JPH02126240A - Optical kerr waveguide - Google Patents

Optical kerr waveguide

Info

Publication number
JPH02126240A
JPH02126240A JP28109088A JP28109088A JPH02126240A JP H02126240 A JPH02126240 A JP H02126240A JP 28109088 A JP28109088 A JP 28109088A JP 28109088 A JP28109088 A JP 28109088A JP H02126240 A JPH02126240 A JP H02126240A
Authority
JP
Japan
Prior art keywords
waveguide
phiy
phix
optical
kerr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28109088A
Other languages
Japanese (ja)
Other versions
JP2578653B2 (en
Inventor
Toshio Morioka
敏夫 盛岡
Masatoshi Saruwatari
猿渡 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28109088A priority Critical patent/JP2578653B2/en
Publication of JPH02126240A publication Critical patent/JPH02126240A/en
Application granted granted Critical
Publication of JP2578653B2 publication Critical patent/JP2578653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To remove the influence of a nonlinear refractive index upon a nondiagonal component by forming optical waveguide of double refractivity materials where polarized wave dispersion caused by double refractivity is much larger than the wavelength dispersion between signal light and pump light. CONSTITUTION:When the polarized wave dispersion per unit length in the optical Kerr waveguide 1 is denoted as taup and the waveguide length L=l, the phase shift phix of signal light due to Kerr effect in a main-axial direction is equal phi0 in a section of 0<=L<=l, but the time width of the phase shift phiy perpendicular to the main axis is taupl. At this time, the saturation phase quantity of the phase shift phiy is phiy=phi0X(tau/taup) and the polarized wave dispersion taup is therefore set much larger than a group delay difference tau per unit length to obtain phiy<<phi0=phix and, therefore, phix-phiy=phix(1-phiy/phix)=phix, thereby removing the influence of the nondiagonal component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は全光制御の超高速光スィッチに利用する。特に
、信号光の偏光方向を光カー効果により回転させる光カ
ー導波路に関する。本発明は、複屈折によって生じる偏
波分散が信号光とポンプ光との間の波長分散に比べて十
分に大きい複屈折材料により光カー導波路を形成するこ
とにより、非線形屈折率の非対角成分による影響を除去
し、少ないポンプパワーで良好な光スイッチングが可能
な光カー導波路を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is applied to an all-optical controlled ultra-high speed optical switch. In particular, the present invention relates to an optical Kerr waveguide that rotates the polarization direction of signal light using the optical Kerr effect. In the present invention, the optical Kerr waveguide is formed of a birefringent material whose polarization dispersion caused by birefringence is sufficiently larger than the wavelength dispersion between the signal light and the pump light. The object of the present invention is to provide an optical Kerr waveguide that eliminates the influence of components and allows good optical switching with low pump power.

〔従来の技術〕[Conventional technology]

全光制御の光スィッチ、すなわち光で光を制御するスイ
ッチとして、従来から、三次の非線形効果である光カー
効果を用いた光カーシャッタが知られている。光カーシ
ャッタは、三次の非線形素子を用い、その主軸方向に偏
光したポンプ光パルスと、それと45度の方向に偏光し
た信号光パルスとを入射するものである。このとき、信
号光パルスの主軸方向成分の位相がポンプ光パルスによ
り変化し、信号光パルスの偏光方向が90度変化する。
2. Description of the Related Art An optical Kerr shutter that uses the optical Kerr effect, which is a third-order nonlinear effect, has been known as an optical switch for all-light control, that is, a switch that controls light using light. The optical Kerr shutter uses a third-order nonlinear element, and receives a pump light pulse polarized in the direction of its principal axis and a signal light pulse polarized in a direction of 45 degrees with respect to the pump light pulse. At this time, the phase of the main axis direction component of the signal light pulse is changed by the pump light pulse, and the polarization direction of the signal light pulse is changed by 90 degrees.

これにより、信号光がスイッチングされる。Thereby, the signal light is switched.

しかし、この場合に、主軸方向に偏光したポンプ光は、
非線形定数の対角成分によって信号光成分の主軸方向の
位相を変化させるだけでなく、非対角成分により主軸方
向と直交する方向の位相も変化させる。この非線形定数
(屈折率)12Bの非対角成分12il工は、等方性媒
質の場合、対角成分n2B、に対して173の値をとる
However, in this case, the pump light polarized in the principal axis direction is
Not only does the diagonal component of the nonlinear constant change the phase of the signal light component in the principal axis direction, but the non-diagonal component also changes the phase in the direction perpendicular to the principal axis direction. In the case of an isotropic medium, the off-diagonal component 12il of this nonlinear constant (refractive index) 12B takes a value of 173 with respect to the diagonal component n2B.

第4図は等方性媒質を用いた従来例光カー導波路を示し
、第5図および第6図は、光カー導波路内のそれぞれL
−β、2I!の二つの点における位相変調波形を示す。
FIG. 4 shows a conventional optical Kerr waveguide using an isotropic medium, and FIGS. 5 and 6 show each L in the optical Kerr waveguide.
-β, 2I! The phase modulation waveforms at two points are shown.

導波路長L=lのとき、ポンプ光による信号光の位相変
化φ8の飽和値(ccn2Il、/τ)をφ。
When the waveguide length L=l, the saturation value (ccn2Il,/τ) of the phase change φ8 of the signal light due to the pump light is φ.

とすると、主軸に直交する方向(Y軸)の位相変化φ、
の飽和値はφ。/3となる。ここで、τはポンプ光と信
号光との間の単位長さあたりの群遅延差であり、この群
遅延差は波長分散その他によって生じる。したがって、
光カースイッチに有効な位相変化は、 φ、−φ、−2φ、/3 となる。
Then, the phase change in the direction perpendicular to the principal axis (Y axis) is φ,
The saturation value of is φ. /3. Here, τ is the group delay difference per unit length between the pump light and the signal light, and this group delay difference is caused by chromatic dispersion and other factors. therefore,
The effective phase changes for the optical Kerr switch are φ, −φ, −2φ, /3.

導波路長L=Aにおける群遅延差τlがポンプ光のパル
ス幅に比べて十分に大きい場合には、力・−変調波形の
時間幅はτβとなる。導波路長し一2I!、のときには
、位相変化φ8、φ9、φ8−φ。
When the group delay difference τl at the waveguide length L=A is sufficiently larger than the pulse width of the pump light, the time width of the force-modulation waveform becomes τβ. The waveguide length is 12I! , the phase changes φ8, φ9, φ8−φ.

については導波路長し一βの場合と同じであるが、カー
変調波形の時間幅は2τ!となる。
is the same as when the waveguide length is 1β, but the time width of the Kerr modulation waveform is 2τ! becomes.

〔発明が解決しようとする問題点3 等方性媒質を使用した従来の光カー導波路では、非線形
屈折率12Bの非対角成分n2B工の影響により、非対
角成分のない場合に比較してカー変調効率が2/3にな
り、大きなポンプパワーが必要であった。また、一般に
φ、は波長分散と偏波分散との関数となるため、その波
形は複雑であり、φ8−φ、も完全な矩形とはならず、
クロストーク劣化の原因となる欠点があった。
[Problem 3 to be solved by the invention: In the conventional optical Kerr waveguide using an isotropic medium, due to the influence of the non-diagonal component n2B with a nonlinear refractive index of 12B, compared to the case without the non-diagonal component, The Kerr modulation efficiency was reduced to 2/3, and large pump power was required. In addition, since φ is generally a function of wavelength dispersion and polarization dispersion, its waveform is complex, and φ8−φ is not a perfect rectangle.
There was a drawback that it caused crosstalk deterioration.

本発明は、以上の問題点を解決し、非線形屈折率n2B
の非対角成分n23.による垂直偏光成分の影響を除去
し、少ないポンプパワーで動作する光カー導波路を提供
することを目的とする。
The present invention solves the above problems and provides a nonlinear refractive index n2B
The off-diagonal component n23. The purpose of this invention is to provide an optical Kerr waveguide that operates with less pump power by eliminating the influence of vertically polarized light components due to

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光カー導波路は、この光カー導波路を形成する
複数の光導波路が複屈折性であり、その複屈折によって
生じる偏波分散が信号光とポンプ光との間の波長分散に
比べて十分に大きいことを特徴とする。
In the optical Kerr waveguide of the present invention, the plurality of optical waveguides forming the optical Kerr waveguide are birefringent, and the polarization dispersion caused by the birefringence is compared to the wavelength dispersion between the signal light and the pump light. It is characterized by being sufficiently large.

〔作 用〕[For production]

光カー導波路の単位長さあたりの偏波分散をτ。 The polarization dispersion per unit length of the optical Kerr waveguide is τ.

とし、導波路長L=fとすると、主軸に直交する方向の
位相変化φ、の時間幅はτP βとなる。このとき、位
相変化φ、の飽和位相量は、エネルギ保存則から、 φ、=φ。×(τ/τP) となる。したがって、偏波分散r、が単位長さあたりの
群遅延差τより十分に大きければ、φ、(φ。=φ8 とすることができ、 φ8−φ、=φ、  (1−φ、/φN)αφ8 となる。すなわち、非対角成分の影響を除去できる。
When the waveguide length L=f, the time width of the phase change φ in the direction perpendicular to the principal axis is τPβ. At this time, the saturation phase amount of the phase change φ, is φ,=φ from the law of conservation of energy. ×(τ/τP). Therefore, if the polarization dispersion r, is sufficiently larger than the group delay difference τ per unit length, φ, (φ.=φ8, and φ8−φ,=φ, (1−φ,/φN )αφ8.In other words, the influence of off-diagonal components can be removed.

〔実施例〕〔Example〕

第1図は本発明実施例光カー導波路の斜視図を示す。 FIG. 1 shows a perspective view of an optical Kerr waveguide according to an embodiment of the present invention.

この光カー導波路は、光カー効果を示す媒質により形成
された複数の光導波路1を備え、この光導波路1が互い
に隣接する光導波路1に対して速い軸をほぼ直交させて
縦続に接続される。第1図では、構造を示すために二つ
の光導波路1を分離して示すが、実際にはこれらの光導
波路1は互いに融着される。速い軸を直交させているの
は、偏波分散τ2を補償するためである。光導波路1は
例えば偏波保持形で複屈折の大きい光ファイバにより形
成され、各光導波路1の長さは同じである。
This optical Kerr waveguide includes a plurality of optical waveguides 1 formed of a medium exhibiting an optical Kerr effect, and these optical waveguides 1 are connected in cascade with respect to adjacent optical waveguides 1 with their fast axes substantially perpendicular to each other. Ru. In FIG. 1, two optical waveguides 1 are shown separated to show the structure, but in reality, these optical waveguides 1 are fused together. The reason why the fast axes are orthogonal is to compensate for polarization dispersion τ2. The optical waveguides 1 are formed of, for example, polarization-maintaining optical fibers with large birefringence, and each optical waveguide 1 has the same length.

ここで本実施例の特徴とするところは、複数の光導波路
1が複屈折性であり、その複屈折によって生じる偏波分
散が信号光とポンプ光との間の波長分散に比べて十分に
大きいことにある。
Here, the feature of this embodiment is that the plurality of optical waveguides 1 are birefringent, and the polarization dispersion caused by the birefringence is sufficiently large compared to the wavelength dispersion between the signal light and the pump light. There is a particular thing.

第2図および第3図は、光カー導波路内のそれぞれL−
/!、2βの二つの点における位相変調波形を示す。
FIGS. 2 and 3 show the L-
/! , 2β shows phase modulation waveforms at two points.

導波路長が0≦L≦βの区間では、信号光の主軸方向の
カー効果による位相変化φ8は、第2図(a)に示すよ
うに、従来例と同じくφ0である。これに対して、主軸
に直交する方向の位相変化φ。
In the section where the waveguide length is 0≦L≦β, the phase change φ8 due to the Kerr effect in the principal axis direction of the signal light is φ0, as in the conventional example, as shown in FIG. 2(a). On the other hand, the phase change φ in the direction perpendicular to the principal axis.

は、第2図(b)に示すように、 φ、=φ。×(τ/τP) となる。ここで、偏波分散γ、が単位長さあたりの群遅
延差τより十分に大きいので、 φ、(φ0=φ8 であり、第2図(C)に示すように、 φ8−φ、=φイ (l−φy/φイ)2φイ となる。
As shown in FIG. 2(b), φ,=φ. ×(τ/τP). Here, since the polarization dispersion γ is sufficiently larger than the group delay difference τ per unit length, φ, (φ0=φ8, and as shown in Figure 2(C), φ8−φ,=φ A (l-φy/φi) 2φi.

また、導波路長が0≦L≦2βの区間では、主軸と垂直
方向の信号光成分がO≦L≦βの区間と逆方向にポンプ
光を掃引するため、ポンプ光は信号光の座標原点に戻る
。すなわち、第3図ら)に示すように位を日変化φ、の
時間幅はτP pのまま不変であり、位相変化φ8の時
間幅だけ、第3図ら)に示すように2τβとなる。した
がって、第3図(C)に示すように、φ8−φ、の時間
幅は位相変化φ8と同じ2πβとなり、飽和量はφ。と
なる。
In addition, in the section where the waveguide length is 0≦L≦2β, the signal light component in the direction perpendicular to the principal axis sweeps the pump light in the opposite direction to the section where O≦L≦β, so the pump light is directed to the coordinate origin of the signal light. Return to That is, as shown in Fig. 3 et al., the time width of the daily change φ remains unchanged at τP p, and the time width of the phase change φ8 becomes 2τβ, as shown in Fig. 3 et al. Therefore, as shown in FIG. 3(C), the time width of φ8-φ is 2πβ, which is the same as the phase change φ8, and the saturation amount is φ. becomes.

したがって、従来例に比較して、ポンプパワーが2/3
でも同じ光スイツチング効果が得られる。すなわち、非
線形屈折率の値が50%増加したと同じ効果が得られる
Therefore, the pump power is reduced to 2/3 compared to the conventional example.
However, the same light switching effect can be obtained. In other words, the same effect as if the value of the nonlinear refractive index were increased by 50% can be obtained.

以上の実施例では光導波路として偏波保持形の光ファイ
バを用いた場合を例に説明したが、方解石その他の複屈
折の大きいものを用いても本発明を同様に実施できる。
In the above embodiments, a polarization-maintaining optical fiber is used as an optical waveguide, but the present invention can be similarly implemented using calcite or other materials with large birefringence.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光カー導波路は、非線形
屈折率の非対角成分12B工による主軸と直交する方向
の信号光成分の影響を除去することができる。このため
、従来の比較して、等方性媒質の場合にポンプパワーを
2/3に低減することができる効果がある。また、波長
分散と偏波分散との複雑な関数となる位相変化φ、の影
響を除去することにより、平坦なカー変調波形φ8−φ
、が得られ、クロストーク特性を向上させることができ
る効果がある。
As described above, the optical Kerr waveguide of the present invention can eliminate the influence of the signal light component in the direction orthogonal to the principal axis due to the off-diagonal component 12B of the nonlinear refractive index. Therefore, compared to the conventional method, there is an effect that the pump power can be reduced to 2/3 in the case of an isotropic medium. In addition, by removing the influence of phase change φ, which is a complex function of wavelength dispersion and polarization dispersion, a flat Kerr modulation waveform φ8−φ
, which has the effect of improving crosstalk characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例光カー導波路の斜視図。 第2図は光カー導波路内のL=fの点における位相変調
波形を示す図。 第3図は光カー導波路内のL=2fの点における位相変
調波形を示す図。 第4図は従来例光カー導波路を示す図。 第5図は光カー導波路内のし一βの点における位相変調
波形を示す図。 第6図は光カー導波路内のL=2βの点における位相変
調波形を示す図。 特許出願人 日本電信電話株式会社 代理人 弁理士 井 出 直 孝 実施例 第 図 (a) (b) 第 図 (a) (b) 第 図 第 図従来例 第 図
FIG. 1 is a perspective view of an optical Kerr waveguide according to an embodiment of the present invention. FIG. 2 is a diagram showing a phase modulation waveform at a point L=f in the optical Kerr waveguide. FIG. 3 is a diagram showing a phase modulation waveform at a point L=2f in the optical Kerr waveguide. FIG. 4 is a diagram showing a conventional optical Kerr waveguide. FIG. 5 is a diagram showing a phase modulation waveform at the point β in the optical Kerr waveguide. FIG. 6 is a diagram showing a phase modulation waveform at a point L=2β in the optical Kerr waveguide. Patent Applicant Nippon Telegraph and Telephone Corporation Agent Patent Attorney Nao Takashi IdeExample Figure (a) (b) Figure (a) (b) Figure Figure Conventional Example Figure

Claims (1)

【特許請求の範囲】 1、光カー効果を示す媒質により形成された複数の光導
波路を備え、 この光導波路が互いに隣接する光導波路に対して速い軸
をほぼ直交させて縦続に接続された光カー導波路におい
て、 上記複数の光導波路は複屈折性であり、その複屈折によ
って生じる偏波分散が信号光とポンプ光との間の波長分
散に比べて十分に大きいことを特徴とする光カー導波路
[Claims] 1. An optical system comprising a plurality of optical waveguides formed of a medium exhibiting the optical Kerr effect, the optical waveguides being connected in cascade with their fast axes substantially orthogonal to adjacent optical waveguides. In the Kerr waveguide, the plurality of optical waveguides are birefringent, and the polarization dispersion caused by the birefringence is sufficiently larger than the wavelength dispersion between the signal light and the pump light. waveguide.
JP28109088A 1988-11-07 1988-11-07 Optical Kerr waveguide Expired - Fee Related JP2578653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28109088A JP2578653B2 (en) 1988-11-07 1988-11-07 Optical Kerr waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28109088A JP2578653B2 (en) 1988-11-07 1988-11-07 Optical Kerr waveguide

Publications (2)

Publication Number Publication Date
JPH02126240A true JPH02126240A (en) 1990-05-15
JP2578653B2 JP2578653B2 (en) 1997-02-05

Family

ID=17634197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28109088A Expired - Fee Related JP2578653B2 (en) 1988-11-07 1988-11-07 Optical Kerr waveguide

Country Status (1)

Country Link
JP (1) JP2578653B2 (en)

Also Published As

Publication number Publication date
JP2578653B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US4070094A (en) Optical waveguide interferometer modulator-switch
US4962987A (en) Optical device producing an intensity dependent phase shift
US5078464A (en) Optical logic device
US4932739A (en) Ultra-fast optical logic devices
US5101456A (en) Predistortion apparatus for optical logic device
JPH06194696A (en) Optical switch
JP3272064B2 (en) 4-section optical coupler
JPS6068321A (en) Optical switch
CA2096522C (en) Optical switch
JPH08194196A (en) Production of optical waveguide device
JPH02126240A (en) Optical kerr waveguide
KR100216980B1 (en) Non-reversible optical element using optical frequency conversion
JPH0593891A (en) Waveguide type optical modulator and its driving method
Fujii Low-crosstalk 2* 3 optical switch composed of twisted nematic liquid crystal cells
Sampei et al. PLZT fiber-optic switch
US6498885B1 (en) Semiconductor nonlinear waveguide and optical switch
JP2991355B2 (en) Optical frequency shift switch
JPH01277220A (en) Optical pulse waveform controlling method
JPH0769552B2 (en) Optical car waveguide
JP3287158B2 (en) Nonlinear optical device
JPH07168217A (en) Light/light 2x2 switch
JPS60237425A (en) Method and device for compressing light pulse width
JPH05224249A (en) Nonlinear optical device
JPS6144293B2 (en)
KR950004883B1 (en) Light-cable multiflexer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees