JPH02128478A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH02128478A
JPH02128478A JP28158188A JP28158188A JPH02128478A JP H02128478 A JPH02128478 A JP H02128478A JP 28158188 A JP28158188 A JP 28158188A JP 28158188 A JP28158188 A JP 28158188A JP H02128478 A JPH02128478 A JP H02128478A
Authority
JP
Japan
Prior art keywords
layer
type
gate
insulating film
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28158188A
Other languages
Japanese (ja)
Inventor
Daisuke Yamaguchi
大輔 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28158188A priority Critical patent/JPH02128478A/en
Publication of JPH02128478A publication Critical patent/JPH02128478A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To protect the insulating film of a transistor from breakdown by a method wherein write is execute by charging a floating gate with hot electrons in a similar manner when an EEPROM is used in the case that P-type is selected to be one conductivity type and erasure is executed by injecting holes generated when a P-channel or a MOS is pinched off. CONSTITUTION:An N-type Si layer 2 and an N-type diffusion layer 3 are formed on a P-type Si substrate 1, and N-type diffusion layers 4 and 5 thinner than the layer 3 are formed on the layer 3. A U-groove in contact with all the layers 2, 3, 4, and 5 is made and the inner faces of the groove is covered with an insulating film 7, a polycrystalline Si 6 is filled into the groove, a floating gate 7 of polycrystalline Si is fitted to a part of the surface of the Si 6 as being in contact with the layer 4, and a control gate 11 of polycrystalline Si is formed thereon through the intermediary of ann insulating film 10. A memory device of this design is constituted as mentioned above, where a write positive voltage is applied onto the gate 11 on write, and the layers 4 and 5 are made electrically open and an erasure negative voltage is applied to the gate 11 and the substrate 1 on erasure.

Description

【発明の詳細な説明】 (概要) MOS型及びBi −CMOS型の半導体メモリのうち
、電気的に書き込み及び消去が可能で、−度に全ての内
容を消去する一括消去型EEFROMに関し、 信頼性が高く、高集積の一括消去型EEPROMを提供
することを目的とし、 一導電型の第1半導体層(1)の上に、反対導電型の第
2半導体M(2)と一導電型の第3半導体層(3)を順
次備え、第3半導体層(3)より浅い反対導電型層(4
,5)を該第3半導体層(3)内で、下記浮遊ゲートお
よび制御ゲートの両側位置に設け、前記第1半導体層(
1)、第2半導体層(2)、第3半導体層(3)および
拡散層(4,5)の全てと接するように溝を形成し、溝
の内面を絶縁M(7)で覆い、その内側に導電性物質(
6)を充填し、溝内の導電性物質(6)と直結し、絶縁
膜(8)上の浮遊ゲートとなる導電性物質(9)を配置
し、さらに絶縁膜(10)を介して浮遊ゲートを覆う導
電性物質(11)を制御ゲートとして設け、さらに金属
配線層(12)を前記浅い反対型導電層(4,5)の何
れかとを接続するためのコンタクト窓(31)を持つよ
うに構成する。
[Detailed Description of the Invention] (Summary) Among MOS type and Bi-CMOS type semiconductor memories, the reliability of the batch erase type EEFROM that can be electrically written and erased and that erases all contents at one time. The purpose is to provide a high-density, high-density, bulk erasure type EEPROM.A first semiconductor layer (1) of one conductivity type is provided with a second semiconductor layer (2) of an opposite conductivity type and a second semiconductor layer (2) of one conductivity type. 3 semiconductor layers (3) in sequence, and an opposite conductivity type layer (4) shallower than the third semiconductor layer (3).
, 5) are provided in the third semiconductor layer (3) at positions on both sides of the floating gate and the control gate, and the first semiconductor layer (
1) A groove is formed so as to be in contact with all of the second semiconductor layer (2), third semiconductor layer (3), and diffusion layers (4, 5), and the inner surface of the groove is covered with an insulating layer M (7). Conductive material inside (
6), and place a conductive material (9) that is directly connected to the conductive material (6) in the trench and serves as a floating gate on the insulating film (8), and further floating via the insulating film (10). A conductive material (11) covering the gate is provided as a control gate, and a contact window (31) is provided for connecting the metal wiring layer (12) to either of the shallow opposite conductive layers (4, 5). Configure.

(産業上の利用分野) 本発明はMOS型及びB1−CMOS型の半導体メモリ
のうち、電気的に書き込み及び消去が可能で、−度に全
ての内容を消去する一括消去型EEPROMに関する。
(Industrial Application Field) The present invention relates to a batch erasing type EEPROM which can be electrically written and erased among MOS type and B1-CMOS type semiconductor memories and erases all contents at one time.

近年の半導体メモリの進歩により、電気的に書き込み消
去が可能なEEPROMが製品として発売されたが、そ
の複雑な回路構成とセルの大きさゆえに集積度が上がら
ず、市場は広がっていない。これに対して、昭和55年
以降多くの発表が為されている一括消去型EEFROM
はその高集積度ゆえに市場の拡大が見込まれている。
With the recent advances in semiconductor memory, electrically programmable and erasable EEPROMs have been released as products, but their complicated circuit configurations and cell sizes have prevented their integration from increasing, and the market has not expanded. On the other hand, the bulk erasing type EEFROM, which has been announced many times since 1980,
The market is expected to expand due to its high degree of integration.

(従来の技術) 従来の一括消去型EEPROMの特許としては、最も早
いものは特開昭55−89989号があり、最も最近の
ものは特開昭62−154786号がある。
(Prior Art) The earliest patent for a conventional batch erase type EEPROM is JP-A-55-89989, and the latest is JP-A-62-154786.

これらは、そのセルの書き込み及び消去の方式から考え
て第2〜4図に示した3種類に大別される。図中、21
は金属配線、22は制御ゲート、23は浮遊ゲート、2
4は消去ゲート、25はトンネル酸化膜、26はp型基
板、27はソース、28はドレーン、29は表面保護膜
、30はゲート層である。三種類とも書き込みは、EP
ROMで用いられているホットエレクトロン注入による
浮遊ゲートへの電荷蓄積で行なう。消去法は別々であり
、まず第2図に示したものは、消去ゲート24と浮遊ゲ
ート23との間のトンネル効果によって浮遊ゲート23
に蓄積されていた電荷を消去ゲート24に抜き出し、消
去する方式である。第3図に示したものは、ソース27
となるN型拡散領域と浮遊ゲート23との間のトンネル
効果によって消去を行なう。
These can be roughly divided into three types shown in FIGS. 2 to 4 based on the cell writing and erasing methods. In the figure, 21
is a metal wiring, 22 is a control gate, 23 is a floating gate, 2
4 is an erase gate, 25 is a tunnel oxide film, 26 is a p-type substrate, 27 is a source, 28 is a drain, 29 is a surface protection film, and 30 is a gate layer. All three types of writing are EP
This is done by accumulating charges in the floating gate by hot electron injection, which is used in ROM. There are different erasure methods, and the one shown in FIG.
In this method, the charges accumulated in the memory are extracted to the erase gate 24 and erased. What is shown in Figure 3 is the source 27
Erasing is performed by the tunnel effect between the N type diffusion region and the floating gate 23.

第4図に示したものは、ドレイン28となるN型拡散領
域と浮遊ゲートとの間のトンネル効果によって消去を行
なう。
In the case shown in FIG. 4, erasing is performed by the tunnel effect between the N type diffusion region which becomes the drain 28 and the floating gate.

(発明が解決しようする課題) 従って、従来の一括消去型EEPROMは、全て何らか
の条件でトンネル効果を用いており、強電界を一部の絶
縁膜に印加する必要があった。
(Problems to be Solved by the Invention) Therefore, all conventional batch erasing type EEPROMs use the tunnel effect under some condition, and it is necessary to apply a strong electric field to a part of the insulating film.

また、第3図、第4図に示したものは、トンネル効果を
起こすトンネル酸化膜25がデータ読出時にセンスTr
として動作するゲート酸化膜と同じものが用いられてお
り、言い換えれば消去時にゲート酸化膜に強電界を印加
する必要があった。
Furthermore, in the case shown in FIGS. 3 and 4, the tunnel oxide film 25 that causes the tunnel effect is connected to the sense transistor during data reading.
In other words, it was necessary to apply a strong electric field to the gate oxide film during erasing.

ところが、一般的にトンネル効果を起こすためには絶縁
膜にかなりの強電界をかけなければならず、これによっ
て絶縁膜はダメージを受ける事が知られており、信頼性
上の問題となることが多く、書き換え回数の限度は低い
ものとなっている。第2図の方式では消去専用ゲート2
4が設けられており、トンネル酸化膜25とゲート酸化
膜は別の構成になっているので、安定した消去は可能で
あるが、ゲート絶縁膜層30a、30b、30Cが3層
必要になるのでこれらの作り込みが難しいという問題が
ある。
However, in order to create a tunnel effect, it is generally necessary to apply a fairly strong electric field to the insulating film, which is known to damage the insulating film and cause reliability problems. In many cases, the limit on the number of rewrites is low. In the method shown in Figure 2, the erase-only gate 2
4, and the tunnel oxide film 25 and gate oxide film have different configurations, so stable erasing is possible, but three gate insulating film layers 30a, 30b, and 30C are required. The problem is that it is difficult to incorporate these elements.

また、従来の方式は全て、消去時の高電界がセンスTr
用ゲート酸化膜にもかかるために、全て表面に高耐圧の
MOS−Trを有し、これが、ゲート長が長くなるなど
集積度をあげる際のネックとなっている。
In addition, in all conventional methods, the high electric field during erasing is
All of them have a high breakdown voltage MOS-Tr on the surface, and this becomes a bottleneck in increasing the degree of integration, such as increasing the gate length.

本発明は、この二つの問題点を解決し、信頼性が高く、
高集積の一括消去型EEPROMを提供することを目的
とする。
The present invention solves these two problems and is highly reliable.
The purpose of the present invention is to provide a highly integrated batch erase type EEPROM.

(問題を解決するための手段) 本発明に係る半導体記憶装置は、一導電型の第1半導体
層の上に、反対導電型の第2半導体層と一導電型の第3
半導体層を順次備え、第3半導体層より浅い反対導電型
層を該第3半導体層内で、下記浮遊ゲートおよび制御ゲ
ートの両側位置に設け、前記第1半導体層、第2半導体
層、第3半導体層および拡散層の全てと接するように溝
を形成し、講の内面を絶縁膜で覆い、その内側に導電性
物質を充填し、溝内の導電性物質と直結し、絶縁膜上の
浮遊ゲートとなる導電性物質を配置し、さらに絶縁膜を
介して浮遊ゲートを覆う導電性物質を制御ゲートとして
設け、さらに金属配線層を前記浅い反対型導電層の何れ
かとを接続するためのコンタクト窓を持つ事を特徴とす
る。
(Means for Solving the Problem) A semiconductor memory device according to the present invention includes a first semiconductor layer of one conductivity type, a second semiconductor layer of an opposite conductivity type, and a third semiconductor layer of one conductivity type.
Semiconductor layers are sequentially provided, and layers of opposite conductivity type shallower than the third semiconductor layer are provided in the third semiconductor layer at positions on both sides of the floating gate and the control gate, and the first semiconductor layer, the second semiconductor layer, and the third A groove is formed so as to be in contact with all of the semiconductor layer and the diffusion layer, the inner surface of the groove is covered with an insulating film, and the inside of the groove is filled with a conductive material, so that it is directly connected to the conductive material in the trench, and the floating material on the insulating film is A conductive material to serve as a gate is arranged, a conductive material covering the floating gate via an insulating film is provided as a control gate, and a contact window is provided to connect the metal wiring layer to any of the shallow opposite conductive layers. It is characterized by having

(作用〉 本発明は、P型を一導電型とした場合、書き込みをEE
PROMで用いられているのと同じホットエレクトロン
注入による浮遊ゲートへの電荷蓄積て行なう。消去はP
チャネルまたはMOSをピンチオンさせ、アバランシェ
ブレイクダウンで発生するポールの注入によって行なう
。従って、トンネル効果は使われない。また、書き込み
消去をバルク中の溝壁で行なうため、データ読出時に動
作するセンスTrの絶縁膜は、全くダメージを受ける事
がない。
(Function) In the present invention, when the P type is set to one conductivity type, writing is performed in EE mode.
Charge storage in the floating gate is performed by hot electron injection, which is the same method used in PROMs. Erase is P
This is done by pinching on the channel or MOS and injecting a pole generated by avalanche breakdown. Therefore, tunnel effect is not used. Furthermore, since writing and erasing is performed on the trench wall in the bulk, the insulating film of the sense Tr that operates during data reading is not damaged at all.

(実施例) 以下、本発明の構成を実施例により詳しく説明する。第
1図は本発明の半導体記憶装置の要素を示す図、第5図
は各部の平面配列図、第6図、第7図、は第5図中A−
A″、B−B’で示した一点鎖線での断面図、第8図は
本発明の等価回路図である。
(Example) Hereinafter, the structure of the present invention will be explained in detail using an example. FIG. 1 is a diagram showing the elements of the semiconductor memory device of the present invention, FIG. 5 is a planar arrangement diagram of each part, and FIGS. 6 and 7 are A--A in FIG.
8 is an equivalent circuit diagram of the present invention.

これらの図面に示された実施例では、一導電型の第1半
導体層としてはSi基板を用い、反対導電型の第2半導
体層と一導電型の第3半導体層はエピタキシャル成長に
より形成し、浅い反対導電型層は拡散により形成し、講
はU渭とし、溝の内側の導電性物質は多結晶Siとし、
浮遊ゲートとなる導電性物質および浮遊ゲートを覆う導
電性も多結晶Siとしている。
In the embodiments shown in these drawings, a Si substrate is used as the first semiconductor layer of one conductivity type, and the second semiconductor layer of the opposite conductivity type and the third semiconductor layer of one conductivity type are formed by epitaxial growth. The opposite conductivity type layer is formed by diffusion, the layer is U-shaped, the conductive material inside the groove is polycrystalline Si,
The conductive material serving as the floating gate and the conductive material covering the floating gate are also polycrystalline Si.

すなわち、この実施例ではP型Si基板1上に、N型S
i層2とP型Si拡散層3とを設け、そのP型拡散層3
より浅いN型拡散層4.5をP型拡散層の一部に設ける
。また、N型Si層2、P型Si拡散層3、N型拡散層
4.5の全てに接するU溝を形成する。N型拡散層4.
5は制御ゲートと浮遊ゲートの両側に形成する。さらに
、U溝内面を絶縁膜7でおおい、その内側に多結晶Si
6を充填し、絶縁膜8を介して配置された多結晶Si6
を浮遊ゲートとなる多結晶Si9と直結して設ける。さ
らに絶縁膜10を介して浮遊ゲート(多結晶Si層9)
を覆う多結晶Si層11を制御ゲートとして設け、さら
に金属配線層12とN型拡散層4.5の何れかとを接続
するためのコンタクト窓を持つように構成される。
That is, in this embodiment, on the P-type Si substrate 1, the N-type S
An i-layer 2 and a P-type Si diffusion layer 3 are provided, and the P-type Si diffusion layer 3 is
A shallower N type diffusion layer 4.5 is provided in a part of the P type diffusion layer. Further, a U-groove is formed in contact with all of the N-type Si layer 2, P-type Si diffusion layer 3, and N-type diffusion layer 4.5. N-type diffusion layer 4.
5 are formed on both sides of the control gate and floating gate. Furthermore, the inner surface of the U-groove is covered with an insulating film 7, and polycrystalline Si is placed inside the insulating film 7.
6 filled with polycrystalline Si6 disposed through an insulating film 8.
is provided directly connected to the polycrystalline Si9 which becomes the floating gate. Furthermore, a floating gate (polycrystalline Si layer 9) is formed via an insulating film 10.
A polycrystalline Si layer 11 covering the N-type diffusion layer 4.5 is provided as a control gate, and is further configured to have a contact window for connecting the metal wiring layer 12 and either of the N-type diffusion layers 4.5.

等価回路を示す第8図において、35は、P型Si基板
1、N型Si層2とP型Si拡散層3により構成され、
消去に使用されるPチャネルTrで、そのゲート酸化膜
はU溝内の絶縁膜7であり、ゲートは多結晶Si6であ
る。36は、N型Si層2、P型Si拡散層3とN型拡
散層5により構成され、書き込みに使用される・Nチャ
ネルTrで、そのゲート酸化膜はU溝内の絶縁膜7であ
り、ゲートは多結晶Si6である。そのソース側はbi
t線1線上2続される。
In FIG. 8 showing the equivalent circuit, 35 is composed of a P-type Si substrate 1, an N-type Si layer 2 and a P-type Si diffusion layer 3,
In the P-channel Tr used for erasing, its gate oxide film is the insulating film 7 in the U trench, and its gate is polycrystalline Si6. 36 is an N-channel Tr that is composed of an N-type Si layer 2, a P-type Si diffusion layer 3, and an N-type diffusion layer 5, and is used for writing, and its gate oxide film is the insulating film 7 in the U groove. , the gate is polycrystalline Si6. The source side is bi
Two t-lines are connected on one line.

37.38は各々浮遊ゲートつと制御ゲート11、浮遊
ゲートつと重なっていない部分の多結晶5illをゲー
トとし、その下方の絶縁膜8、及び8と10をゲート絶
縁膜とし、読み出しに使用されるTrである(第7図参
照〉。このようなTrは従来のEPROM(例えば第3
図)でも使用されている。なお、これらのTrのソース
はN型拡散層4、ドレインはN型拡散層5である。読み
出しはT r 37で行なわれるが、消去時にポールが
Trに入り過ぎてリークすることがあるので、これを抑
えるためにTr38を使う。
37 and 38 are transistors used for readout, with the floating gate 11, the control gate 11, the polycrystalline 5ill in the portion not overlapping the floating gates serving as gates, and the insulating film 8 below, and the gate insulating films 8 and 10 serving as gate insulating films. (See Figure 7). Such a Tr can be used in a conventional EPROM (for example, the third
(Fig.) is also used. Note that the source of these Tr is the N-type diffusion layer 4, and the drain thereof is the N-type diffusion layer 5. Reading is performed using the Tr 37, but during erasing, the pole may enter the Tr too much and cause leakage, so the Tr 38 is used to suppress this.

第9図は、本発明の書き込み時の動作を説明するための
図である。書き込み時にソース側となるN型拡散層5(
第9図では見えない)は全てのセルについて電気的に解
放状態とする。選択行の制御ゲートとなる多結晶Si層
11に+■PP(書き込み用正電圧)、非選択行の制御
ゲート多結晶Si層11は−vppを印加するかバイア
スなしとし、選択列のbit線1線上2わちN型拡散層
5に−VPPを印加するかバイアスなしとし、非選択セ
ル列のbit線1線上2わちN型拡散層5に+VPP、
N型Epitaxia1層2に+VPPを印加する。選
択されたセルで、N型拡散層5とN型Epitaxia
1層2の間にバイアスがかかり、制御ゲート11とその
領域と浮遊ゲートの容量関係で、浮遊ゲート9と多結晶
Si6の電位が決まる。それによりU渭に接するP型拡
散領域3でMO8効果が起き、なおかつ高バイアスによ
るアバランシェブレイクダウンが起こる。これによって
発生したホットエレクトロン13が、電界16によって
U溝内部の多結晶Si6に注入され、これが多結晶Si
と直結されている浮遊ゲート9の蓄積電荷となり、セン
スTr37のスレッショルド電圧を変化させる(一般の
EPROMでのホットエレクトロン注入と原理は同じで
、発生させる場所がバルクとなる点が異なる)。非選択
セルではN型拡散層5の電位が十■PPであるか、又は
制御ゲートに低電圧が印加されているから、ホットエレ
クトロンが発生しないか又は電界16が発生しない。
FIG. 9 is a diagram for explaining the write operation of the present invention. N-type diffusion layer 5 (which becomes the source side during writing)
(not visible in FIG. 9) makes all cells electrically open. +■PP (positive voltage for writing) is applied to the polycrystalline Si layer 11 serving as the control gate of the selected row, -vpp or no bias is applied to the control gate polycrystalline Si layer 11 of the non-selected row, and the bit line of the selected column is applied. -VPP is applied to the 1st line 2, that is, the N-type diffusion layer 5, or no bias is applied, and +VPP is applied to the bit line 1 of the non-selected cell column, that is, the N-type diffusion layer 5.
+VPP is applied to the N-type Epitaxia 1 layer 2. In the selected cell, the N-type diffusion layer 5 and the N-type Epitaxia
A bias is applied between layer 1 and layer 2, and the potentials of floating gate 9 and polycrystalline Si 6 are determined by the capacitance relationship between control gate 11, its region, and the floating gate. As a result, the MO8 effect occurs in the P-type diffusion region 3 in contact with the U-side, and avalanche breakdown occurs due to the high bias. The hot electrons 13 generated by this are injected into the polycrystalline Si6 inside the U groove by the electric field 16, and this
This becomes an accumulated charge in the floating gate 9 which is directly connected to the floating gate 9, and changes the threshold voltage of the sense Tr 37 (the principle is the same as hot electron injection in a general EPROM, except that the hot electron is generated in the bulk). In non-selected cells, the potential of the N-type diffusion layer 5 is 10PP or a low voltage is applied to the control gate, so no hot electrons or electric field 16 is generated.

第10U;!Uは、本発明の消去時の動作を説明するた
めの図である。消去時にN型拡散層4、N型拡散層5と
も全て電気的に解放状態とする。全ての制御ゲート11
に−vpp、p型拡散層3に」−VPP(消去用正電圧
)、各セルに共通するP型Si基板1に一■PPを印加
する。全てのセルで、P型拡散層3と、P型Si基板1
の間にバイアスがかかり、制御ゲート11とその他の領
域と浮遊ゲート6.9の容量関係で、浮遊ゲート6.9
の電位が決定する。それによりU渭に接するN型Epi
taxial屑2でMO8効果が起き、なおかつ高バイ
アスによるアバランシェブレイクダウンが起こる。これ
によって発生したホール15が、電界効果によってU溝
内部の多結晶Si6に注入され、これが浮遊ゲート6.
9の蓄積電荷を中和し、センスTr37のスレッショル
ド電圧を変化させる。
10th U;! U is a diagram for explaining the operation during erasing of the present invention. During erasing, both the N-type diffusion layer 4 and the N-type diffusion layer 5 are electrically released. All control gates 11
-vpp is applied to the p-type diffusion layer 3, -VPP (positive voltage for erasing) is applied to the p-type Si substrate 1 common to each cell. In all cells, a P-type diffusion layer 3 and a P-type Si substrate 1
A bias is applied between the floating gate 6.9 and the floating gate 6.9 due to the capacitance relationship between the control gate 11, other regions, and the floating gate 6.9.
The potential of is determined. As a result, the N-type Epi that touches the U-shaped
MO8 effect occurs in taxial waste 2, and avalanche breakdown occurs due to high bias. Holes 15 generated by this are injected into the polycrystalline Si 6 inside the U-groove by the electric field effect, and are injected into the floating gate 6.
9 is neutralized, and the threshold voltage of the sense Tr 37 is changed.

第11図は、本発明の一実施例構成図である。11°、
11”はそれぞれワード線1,2である。また、12’
 、12′、12”“はそれぞれビット線1,2.3で
ある。本発明の制御ゲート11がメモリアレイのワード
線を形成し、金属配線層12がビット線を形成する。3
2はN型拡散層の外縁線てあり、32の内側で多結晶5
i11の下方を除く所に、右上がりハツチングで示した
ようにN型拡散層33がある。ソースとなるN型拡散層
4は全てのセルで共通となり、1ビツトおきに金属配線
層33によってレベル補強されている。31はコンタク
ト窓である。(発明の効果)以上説明したように、本発
明を利用すれば、−括消去型EEPROMの信頼性を明
らかに向上することが出来、なおかつバルク内にて書き
込みと消去を行なうので、高い集積度を得ることができ
る。
FIG. 11 is a configuration diagram of an embodiment of the present invention. 11°,
11'' are word lines 1 and 2, respectively. Also, 12'
, 12', and 12'' are bit lines 1, 2.3, respectively. The control gates 11 of the present invention form the word lines of the memory array, and the metal wiring layers 12 form the bit lines. 3
2 is the outer edge line of the N-type diffusion layer, and inside 32 is the polycrystalline 5.
There is an N-type diffusion layer 33 except for the area below i11, as indicated by the hatched area rising to the right. The N-type diffusion layer 4 serving as a source is common to all cells, and the level is reinforced by a metal wiring layer 33 for every other bit. 31 is a contact window. (Effects of the Invention) As explained above, by using the present invention, it is possible to clearly improve the reliability of the bulk erase type EEPROM, and since writing and erasing are performed in the bulk, it is possible to achieve a high degree of integration. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の記憶装置の構成要素を説明する図、 第2〜第4図は従来の一括消去型EEPROMの基本的
なセル構造図、 第5図は本発明の記憶装置を表面から見た図、 第6図、第7図は第5図A−A’線、BB”線の断面図
、 第8図は本発明の等価回路図、 第9、第10図は本発明の記憶装置の動作を説明する図
、 第11図は本発明一実施例の平面配列図である。 図中、1−P型Si基板、2−N型Si層、3−P型S
i拡散層、4,5−浅いN型拡散層、6−多結晶Si、
7−絶縁膜、8−絶縁膜、9多結晶Si(浮遊グー))
=10−絶縁膜、11多結晶Si層(制御ゲート)、1
2−金属配線層、21−金属配線、22−制御ゲート、
23浮遊ゲート、24−消去ゲート、25−トンネル酸
化膜、26−p型基板、27−ソース、28ドレーン、
2つ一表面保護膜、30−ゲート絶縁膜、32−N型拡
散外縁である。
FIG. 1 is a diagram illustrating the constituent elements of the memory device of the present invention, FIGS. 2 to 4 are basic cell structure diagrams of a conventional batch erasing type EEPROM, and FIG. 5 is a front view of the memory device of the present invention. Figures 6 and 7 are cross-sectional views taken along lines AA' and BB'' in Figure 5, Figure 8 is an equivalent circuit diagram of the present invention, and Figures 9 and 10 are cross-sectional views of the present invention. FIG. 11 is a diagram illustrating the operation of the storage device, and is a planar arrangement diagram of an embodiment of the present invention. In the figure, 1-P type Si substrate, 2-N type Si layer, 3-P type S
i diffusion layer, 4,5-shallow N-type diffusion layer, 6-polycrystalline Si,
7-insulating film, 8-insulating film, 9 polycrystalline Si (floating goo))
=10-insulating film, 11 polycrystalline Si layer (control gate), 1
2-metal wiring layer, 21-metal wiring, 22-control gate,
23 floating gate, 24- erase gate, 25- tunnel oxide film, 26- p type substrate, 27- source, 28 drain,
2 - surface protection film, 30 - gate insulating film, 32 - N type diffusion outer edge.

Claims (1)

【特許請求の範囲】[Claims] 1、一導電型の第1半導体層(1)の上に、反対導電型
の第2半導体層(2)と一導電型の第3半導体層(3)
を順次備え、第3半導体層(3)より浅い反対導電型層
(4、5)を該第3半導体層(3)内で、下記浮遊ゲー
トおよび制御ゲートの両側位置に設け、前記第1半導体
層(1)、第2半導体層(2)、第3半導体層(3)お
よび拡散層(4、5)の全てと接するように溝を形成し
、溝の内面を絶縁膜(7)で覆い、その内側に導電性物
質(6)を充填し、溝内の導電性物質(6)と直結し、
絶縁膜(8)上の浮遊ゲートとなる導電性物質(9)を
配置し、さらに絶縁膜(10)を介して浮遊ゲートを覆
う導電性物質(11)を制御ゲートとして設け、さらに
金属配線層(12)を前記浅い反対型導電層(4、5)
の何れかとを接続するためのコンタクト窓(31)を持
つ事を特徴とする半導体記憶装置。
1. On a first semiconductor layer (1) of one conductivity type, a second semiconductor layer (2) of an opposite conductivity type and a third semiconductor layer (3) of one conductivity type.
and opposite conductivity type layers (4, 5) shallower than the third semiconductor layer (3) are provided in the third semiconductor layer (3) at positions on both sides of the floating gate and the control gate, and A groove is formed so as to be in contact with all of the layer (1), the second semiconductor layer (2), the third semiconductor layer (3), and the diffusion layers (4, 5), and the inner surface of the groove is covered with an insulating film (7). , the inside of which is filled with a conductive substance (6) and directly connected to the conductive substance (6) in the groove;
A conductive material (9) serving as a floating gate is placed on an insulating film (8), a conductive material (11) is provided as a control gate to cover the floating gate via an insulating film (10), and a metal wiring layer is further provided. (12) as the shallow opposite conductive layer (4, 5)
A semiconductor memory device characterized by having a contact window (31) for connection to any one of the semiconductor memory devices.
JP28158188A 1988-11-08 1988-11-08 Semiconductor memory device Pending JPH02128478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28158188A JPH02128478A (en) 1988-11-08 1988-11-08 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28158188A JPH02128478A (en) 1988-11-08 1988-11-08 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH02128478A true JPH02128478A (en) 1990-05-16

Family

ID=17641155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28158188A Pending JPH02128478A (en) 1988-11-08 1988-11-08 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH02128478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344970A (en) * 1989-07-13 1991-02-26 Toshiba Corp Cell structure for semiconductor storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344970A (en) * 1989-07-13 1991-02-26 Toshiba Corp Cell structure for semiconductor storage device

Similar Documents

Publication Publication Date Title
US5586073A (en) Semiconductor device having a multi-layer channel structure
US5295107A (en) Method of erasing data stored in flash type nonvolatile memory cell
US5301150A (en) Flash erasable single poly EPROM device
US5745417A (en) Electrically programmable and erasable nonvolatile semiconductor memory device and operating method therefor
US7157773B2 (en) Nonvolatile semiconductor memory device
JP2937805B2 (en) Nonvolatile memory having multi-bit-adaptive cell having two-layer floating gate structure and method of programming / erasing / reading the same
US5079603A (en) Semiconductor memory device
US6580135B2 (en) Silicon nitride read only memory structure and method of programming and erasure
US6504755B1 (en) Semiconductor memory device
US7372734B2 (en) Methods of operating electrically alterable non-volatile memory cell
US5790460A (en) Method of erasing a flash EEPROM memory
US5340760A (en) Method of manufacturing EEPROM memory device
US7130221B1 (en) Dual gate multi-bit semiconductor memory
US20140063957A1 (en) Nor flash memory array structure, mixed nonvolatile flash memory and memory system comprising the same
US4486859A (en) Electrically alterable read-only storage cell and method of operating same
JPH0480544B2 (en)
JPH11238814A (en) Semiconductor storage device and its control method
JP3216230B2 (en) Rewriting method of nonvolatile semiconductor memory cell
JPH06302828A (en) Nonvolatile semiconductor memory device
US5396458A (en) Semiconductor memory device and method of writing and reading out information for the same
JP2005197691A (en) Eeprom and flash eeprom
US5156991A (en) Fabricating an electrically-erasable, electrically-programmable read-only memory having a tunnel window insulator and thick oxide isolation between wordlines
JPH02128478A (en) Semiconductor memory device
JPH0577189B2 (en)
US8119480B2 (en) Semiconductor memory devices performing erase operation using erase gate and methods of manufacturing the same