them into thin sheet. CONSTITUTION:Conductive high polymer fibers plated with a metal and non- conductive high polymer fibers are blended and the blended fibers are fed out to shape them into thin sheet. According to an embodiment, a predetermined weight of conductive high polymer fibers plated with nickel and a predetermined weight of non-conductive high polymer fibers are weighed and set manually. The raw material is fed by a belt and non-woven cloth is produced by means of an ordinary automatic machine capable of blending fibers and producing non-woven cloth. The non-woven cloth is produced such that it has weight per unit area of 100gr/m<2> and thickness of 5mm. Thus, the non-woven cloth is allowed to have higher strength than conventional ones. Further, proportion of the conductive high polymer fibers can be controlled, or a number of fiber blending operations or a method thereof can be controlled so that non-woven cloth for radio wave absorber having various characteristics can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は広帯域の電波障害を防止する電波吸収体に、単
層あるいは積層して使用される不織布材料の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a nonwoven fabric material used in a single layer or in a laminated manner as a radio wave absorber for preventing broadband radio interference.

(従来の技術) 従来、この種の広帯域の電波吸収体用材料としては、発
砲ポリウレタンに粉末状炭素を分散させたものがよく知
られており、それ以外のものはほとんど知られていない
。発砲ポリウレタンに粉末状炭素を分散させた材料を使
用した電波吸収体には、いわゆるピラミッド型、クサビ
型および多層型と呼ばれているものがある。それらは、
要求される周波数帯域あるいは要求される吸収特性に応
じて、その厚さ、形状あるいは含有する粉末状炭素の含
有量が適切に設計されて利用されている。
(Prior Art) Conventionally, as a material for this type of broadband radio wave absorber, one in which powdered carbon is dispersed in polyurethane foam is well known, and other materials are hardly known. Radio wave absorbers using materials in which powdered carbon is dispersed in polyurethane foam include so-called pyramid-type, wedge-type, and multilayer types. They are,
The thickness, shape, and content of powdered carbon contained therein are appropriately designed and used depending on the required frequency band or required absorption characteristics.

(発明が解決しようとする問題点) ポリウレタンに粉末状炭素を分散させた広帯域の電波吸
収体は機械的強度が弱く、施行後、その形状が変化する
こと、ポリウレタンが欠は落ちること、炭素粉末が抜は
落ちることなどの欠点があった。
(Problems to be solved by the invention) A broadband radio wave absorber made by dispersing powdered carbon in polyurethane has weak mechanical strength, its shape changes after installation, the polyurethane often falls off, and carbon powder There were drawbacks such as the lack of performance.

(問題点を解決するための手段) 本発明はニッケル、銅などの金属をメッキした導電性高
分子繊維と非導電性の高分子繊維とを混綿し、不織布化
する電波吸収体用不織布材料を製造するものである。な
お、この不織布化の工程で、導電性高分子繊維が不織布
面に平行に分散することによって、不織布の一層内では
繊維は相互作用をもち、層間では相互作用をもたないこ
とが吸収特性に特徴を与える。
(Means for Solving the Problems) The present invention provides a non-woven fabric material for radio wave absorbers, which is made by blending conductive polymer fibers plated with metals such as nickel and copper and non-conductive polymer fibers to form a non-woven fabric. It is manufactured. In addition, in this non-woven process, the conductive polymer fibers are dispersed parallel to the surface of the non-woven fabric, so that the fibers interact within one layer of the non-woven fabric and do not interact between layers, which results in absorption properties. give characteristics.

(作用) 本発明の不織布材料は高分子繊維がランダムに織られた
ものであるので、従来の発砲ポリウレタン材料よりも機
械的強度が圧倒的に強く、さらには実効的長さをもつ導
電性高分子繊維が分散されているので、従来の粉末状炭
素を分散したものより、電流損失が大きく、電波吸収特
性も良好となる効果がある。
(Function) Since the nonwoven fabric material of the present invention is made of randomly woven polymer fibers, it has overwhelmingly higher mechanical strength than conventional foamed polyurethane materials, and also has a conductive high-density material with an effective length. Since the molecular fibers are dispersed, the current loss is larger and the radio wave absorption characteristics are better than the conventional one in which powdered carbon is dispersed.

一方、不織布の製造方法としては、従来、大別して乾式
法と湿式法の2種の方法があり、本発明に関わる方法は
乾式法である。従来、乾式法による不織布の製造は植物
綿繊維あるいは化学繊維をほぐしく本発明では、この工
程を混綿と称する)、その綿を少しづつ送り出すことに
よってシート化(本発明では、この工程を不織布化と称
する)する。この製法による不織布は、古くはふとん綿
に、最近ではじゅうたん、防音材、フィルター、電池の
セパレータなどに使用されている。
On the other hand, conventional methods for producing nonwoven fabrics can be broadly classified into two types: dry method and wet method, and the method related to the present invention is the dry method. Conventionally, nonwoven fabrics are produced by a dry method by loosening vegetable cotton fibers or chemical fibers (in the present invention, this process is referred to as blending), and by feeding the cotton little by little to form sheets (in the present invention, this process is referred to as nonwoven fabrics). ). Nonwoven fabrics made using this method have long been used for futon cotton, and more recently for carpets, soundproofing materials, filters, battery separators, and more.

(実施例) ニッケルをメッキした導電性高分子繊維とメッキをして
ない非導電性の高分子繊維を所定の重量秤りとり、手動
でセントした後、ベルト送りし、混綿と不織布化のでき
る通常の自動機を使用して、不織布を製造した。不織布
化工程では単位面積当たりの重量(目付と称す)を10
0gr/m2とし、厚さを5mmにして製造した。
(Example) Conductive polymer fibers plated with nickel and non-conductive polymer fibers that are not plated are weighed to a predetermined weight, centrifuged manually, and then fed with a belt to form a blended cotton and non-woven fabric. The nonwoven fabric was produced using a conventional automatic machine. In the non-woven process, the weight per unit area (referred to as basis weight) is 10
It was manufactured with a pressure of 0 gr/m2 and a thickness of 5 mm.

導電性高分子繊維を混率および混綿回数をかえて、第1
表に示す種々の不織布を製造した。なお混綿工程で混率
を徐々にかえていった場合には表中に混綿回数とその時
の混率を示した(最後の混率が目的の混率である)。
By changing the mixing ratio and number of times of mixing the conductive polymer fibers, the first
Various nonwoven fabrics shown in the table were manufactured. In addition, when the mixing ratio was gradually changed in the cotton blending process, the number of times the cotton was mixed and the mixing ratio at that time are shown in the table (the final mixing ratio is the target mixing ratio).

このように製造した不織布を30cmの正方形に切り抜
き、4枚重ねにして、通常のアーチ法で、垂直入射波に
対して、9GHzから16GHzの電波吸収特性を測定
した。各試料とも10個測定し、9GHzから16GH
zまでの平均反射量の10個の平均値と10個の第1表 第1表 この実施例の反射量のバラツキσの結果がら、混率が1
0%以下では混綿回数を増やすことによってより安定し
た不織布材料が得られ、かつ、各混綿工程毎に非導電性
の高分子繊維を追加して、混率を徐々に低下させてゆく
方がさらに安定したものが得られることがわかる。
The thus produced nonwoven fabric was cut out into a 30 cm square, four pieces were stacked, and the radio wave absorption characteristics from 9 GHz to 16 GHz with respect to vertically incident waves were measured using the usual arch method. Ten samples were measured for each sample, and the range was from 9GHz to 16GHz.
From the results of the 10 average values of the average reflection amount up to z and the 10 results of the variation σ of the reflection amount in Table 1 of this example, it is found that the mixture ratio is 1
If it is less than 0%, a more stable nonwoven material can be obtained by increasing the number of times of blending, and it is even more stable if non-conductive polymer fibers are added in each blending process and the blending rate is gradually lowered. You can see that you get what you want.

さらに本実施例のNo、16の試料と従来の発砲ポリウ
レタン製のピラミッド型吸収体に対し、1cmの正方形
の板をエポキシ樹脂で貼り付け、引張り強度を各5回づ
つ測定した結果ピラミッド型ではその値が500grか
ら1kgであったのに対し、不織布は5kgから10k
gと圧倒的に強度が大であった。
Furthermore, a 1 cm square plate was pasted with epoxy resin to the No. 16 sample of this example and the conventional pyramid-shaped absorber made of polyurethane foam, and the tensile strength was measured five times each. While the value was 500gr to 1kg, the non-woven fabric was 5kg to 10k.
The strength was overwhelmingly high.

(発明の効果) 以上説明したように、本発明は金属をメッキした導電性
高分子繊維と非導電性高分子繊維を混綿し、不織布化す
ることによって、従来のものよりも強度を大きくする効
果があり、しかも、導電性高分子繊維の混率をコントロ
ールすること、あるいは混綿の回数、方法をコントロー
ルすることによって、種々の特性をもつ電波吸収体用不
織布材料を提供する。これらの材料の吸収特性即ち、反
射量と位相から、電波吸収体としての組み合わせあるい
は厚さを設計し、種々の用途に応じた電波吸収体を提供
できる。
(Effects of the Invention) As explained above, the present invention has the effect of increasing strength compared to conventional products by blending conductive polymer fibers plated with metal and non-conductive polymer fibers to form a non-woven fabric. Moreover, by controlling the blending ratio of conductive polymer fibers, or by controlling the number of times and method of blending, we provide nonwoven fabric materials for radio wave absorbers having various characteristics. The combination or thickness of the radio wave absorber can be designed based on the absorption characteristics of these materials, that is, the amount of reflection and the phase, and radio wave absorbers suitable for various uses can be provided.

最後に、実施例ではメッキする金属として、ニッケルの
場合のみを記述したが、本発明の主旨からニッケル以外
の金属でも同様の効果が得られることは明白である。ま
た、不織布の製造機械が混綿と不織布化を連続して実行
するタイプのものであって、2回以上混綿と不織布化の
工程を実施するならば、当然本発明に含まれることは明
白である。
Finally, in the examples, only the case of nickel was described as the metal to be plated, but it is clear from the gist of the present invention that similar effects can be obtained with metals other than nickel. Furthermore, if the nonwoven fabric manufacturing machine is of a type that performs blending and nonwoven fabrication continuously, and the process of blending cotton and nonwoven fabrication is carried out two or more times, it is clearly included in the present invention. .

Claims (1)

【特許請求の範囲】[Claims] 1.金属をメッキした導電性高分子繊維と非導電性の高
分子繊維とを混綿し、その綿を送り出して、薄いシート
状にすることを特徴とする電波吸収体用不織布材料の製
造方法。
1. A method for manufacturing a nonwoven fabric material for a radio wave absorber, characterized by mixing conductive polymer fibers plated with metal and non-conductive polymer fibers, and feeding the cotton to form a thin sheet.
JP16404488A 1988-01-05 1988-06-29 Manufacture of non-woven cloth for radio wave absorber Pending JPH0212899A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16404488A JPH0212899A (en) 1988-06-29 1988-06-29 Manufacture of non-woven cloth for radio wave absorber
EP89100020A EP0323826B1 (en) 1988-01-05 1989-01-02 Electromagnetic wave absorber
DE68928378T DE68928378T2 (en) 1988-01-05 1989-01-02 Absorber for electromagnetic radiation
US07/293,495 US5081455A (en) 1988-01-05 1989-01-04 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16404488A JPH0212899A (en) 1988-06-29 1988-06-29 Manufacture of non-woven cloth for radio wave absorber

Publications (1)

Publication Number Publication Date
JPH0212899A true JPH0212899A (en) 1990-01-17

Family

ID=15785736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16404488A Pending JPH0212899A (en) 1988-01-05 1988-06-29 Manufacture of non-woven cloth for radio wave absorber

Country Status (1)

Country Link
JP (1) JPH0212899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104973A (en) * 1990-08-24 1992-04-07 Inax Corp Production of porous ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104973A (en) * 1990-08-24 1992-04-07 Inax Corp Production of porous ceramic

Similar Documents

Publication Publication Date Title
GB2069021A (en) Storage battery separator
US5310598A (en) Radio wave absorbing material
KR102400778B1 (en) electromagnetic wave suppression sheet
CN104774346A (en) Light porous wave absorbing film and preparing method thereof
Deraman et al. Electrical and mechanical properties of carbon pellets from acid (HNO 3) treated self-adhesive carbon grain from oil palm empty fruit bunch
JPH0212899A (en) Manufacture of non-woven cloth for radio wave absorber
Бойправ et al. Charcoal-containing building materials for electromagnetic radiation shielding
Amudhu et al. Low-Profile Polymer Composite Radar Absorber Embedded With Frequency Selective Surface
US2760879A (en) Reconstituted mica sheet
US4180434A (en) Mica paper containing cellulose
JPH0212898A (en) Manufacture of radio wave absorber
JP3861455B2 (en) Method for producing flame retardant electromagnetic wave absorbing sheet
CN113622217B (en) Magnetic paper base material and preparation method thereof
Gultom et al. Preparation and characterization of microwave-absorption of Sarulla North Sumatra Zeolite and ferric oxide-filled polyurethane nanocomposites
JPH0331835B2 (en)
US3455773A (en) Polyacetal leather-like sheet material and process of making same
CA2437559A1 (en) Gas diffusion electrode manufacturing method and fuel cell
KR20200136023A (en) Electromagnetic wave absorbing sheet and its manufacturing method
JP2004225191A (en) Polyacrylonitrile-based carbon fiber sheet and method for producing the same
JPH08109077A (en) Manufacture of formed carbonized material consisting of single-fiber bound material
KR20040012224A (en) hybrid fiber reinforced composites for radar absorbing structures
JP2588033B2 (en) Flexible sheet heating element and manufacturing method thereof
WO2014103033A1 (en) Bamboo powder-containing molded article, vehicle interior material and construction material, and method for producing bamboo powder-containing molded article
Susilo et al. Investigation of electrical conductivity and electromagnetic wave absorption capabilities of water hyacinth biocarbon impregnated with Cu atom
KR100238118B1 (en) Felt material for high sound absorption and sound shielding