JPH02126840A - Probe for freezing organism - Google Patents

Probe for freezing organism

Info

Publication number
JPH02126840A
JPH02126840A JP63244506A JP24450688A JPH02126840A JP H02126840 A JPH02126840 A JP H02126840A JP 63244506 A JP63244506 A JP 63244506A JP 24450688 A JP24450688 A JP 24450688A JP H02126840 A JPH02126840 A JP H02126840A
Authority
JP
Japan
Prior art keywords
tube
outer pipe
probe
outer tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63244506A
Other languages
Japanese (ja)
Other versions
JPH0510942B2 (en
Inventor
Toshio Aihara
相原 利雄
Keisuke Kasahara
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP63244506A priority Critical patent/JPH02126840A/en
Publication of JPH02126840A publication Critical patent/JPH02126840A/en
Publication of JPH0510942B2 publication Critical patent/JPH0510942B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an organism freezing probe which is in the form of a long and narrow pipe by alternately laminating metal foil and resin meshes within a rougly-ring-shaped space located on the side of the inner periphery of an outer pipe formed by a bendable thin tubular body, thus thermally insulating the outer tube and a conduit pipe located on the side of the inner periphery of the outer pipe. CONSTITUTION:A laminated body 6 formed by lamination of metallic foil 6a and resin meshes 6b on each other is disposed in a roughly-ring-shaped space defined on the side of the inner periphery of an outer pipe 4 which is formed by a bendable thin tubular body, so that the outer pipe 4 and a conduit pipe 3 located on the side of the inner periphery of the outer pipe are thermally insulated. The ring-shaped space 5 located on the side of the inner periphery of the outer pipe 4, together with its pressure-resisting strength which may be required under vacuum conditions, it not held by the side of the outer pipe 4 but by the bendable laminated body 6, so that the outer pipe 4 can easily be reduced in its wall thickness and also in diameter. An organism freezing probe 10 can thus be obtained which is in the form of a long and narrow pipe and capable of being integrated into an endoscope.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、咽喉、食道、胃等の生体組織上に生成したポ
リープや癌細胞等の患部を除去する為の生体凍結用プロ
ーブに係り、特に生体内を視察する内視鏡内に組込み可
能な細長管状の生体凍結用プローブに関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a living body freezing probe for removing affected areas such as polyps and cancer cells generated on living tissues such as the throat, esophagus, and stomach. In particular, the present invention relates to an elongated tubular probe for freezing a living body that can be incorporated into an endoscope for observing inside a living body.

「従来の技術」 従来より、例えば第3図に示すように同心三重管の先端
側を半球状の金属製先端部材(以下チッププラグlとい
う)で封止するとともに、該チッププラグl内に設けた
空所1aを介じて内管2と中管3間を連通可能に形成し
、更にその外側に位置する外管4先端側を前記チッププ
ラグ1で気密的にシールした細管状プローブ10を又は
内視鏡内に装着しチッププラグ先端のみ突出させ、該プ
ローブ10を又は前記内視鏡を尿道又は胃等の生体組織
内に侵入させた後、その先端を患部に当接した状態で、
内管2より導通させた液体窒素等の極低温流体を空所l
a部より前記チッププラグl内面に衝突させる事により
、該チッププラグ1を介して患部を奪熱凍結させ、その
患部の病根部分を除去するようにした凍結用プローブ1
Gは公知であり、そしてかかる凍結用プローブ10は、
空所1aを介して内管2と中管3とを連通させたが故に
前記チッププラグ1への衝突により奪熱された気化流体
が中管3を介して排気させつつ、その排気量とともに前
記極低温流体の温度及び導入量を調節する事により、チ
ッププラグ1に当接された生体組織の凍結深度及び凍結
範囲を任意に設定出来、そして外部のレントゲン等の判
断により極低温流体の衝突を停止して凍結患部を解凍し
、以下前記凍結と解凍を繰り返す事により、完全に患部
の病根部分のみを凍傷を起させ死滅除去する事が出来、
この結果外科的開復手術を行う事なく患部の摘出治療が
可能となる新規な治療法を得る事が出来る。
``Prior Art'' Conventionally, for example, as shown in FIG. A thin tube-shaped probe 10 is formed so that the inner tube 2 and the middle tube 3 can communicate with each other through the hollow space 1a, and the tip end side of the outer tube 4 located outside the inner tube 2 is airtightly sealed with the tip plug 1. Alternatively, the probe 10 or the endoscope is inserted into a living tissue such as the urethra or stomach, with the tip plug inserted into the endoscope and only the tip thereof protrudes, and the tip is brought into contact with the affected area.
A cryogenic fluid such as liquid nitrogen is conducted through the inner tube 2 into the space l.
A freezing probe 1 is configured to collide with the inner surface of the tip plug l from part a to absorb heat from the affected area through the tip plug 1 and to remove the diseased root portion of the affected area.
G is known, and such a cryoprobe 10 is
Since the inner pipe 2 and the middle pipe 3 are communicated with each other through the cavity 1a, the vaporized fluid that has been heat removed by colliding with the tip plug 1 is exhausted through the middle pipe 3, and the amount of the vaporized fluid is By adjusting the temperature and introduction amount of the cryogenic fluid, the freezing depth and freezing range of the living tissue in contact with the tip plug 1 can be arbitrarily set, and the collision of the cryogenic fluid can be determined by external X-rays, etc. By stopping and thawing the frozen affected area, and then repeating the above freezing and thawing, it is possible to completely kill and remove only the diseased root part of the affected area by causing frostbite,
As a result, it is possible to obtain a new treatment method that allows removal of the affected area without performing open surgery.

さて前記凍結用プローブ10は一般に食道等を利用して
生体組織内に挿入する構成を取る為に、前記チッププラ
グ1を除く外周囲に正常な生体組織が接触した場合誤っ
て凍結融着する恐れを除く必要がある為に前記装置にお
いては、前記中管3と外管4間を真空下におき、断熱性
の維持を図っている。
Since the cryoprobe 10 is generally inserted into living tissue through the esophagus or the like, there is a risk of erroneous freezing and melting if normal living tissue comes into contact with the outer periphery except for the tip plug 1. Since it is necessary to remove the heat, the space between the inner tube 3 and the outer tube 4 is placed under vacuum in order to maintain heat insulation.

「発明が解決しようとする課題」 しかしながら前記中管3と外管4間を減圧(真空)状態
に置く車は、外管4にその耐圧強度に耐えられるだけの
強度性をもたせねばならず、結果として外管4の肉厚を
大にするか剛性材で形成する必要があったが、この事は
一方では可撓性を犠牲にする事になり、これにより操作
性が大幅に低下し生体組織内の所望位置にチー、ププラ
グ1を接触させるのが困難になる。
``Problems to be Solved by the Invention'' However, in a car that maintains a reduced pressure (vacuum) state between the inner tube 3 and outer tube 4, the outer tube 4 must have sufficient strength to withstand the pressure resistance. As a result, it was necessary to increase the wall thickness of the outer tube 4 or to make it from a rigid material, but this meant sacrificing flexibility, which significantly reduced operability and It becomes difficult to bring the plug 1 into contact with a desired position within the tissue.

又前記プローブlOはファイバースコープ等とともに内
視鏡20内に組込み前記ファイバースコープを利用して
チッププラグ1位置を視察しながら、患部の摘出除去を
行う訳であるが、前記のように耐圧強度性を維持する為
に外管4の肉厚を大にすると、前記プローブ10の外径
が必然的に大径化する車になり、内視鏡20内に組込む
事が不可能になる。
In addition, the probe IO is incorporated into the endoscope 20 together with a fiberscope, etc., and the affected area is extracted and removed while inspecting the position of the tip plug 1 using the fiberscope. If the wall thickness of the outer tube 4 is increased in order to maintain this, the outer diameter of the probe 10 will inevitably increase, making it impossible to incorporate it into the endoscope 20.

従ってかかる従来の技術においては前記プローブ10の
欠点、即ち、可撓性を得るのが極めて困難、又内視鏡2
0内に組込み可能な程度に細径化しにくいという実用上
極めて重要な課題を解決し得なかったが故に、前記生体
凍結用プローブ10が、開復外科的手術に依らないで外
科的手術を行い生命の延長と速かな医科的処置を提供し
得る極めて有効な医療治具である事が明瞭であるにも拘
らず、実用化に至る事が中々困難であった。
Therefore, in such conventional technology, the disadvantages of the probe 10, that is, it is extremely difficult to obtain flexibility, and the endoscope 2
However, it was not possible to solve the extremely important problem in practice that it is difficult to reduce the diameter to the extent that it can be incorporated into a living body freezing probe 10. Although it is clear that this is an extremely effective medical tool that can prolong life and provide prompt medical treatment, it has been difficult to put it into practical use.

本発明はかかる従来技術の欠点に鑑み、前記中管と外管
間を真空下においた場合においても可撓性と細径化を達
成し得る生体凍結用プローブを提供する事を目的とし、
これにより始めて生体内を視察する内視鏡20内に組込
み又内視鏡に装着しない適用も可能な細長管状の生体凍
結用プローブを提供する事が出来る。
In view of the shortcomings of the prior art, an object of the present invention is to provide a living body freezing probe that can achieve flexibility and diameter reduction even when the space between the inner tube and the outer tube is placed under vacuum,
As a result, it is possible to provide an elongated tube-shaped living body freezing probe that can be incorporated into the endoscope 20 for inspecting the living body for the first time, or can be applied without being attached to the endoscope.

「課題を解決する為の手段」 本発明は、チッププラグ1を介して生体組織を凍結させ
る冷却用流体の導入孔又は排出孔として機能する一又は
複数の導管2.3外周囲上を外管4で包被し、該外管4
とその内周側に位置する導管間で形成される略リング状
空間5を少なくとも負圧下に置き、断熱効果をもたせた
生体凍結用プローブ10に関するものである。
"Means for Solving the Problems" The present invention provides a method for connecting one or more conduits 2.3 on the outer periphery of the pipes 2 and 3 that function as introduction holes or discharge holes for a cooling fluid that freezes living tissue through a tip plug 1. 4, and the outer tube 4
The present invention relates to a living body freezing probe 10 in which a substantially ring-shaped space 5 formed between a conduit and a conduit located on the inner circumferential side thereof is placed under at least negative pressure to provide a heat insulating effect.

即ち前記導管は必ずしも同心二重管のみに限定されるも
のではなく、異心多重管も含む、又冷却用流体も液体の
外に気体も含み、更に負圧下とは真空状態の外に減圧下
も含む。
In other words, the conduit is not necessarily limited to concentric double pipes, but also includes heterocentric multiple pipes, and the cooling fluid also includes gas in addition to liquid, and "under negative pressure" means not only under vacuum but also under reduced pressure. include.

そして本発明の特徴とする所は、 可撓性を宥する薄肉管体で形成した外管4内周側の前記
略リング状空間内に、金属箔6aと樹脂製メツシュ8b
を交互に積層して形成される積層体8を介在させ、外管
とその内周側に位置する導管3間を゛断熱した事にある
A feature of the present invention is that a metal foil 6a and a resin mesh 8b are provided in the substantially ring-shaped space on the inner circumferential side of the outer tube 4 formed of a thin-walled tube that allows flexibility.
A laminate 8 formed by alternately laminating the outer tube and the conduit 3 located on the inner circumferential side of the outer tube is provided to insulate the space between the outer tube and the conduit 3.

この場合前記外管4を可撓性が大にして且つ反射効率の
高い薄肉管体、例えば金製又は表面に金が被覆された可
撓性薄肉管体で形成するのがよい。
In this case, it is preferable that the outer tube 4 be formed of a thin-walled tube with high flexibility and high reflection efficiency, for example, a flexible thin-walled tube made of gold or whose surface is coated with gold.

又好ましくは前記冷却用流体が導入される第1の導管2
の外側に同心状に位置し、前記生体組織を凍結後の気化
された冷却用流体が通過する第2の導管3を蛇腹状の金
属製フレキシブル管で形成するのがよい。
Also preferably a first conduit 2 into which the cooling fluid is introduced.
The second conduit 3, which is located concentrically outside the body and through which the vaporized cooling fluid passes after freezing the living tissue, is preferably formed of a bellows-shaped metal flexible tube.

「作用」 かかる技術手段によれば、第1図に示すように外管4内
周側に位置するリング状空間5の間隙保持と真空下に置
く為の耐圧強度を、外管4側で保持する事なく、前記リ
ング状空間5内に介装した可撓性を有する積層体で保持
するようにした為に、前記外管4を前記耐圧強度と無関
係に薄肉化、言い換えれば前記外管4の可撓性と細径化
を容易に達成し得、これにより始めて生体内を視察する
内視鏡20内に組込み可能な細長管状の生体凍結用プロ
ーブ10を提供する事が出来る。
"Operation" According to this technical means, as shown in FIG. 1, the gap between the ring-shaped space 5 located on the inner circumferential side of the outer tube 4 is maintained and the pressure resistance for placing it under vacuum is maintained on the outer tube 4 side. Since the outer tube 4 is held by a flexible laminate interposed in the ring-shaped space 5 without having to Flexibility and diameter reduction can be easily achieved, thereby making it possible to provide an elongated tubular living body freezing probe 10 that can be incorporated into an endoscope 20 for inspecting inside a living body.

又前記積層体6は樹脂製メツジュロbと金属箔6aが積
層して形成されている為に、前記内管2や中管3よりの
輻射冷熱をも効果的に反射させる事が出来、これにより
前記リング状空間5薄層化を達成しつつ断熱効率を大幅
に向上させる事が出来、この結果前記生体凍結用プロー
ブ10の一層の細径化を達成し得る。
In addition, since the laminate 6 is formed by laminating the resin Metjuro b and the metal foil 6a, it can effectively reflect the radiant cold heat from the inner tube 2 and the middle tube 3. The insulation efficiency can be greatly improved while the ring-shaped space 5 is made thinner, and as a result, the diameter of the living body freezing probe 10 can be further reduced.

更に、前記外管4を金製又は表面に金が被覆された可撓
性薄肉管体で形成した事は、#触性と同時にプローブ1
0表面が胃酸等で浸食される事なく、且つ体内に有害金
属も溶出する事がない為に好ましい。
Furthermore, the fact that the outer tube 4 is made of gold or a flexible thin-walled tube whose surface is coated with gold improves the tactility and the probe 1.
This is preferable because the 0 surface will not be eroded by stomach acid, etc., and no harmful metals will be leached into the body.

又外管4とその内周側に位置する導管3間は、樹脂製メ
ツシュebと金属箔6aが積層された積層体6により必
ず非接触の状態を維持している為に、どのようにプロー
ブを屈曲させた場合においても前記両管3.4が接触す
る事なく断熱効果を維持する上で好ましい。
Also, since the outer tube 4 and the conduit 3 located on the inner circumferential side are always kept in a non-contact state by the laminate 6 made of the resin mesh EB and the metal foil 6a, how can the probe be connected? Even when the tubes 3.4 are bent, the two tubes 3.4 do not come into contact with each other, which is preferable in order to maintain the heat insulating effect.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

第1図は本発明の実施例に係る生体凍結用プローブ10
の内部構造図を示す正面断面図である。
FIG. 1 shows a living body freezing probe 10 according to an embodiment of the present invention.
FIG. 2 is a front sectional view showing an internal structural diagram of.

該プローブlOは前記従来技術と同様に、内管2、中管
3、外管4からなる可撓性同心三重管の先端側を金属製
チッププラグlで封止して形成するとともに、外管4と
中管3との間にナイロン系樹脂材からなる積層体6がス
パイラル状に巻回されている。以下これらの部材につい
て詳細に説明する。
The probe lO is formed by sealing the distal end side of a flexible concentric triple tube consisting of an inner tube 2, a middle tube 3, and an outer tube 4 with a metal tip plug l, as in the prior art. A laminate 6 made of a nylon resin material is spirally wound between the inner tube 4 and the inner tube 3. These members will be explained in detail below.

チッププラグlは、外管4より僅かに小なる直径を有す
る、円筒栓状をなし、その後端側に凹状空所1aを設け
るとともに、一方生体組織と接触する前端側1bをR状
に形成し、プローブlO挿入時に体内組織を傷付ける事
なく容易に挿入可能に形成する。
The tip plug l has a cylindrical plug shape with a diameter slightly smaller than that of the outer tube 4, and has a concave space 1a on the rear end side, and has an R-shaped front end side 1b that contacts living tissue. , the probe IO is formed so that it can be easily inserted without damaging body tissues when inserted.

そして該プラグ1は後端外周面1cをテーバ状に形成し
後記する中管3拡径面に当接可能に形成するとともに、
該プラグ1を中管3拡径面に当接すまで外管4内に嵌入
させた後、外管4との間に形成されるリング状隙間部を
溶着し、外管4と中管3間に形成されるリング状空間5
部内を気密的にシール固着する。
The plug 1 has a rear end outer circumferential surface 1c formed in a tapered shape so that it can come into contact with the enlarged diameter surface of the middle tube 3, which will be described later.
After fitting the plug 1 into the outer tube 4 until it comes into contact with the enlarged diameter surface of the middle tube 3, the ring-shaped gap formed between the plug 1 and the outer tube 4 is welded, and the outer tube 4 and the middle tube 3 are welded together. A ring-shaped space 5 formed between
Seal the interior airtight.

次に同心三重管を形成する各管体について順次説明する
に、内管2は、直径が約0.5m/+wφ、肉厚が0.
1am程度の細径の金(ゴールド)製細管又はナイロン
系樹脂パイプで形成され、その先端部をチッププラグl
の凹状空所1a部内まで延設し、該内管2内に挿入され
た液体窒素がジェット気流状にチッププラグ1内壁面に
衝突するように構成している。
Next, each tube forming the concentric triple tube will be explained in order. The inner tube 2 has a diameter of about 0.5 m/+wφ and a wall thickness of 0.5 m/+wφ.
It is made of a thin gold tube or nylon resin pipe with a diameter of about 1 am, and its tip is connected to a tip plug l.
It extends into the concave space 1a of the inner tube 2, and is configured so that the liquid nitrogen inserted into the inner tube 2 collides with the inner wall surface of the tip plug 1 in the form of a jet stream.

中管3は、直径1.7+s/mΦ前後、肉厚が0.1〜
0.2 ramの金製細管で形成し、その先端部を断面
への字状に拡径し該拡径面3aにチッププラグ1後端面
1cが当接可能に形成する。
The middle tube 3 has a diameter of around 1.7+s/mΦ and a wall thickness of 0.1~
It is formed of a thin metal tube with a diameter of 0.2 ram, and its distal end is enlarged in diameter in a cross-sectional shape so that the rear end surface 1c of the tip plug 1 can come into contact with the enlarged diameter surface 3a.

尚前記中管3と内管2間に形成されるリング状空隙8内
は後記するようにチッププラグ1衝突後の気化窒素が通
過する、いわゆる正圧状態が維持される為に後記するよ
うな積層体8が特に必要とされず、逆に積層体Bを挿入
した場合は気化窒素の通過面積がその分挟小化し通過抵
抗が増大する為に、好ましくない。しかしながらプロー
ブ10の屈曲程度を大きくすると積層体8が介装されて
いない中管3が押漬する場合がある為に、第3図に示す
ように該中管3を蛇腹状に形成し屈曲性を向上させても
よい。
The inside of the ring-shaped gap 8 formed between the middle tube 3 and the inner tube 2 maintains a so-called positive pressure state through which vaporized nitrogen passes after colliding with the tip plug 1, as described later. If the laminate 8 is not particularly required and the laminate B is inserted, it is not preferable because the area through which the vaporized nitrogen passes becomes smaller and the passage resistance increases accordingly. However, if the degree of bending of the probe 10 is increased, the middle tube 3 without the laminate 8 interposed therein may be pressed, so the middle tube 3 is formed into a bellows shape as shown in FIG. may be improved.

外管4は、可撓性、耐食性及び内壁面側に対し所定の反
射効果を維持する為に金を材質とするパイプとし、その
外径は2.8鳳/■φ以下、具体的には2.4〜2.8
m/mφで且つ肉厚が0.1〜0.2 am程度に設定
する。これにより本実施例の凍結用プローブ10の外径
を2.8s/sφ以下に抑える事が出来る為に、既存の
内視鏡20の穴径部21に挿入する事が可能となる。
The outer tube 4 is a pipe made of gold in order to maintain flexibility, corrosion resistance, and a predetermined reflection effect on the inner wall surface side, and its outer diameter is 2.8 mm/■φ or less, specifically, 2.4-2.8
m/mφ and the wall thickness is set to about 0.1 to 0.2 am. As a result, the outer diameter of the cryoprobe 10 of this embodiment can be suppressed to 2.8 s/sφ or less, so that it can be inserted into the hole diameter portion 21 of the existing endoscope 20.

そして前記外管4と中管3のリング状空間5部内には、
アルミ箔6aとナイロンメツシュ8bを多重に重層に巻
き付けた薄層状の積層体6が介在しており、これにより
リング状空間5部内を真空下に置いた場合に外管4が中
管3側に挟着される事なく、積層体8の厚み分だけ間隔
保持させるとともに、該積層体8はナイロンメツシュ8
bの存在により、リング状空間5部内は当然に先端に至
るまで通気しており、容易に真空引きを行う事が出来る
In the ring-shaped space 5 of the outer tube 4 and the middle tube 3,
A thin layered laminate 6 in which aluminum foil 6a and nylon mesh 8b are wrapped in multiple layers is interposed, so that when the inside of the ring-shaped space 5 is placed under vacuum, the outer tube 4 is placed on the inner tube 3 side. The laminate 8 is not pinched by the nylon mesh 8, and the laminate 8 is held apart by the thickness of the laminate 8.
Due to the presence of b, the inside of the ring-shaped space 5 is naturally ventilated all the way to the tip, and can be easily evacuated.

従って、該リング状空間5内は予じめ真空引きした後シ
ールする事により真空状態を維持している。
Therefore, the vacuum state is maintained in the ring-shaped space 5 by evacuating it in advance and then sealing it.

次にかかる実施例の作用について第3図に基づいて説明
する。
Next, the operation of this embodiment will be explained based on FIG. 3.

前記構成の凍結用プローブ10を、既存の内視鏡20の
穴径部21に挿入し、その先端部を突出させた状態で、
該内視鏡20を胃壁30内に挿入する。そして内視鏡2
0先端部に設けた観察窓やファイバスコープ(いずれも
図示せず)等を利用して、前記凍結用プローブ10の先
端部を患部31に当接した状態で、外管4と中管3間の
リング状空間5部をポンプにより真空状に保持されて密
封されているとともに、内管2内に常圧より高めの液体
窒素32を導入し、或いはポンプにより後記するリング
状空隙8を真空引きする本により液体窒素32を導入し
、該液体窒素32を内管2の先端部からチッププラグ1
の凹状空所1aに向はジェット気流状に噴出させる。
The cryoprobe 10 having the above configuration is inserted into the hole diameter portion 21 of the existing endoscope 20, and with its tip protruding,
The endoscope 20 is inserted into the stomach wall 30. and endoscope 2
With the tip of the cryoprobe 10 in contact with the affected area 31, using an observation window provided at the tip, a fiberscope (none of which are shown), etc. The ring-shaped space 5 is kept in a vacuum state and sealed by a pump, and liquid nitrogen 32 at a pressure higher than normal pressure is introduced into the inner tube 2, or the ring-shaped space 8, which will be described later, is evacuated by the pump. Liquid nitrogen 32 is introduced from the tip of the inner tube 2 through the tip plug 1.
The liquid is ejected into the concave space 1a in the form of a jet stream.

これによりチッププラグlを介して前記患部31が冷凍
するとともに、その吸熱(奪熱)によりジュー2ト噴射
ガスになり易い状態である液体窒素32が蒸発し、該蒸
発ガス33が中管3と内管2との間のリング状空隙8部
内を通過しなから該中管3の出口端より真空引き或いは
大気に放出される。
As a result, the affected area 31 is frozen through the tip plug l, and the liquid nitrogen 32, which is in a state where it is easy to become jute injection gas, evaporates due to its heat absorption, and the evaporated gas 33 is transferred to the middle tube 3. After passing through the ring-shaped gap 8 between the inner tube 2 and the inner tube 2, it is evacuated or released into the atmosphere from the outlet end of the inner tube 3.

この際前記中管3内を流れる蒸発ガス33はガス体であ
るため防熱の役目を果す事になるとともに、前記中管3
と外管4間が積層体8により非接触の状態を維持しなが
ら、且つ真空状態を維持されている為に、中管3側に伝
熱した液体窒素32の冷熱も完全に遮断する事が出来、
本発明の効果を円滑に達成し得る。
At this time, since the evaporative gas 33 flowing inside the middle pipe 3 is a gas, it plays a role of heat insulation, and the middle pipe 3
Since the laminate 8 maintains a non-contact state between the inner tube 4 and the outer tube 4, and also maintains a vacuum state, the cold heat of the liquid nitrogen 32 transferred to the inner tube 3 side can be completely blocked. Done,
The effects of the present invention can be achieved smoothly.

元に戻り、前記中管3より排出される蒸発ガスの放出量
や内管2に導入される液体窒素32の導入量及び温度を
所定のアルゴリズムに基づいて電子計算機により調節す
る車により、チッププラグ1に当接された生体組織の凍
結深度及び凍結範囲を任意に設定出来、そして外部のレ
ントゲン等の判断により液体窒素32の導入を停止して
凍結患部を解凍し、以下前記凍結と解凍を繰り返す事に
より、完全に患部の病根部分のみを凍傷を起させ死滅除
去する車が出来、そして破壊された患部細胞は、その後
の体内の自浄作用により分解して体外に排出され、所定
の患部除去手術が完了する。
Returning to the original state, the tip plug is adjusted by a computer that adjusts the amount of evaporative gas discharged from the inner tube 3 and the amount and temperature of the liquid nitrogen 32 introduced into the inner tube 2 based on a predetermined algorithm. The freezing depth and freezing range of the living tissue that is in contact with the body tissue can be set arbitrarily, and the introduction of liquid nitrogen 32 is stopped based on judgment from external X-rays, etc., and the frozen affected area is thawed, and the above-mentioned freezing and thawing are repeated thereafter. As a result, a vehicle was created that completely kills and removes only the root part of the diseased area by causing frostbite, and the destroyed cells in the affected area are then decomposed and expelled from the body by the body's own self-cleaning action, and then a prescribed surgery is performed to remove the diseased area. is completed.

「発明の効果」 従ってかかる発明によれば、外管内周側を真空下に置く
為の耐圧強度を断熱効果を有する積層体で構成した為に
、前記耐圧強度と無関係に外管の薄肉化と細径化を達成
し得、これにより始めて生体内を視察する内視鏡内に組
込み可能な細長管状の生体凍結用プローブを提供する車
が出来、その実用的価値は極めて大である。
"Effects of the Invention" Therefore, according to the invention, since the pressure resistance for placing the inner peripheral side of the outer tube under vacuum is made of a laminate having a heat insulating effect, it is possible to reduce the thickness of the outer tube regardless of the pressure resistance. This makes it possible to achieve a narrower diameter, thereby creating a vehicle that provides an elongated tubular probe for freezing a living body that can be incorporated into an endoscope for observing inside a living body, and its practical value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の実施例に係る凍結用プロー
ブを示し、tjg1図は正面断面図、第2図は使用状態
を示す概略図、第3図は前記プローブの変形例を示す要
部切欠き図である。第4図は従末技術に係る凍結用プロ
ーブである。 第 図 第 図 第 図
Figures 1 to 3 show a cryogenic probe according to an embodiment of the present invention, Figure 1 is a front sectional view, Figure 2 is a schematic diagram showing the state of use, and Figure 3 is a modification of the probe. It is a cutaway diagram of the main part. FIG. 4 shows a freezing probe according to the prior art. Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】 1)金属製先端部材を介して生体組織を凍結させる冷却
用流体の導入孔又は排出孔として機能する一又は複数の
導管外周囲上を外管で包被し、該外管とその内周側に位
置する導管間に形成される略リング状空間を低圧下に置
いた生体凍結用プローブにおいて、可撓性を有する薄肉
管体で形成した外管内周側の略リング状空間内に、金属
箔と樹脂製メッシュを交互に積層して形成される積層体
を介在させ、外管とその内周側に位置する導管間を断熱
した事を特徴とする生体凍結用プローブ 2)前記冷却用流体が導入される第1の導管の外側に同
心状に位置し、前記生体組織を凍結後の気化された冷却
用流体が通過する第2の導管を蛇腹状の金属製フレキシ
ブル管で形成した特許請求範囲1)記載の生体凍結用プ
ローブ
[Scope of Claims] 1) An outer tube is used to cover the outer periphery of one or more conduits that function as an introduction hole or a discharge hole for a cooling fluid that freezes living tissue through a metal tip member; In a living body freezing probe in which the approximately ring-shaped space formed between a tube and the conduit located on the inner circumferential side is placed under low pressure, the approximately ring-shaped space formed on the inner circumferential side of the outer tube is made of a flexible thin-walled tube. A living body freezing probe 2 characterized in that a laminate formed by alternately laminating metal foil and resin mesh is interposed in the space to insulate the space between the outer tube and the conduit located on the inner circumferential side thereof. ) A second conduit, which is located concentrically outside the first conduit into which the cooling fluid is introduced, and through which the vaporized cooling fluid passes after freezing the living tissue, is a bellows-shaped metal flexible tube. A living body freezing probe according to claim 1) formed of
JP63244506A 1988-07-20 1988-09-30 Probe for freezing organism Granted JPH02126840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63244506A JPH02126840A (en) 1988-07-20 1988-09-30 Probe for freezing organism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-179079 1988-07-20
JP17907988 1988-07-20
JP63244506A JPH02126840A (en) 1988-07-20 1988-09-30 Probe for freezing organism

Publications (2)

Publication Number Publication Date
JPH02126840A true JPH02126840A (en) 1990-05-15
JPH0510942B2 JPH0510942B2 (en) 1993-02-12

Family

ID=26499046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63244506A Granted JPH02126840A (en) 1988-07-20 1988-09-30 Probe for freezing organism

Country Status (1)

Country Link
JP (1) JPH02126840A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576415U (en) * 1992-03-19 1993-10-19 南雄 河野 Prostatic hyperplasia cryosurgery probe
JP2008528934A (en) * 2006-01-11 2008-07-31 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Improved coolant delivery
CN109381253A (en) * 2017-08-04 2019-02-26 厄比电子医学有限责任公司 The instrument of cryosurgery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821168U (en) * 1971-07-19 1973-03-10
JPS6031686U (en) * 1983-08-10 1985-03-04 リズム時計工業株式会社 clock pendulum device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821168B1 (en) * 1968-07-10 1973-06-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821168U (en) * 1971-07-19 1973-03-10
JPS6031686U (en) * 1983-08-10 1985-03-04 リズム時計工業株式会社 clock pendulum device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576415U (en) * 1992-03-19 1993-10-19 南雄 河野 Prostatic hyperplasia cryosurgery probe
JP2008528934A (en) * 2006-01-11 2008-07-31 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Improved coolant delivery
CN109381253A (en) * 2017-08-04 2019-02-26 厄比电子医学有限责任公司 The instrument of cryosurgery
CN109381253B (en) * 2017-08-04 2022-03-15 厄比电子医学有限责任公司 Cryosurgical instrument
US11583329B2 (en) 2017-08-04 2023-02-21 Erbe Elektromedizin Gmbh Cryosurgical instrument

Also Published As

Publication number Publication date
JPH0510942B2 (en) 1993-02-12

Similar Documents

Publication Publication Date Title
EP1129669B1 (en) Cryoablation catheter with an expandable cooling chamber
US3712306A (en) Cryogenic application chamber and method
US7425211B2 (en) Cryogenic probe for treating enlarged volume of tissue
KR102575492B1 (en) Adjustable cryoablation needle
US6585728B2 (en) Cryoablation catheter with an improved gas expansion chamber
US20130331829A1 (en) Cryoablation apparatus with enhanced heat exchange area and related method
US20040024392A1 (en) Apparatus and method for cryosurgery
US20010035189A1 (en) Cryosurgical method for endometrial ablation
US20040000158A1 (en) Therapeutic freezing device and method
EP1500377B1 (en) Distal end for cryoablation catheters
WO2003020334B1 (en) Endovascular cryotreatment catheter
US7803154B2 (en) Cryogenic probe for treating enlarged volume of tissue
CN106420048A (en) Flexible microwave ablation antenna and microwave ablation needle using same
JPH0538347A (en) Freezing device for organism tissue
JPH02126840A (en) Probe for freezing organism
JP3142008B2 (en) Biological cryotherapy needle
WO1993008751A1 (en) Cryosurgical apparatus
JP2004305735A (en) Machine expansion type helical freezing chip for freeze-cutting catheter
JP2754082B2 (en) Cryoprobe
JP7145333B2 (en) Low-temperature and high-pressure flexible cryoablation needle device
US20230218332A1 (en) Systems, devices, and methods for ablation and defunctionalization of a gallbladder
CN115192173A (en) Ablation needle with adjustable needle head position
US20210045794A1 (en) Flexible cryoprobe
JPH04357946A (en) Biotissue freezing device
US20230181230A1 (en) Cryosurgical probe and method of manufacturing thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees