JPH0212622B2 - - Google Patents
Info
- Publication number
- JPH0212622B2 JPH0212622B2 JP59041644A JP4164484A JPH0212622B2 JP H0212622 B2 JPH0212622 B2 JP H0212622B2 JP 59041644 A JP59041644 A JP 59041644A JP 4164484 A JP4164484 A JP 4164484A JP H0212622 B2 JPH0212622 B2 JP H0212622B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carrier
- heat
- weight
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 claims description 51
- 239000007864 aqueous solution Substances 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 31
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical class [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 23
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical class [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 22
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims description 21
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000002002 slurry Substances 0.000 claims description 19
- 239000010948 rhodium Chemical class 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 12
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- 150000001845 chromium compounds Chemical class 0.000 claims description 10
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052703 rhodium Chemical class 0.000 claims description 6
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 5
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical class [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 13
- 230000005484 gravity Effects 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 101150003085 Pdcl gene Proteins 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- -1 SUH409 Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical class [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
本発明は、自動車の排ガス浄化用触媒を耐熱性
金属担持母体に酸化物系担持とともに強固に被着
保持し得る排ガス浄化用触媒の担持方法に関する
ものである。
自動車の排ガス中に含まれるCO、炭化水素
(以下HCと称す)及びNOxなどの有害ガスを酸
化、還元及び分解させるための排ガス浄化用触媒
は、白金(Pt)、パラジウム(Pd)、ロジウム
(Rh)などの貴金属をたとえばPt、Pt+Pd、Pt
+Pd+Rhなどとした貴金属系触媒が主流であ
り、これらの触媒は、ハニカム型、ペレツト型あ
るいは球状型などのセラミツクス、又はハニカム
型の金属などの担持母体上に担持された担体上に
被着されて用いられている。すなわち、ハニカム
型セラミツクスでは、主にコージユライトセラミ
ツクスの骨格の表面にγ−Al2O3を被覆したもの
が用いられ、ペレツト型や球状型の場合には多孔
質のAl2O3が用いられている。これら担持母体に
担持された担体上に触媒を担持させるには、Pt、
Pd、Shなど貴金属の可溶性塩たとえば塩化物の
溶液を含浸させ熱処理することにより方法が知ら
れている。又、金属質担持母体の場合には、金属
表面にシリコン樹脂や水ガラスのような接着剤を
用い貴金属系触媒物質を被着し担持させる方法が
知られている。
しかして、排ガス浄化用反応器は、高温度に曝
されるために、触媒、担体及び担持母体などの耐
熱性、耐熱衝撃性、堅牢性さらには触媒の担持面
積の増大すなわち高活性化及び耐久性などに対す
る要求度が高められている。このためには触媒、
担体及び担持母体などは勿論、担持方法の改善も
望まれているものであるが、担持母体としては、
金属質担持母体はセラミツクス質担持母体に比較
し母材の薄板化による担体の担持面積をいちじる
しく増大し得、反応器の小型化ができ、母体加工
の容易さ、さらには耐熱衝撃性にすぐれているな
ど多くの利点があり好ましい。しかしながら、金
属質担持母体の場合には、前記のような方法で担
体及び触媒を担持させるために担体及び触媒を強
固に担持させて耐熱性を賦与することに問題があ
つた。
本発明者は、触媒の担持母体、担体及び担持方
法ついては耐熱性、耐熱衝撃性及び高活性化の改
善を主眼として鋭意研究を重ねた結果、耐熱性金
属を担持母体とし、これと酸化物担体及び貴金属
系触媒物質とをCr2O3の化学結合により相互に強
固に被着し得ることを見出して本発明をなしたも
のである。すなわち、本発明の第1の発明は、白
金・パラジウム・ロジウムの可溶性塩のうちの少
なくとも1種類とアルミナ又は/及び酸化クロム
と6価クロムを含有するクロム化合物の濃水溶液
とのスラリーを耐熱性金属担持母体に被着し乾燥
後加熱処理した後、クロム酸濃水溶液を含浸させ
乾燥した後加熱処理する操作を少なくとも1回反
復繰返して施行する排ガス浄化用触媒の担持方法
であり、第2の発明は、アルミナ又は/及び酸化
クロムと6価クロムを含有するクロム化合物の濃
水溶液とのスラリーを耐熱性金属担持母体に被着
し乾燥後加熱処理して薄膜を形成した後、白金・
パラジウム・ロジウムの可溶性塩のうちの少なく
とも1種類とクロム酸との水溶液を薄膜上に含浸
させ乾燥及び熱処理をした後、さらにクロム酸濃
水溶液を含浸させ乾燥した後加熱処理する操作を
少なくとも1回反復繰返して施行する排ガス浄化
用触媒の担持方法である。
本発明における耐熱性金属担持母体としては、
たとえばSUS302B、SUS304、SUS410L、
SUH409などのような耐熱鋼、ステンレス鋼など
が使用される。しかして、これらの金属材の薄板
で反応器に適合するように、たとえば平板と波板
とを重ね巻きしてハニカム型に加工して使用さ
れ、担体がよく被着されるように、母体表面を脱
脂処理し、ついで化学的腐食処理たとえば
HNO3、HCl及びFeCl3+FeCl2の混合液などを使
用して母体をエツチングし粗面化処理をあらかじ
め施行しておくことが好ましい。
担持母体の表面上に被着される担体としては、
たとえばアルミナ、酸化クロムのような多孔質酸
化物であつて、粒子径15μm以下、平均粒径5μm
以下、比表面積75m2/g以上の微粉末であり、粒
度分布の範囲が可級的に狭いことが好ましく、こ
れら多孔質酸化物を単独あるいは適宜組合せて
(たとえば、γ−Al2O330〜100重量部、Cr2O30〜
70重量部の範囲で配合することが好ましい。)使
用するものである。
触媒は、白金、パラジウム、ロジウムなどの貴
金属であつて、これらの可溶性塩たとえば塩化白
金酸(H2PtCl6・6H2O)、塩化パラジウム
(PdCl2・2H2O)、塩化ロジウム(RhCl3・3H2O)
などとして使用することが好ましい。しかして、
これらのうちの少なくとも1種類を使用するもの
であつて、それぞれを単独あるいは適宜組合せて
使用する。触媒は通常たとえばPt、Pt+Pd、Pt
+Pd+Rhなどの形で使用されるので、クロム酸
に溶解した溶液の状態で用いることが好ましい。
これらをそれぞれ単独で使用する場合には担体材
料100重量部に対し前記可溶性塩を、0.6〜2.2重
量部の範囲が好ましく、2種類を配合する場合に
は、たとえば、Pt+Pdの場合にはPt塩0.6〜1.2重
量部、Pd塩2〜0.4重量部、Pt+Rhの場合には、
Pt塩1.0〜1.5重量部、Rh塩0.2〜0.4重量部あるい
はPd+Rhの場合にはPd塩1.0〜2.0重量部、Rh塩
0.3〜0.6重量部などの配合割合が好ましい。さら
にPt+Pd+Rhのように3種類の場合には、Pt塩
1.0〜1.5重量部、Pd0.5〜1重量部、Rh0.2〜0.4重
量部の割合で配合することが好ましい。又、クロ
ム酸に溶解する場合、クロム酸の濃度は、比重
1.6〜1.75の範囲であることが好ましい。
耐熱性金属担持母体に担体及び触媒を強固に被
着するために使用する6価クロムを含有するクロ
ム化合物の濃水溶液は、CaCrO4、CoCrO4、
ZnCrO4、CaCO3、CoCO3、ZnO、Cr2O3などの
うちの少なくとも1種類をH2CrO4の濃水溶液に
溶解してなる溶液であることが好ましく、前記化
合物の含有割合は、合量でH2CrO41モルに対し
0.1〜0.4モルの割合とすることが適当である。
又、H2CrO4単味の濃水溶液も用いることがで
き、これらの溶液の濃度は、いずれも比重1.5〜
1.7に調整することが好ましい。
このような担体及び触媒は、6価クロムを含有
するクロム化合物濃水溶液あるいはクロム酸とと
もに担持母体に、塗布法あるいは浸漬法などによ
つて担持母体に被着させるものであつて、次に、
担持方法を説明する。担体及び触媒を6価クロム
を含有するクロム化合物の濃水溶液とのスラリー
として被着し、クロム酸溶液を含浸させる第1の
発明方法においては、たとえば、所定配合に配合
した触媒(たとえば、H2PtCl6・6H2O2重量部、
PdCl2・2H2O0.7重量部及びRhCl3・3H2O0.3重量
部)、γ−Al2O3微粉末(たとえば、粒子径10μm
以下、平均粒径3μm、比表面積158m2/g、170
重量部)に、6価クロムを含有するクロム化合物
濃水溶液(たとえば、H2CrO4濃水溶液に
H2CrO41モルに対し0.2モルの割合でCaCO3を溶
解し比重を1.6に調製したもの40重量部)及び水
(35重量部)を加えて、スラリー状に調製する。
耐熱性金属担持母体(たとえばクロム鋼SUH409
の薄板)は、たとえばハニカム極に加工(たとえ
ば特開昭54−25321、特開昭56−4373などの方法
による)し、粗面化処理を行なつておく。
このような準備後、耐熱性金属担体母体を前記
スラリー中に浸漬して被着させ乾燥後加熱処理を
行なう。スラリーの被着後の乾燥は、素材の大き
さにより一定しないが、通常常温〜70℃において
30〜60分間の範囲で行なうことが好ましく、加熱
処理は、5〜6℃/minの加熱速度で昇温し、
550〜600℃において1〜3時間行なうことが好ま
しい。このようにして被着される被膜の厚さは、
前記のスラリーの濃度及び浸漬条件などによつて
制御することができる。前記カツコ内の数値例で
は60〜200μm程度の膜厚で触媒が担体中に均一
に分散して担持された被膜が得られる。
ついでクロム酸水溶液を前記被膜に含浸させ乾
燥、加熱する処理を行なう。ここに使用するクロ
ム酸水溶液は、比重1.6〜1.75の範囲の濃水溶液
であることが好ましく、塗布法あるいは浸漬法な
どによつて前記処理によつて得た被膜に含浸させ
る。その後、常温〜70℃で30〜60分間乾燥し、4
〜6℃/minの昇温速度で550〜600℃とし40〜60
分間熱処理することが好ましい。しかして、これ
らの処理は、少なくとも1回反復繰返して行なう
ものであつて、2〜5回繰返し行なうことが好ま
しい。このようにして、触媒、担体、担持母体を
相互に強固に結合させることができる。
次に、担体を6価クロムを含有するクロム化合
物の濃水溶液でスラリーとして耐熱性金属母体に
被着処理し、触媒をクロム酸との水溶液を含浸処
理した後、クロム酸水溶液処理をする第2の発明
方法においては、たとえば、前記と同様なγ−
Al2O3粉末とCr2O3粉末(たとえば、粒径10μmの
以下、平均粒径2μm、比表面積146m2/g)とを
配合(たとえばγ−Al2O350重量部、Cr2O350重
量部)し、6価クロムを含有するクロム化合物の
濃水溶液(たとえば、H2CrO41モルに対して0.1
モルのCoCO3、及び0.1モルのCaCO3とをH2CrO4
の濃水溶液に溶解し、比重を1.6に調整した溶液、
35重量部)と水(35重量部)とでスラリーを調整
し、前記のようにハニカム型に加工し、粗面化処
理したステンレス鋼304製の担持母体を前記スラ
リー中に浸漬し担体を被着する。このようにして
得られる担体被膜の比表面積は、担体を担持母体
から酸溶解法により剥離させて測定した結果125
〜155m2/g(前記カツコ内数値の例では152m2/
gのもの)が得られる。
ついで、適宜選択した触媒(たとえば、
H2PtCl6・6H2O1重量部、及びPdCl2・2H2O0.4
重量部)をクロム酸水溶液(たとえば、比重1.7、
140重量部)に加え、この溶液中に前記担体を被
着した担持母体を浸漬して含浸させ乾燥後熱処理
を行ない触媒を担持させる。この工程における乾
燥は、50〜60℃において30〜60分間行なうことが
好ましく、加熱処理は、4〜6℃/minの速度で
昇温して550〜600℃において1〜2時間行なうこ
とが好ましい。なお、ここに使用するクロム酸
は、比重1.6〜1.75のような濃水溶液であること
が好ましい。
次に、クロム酸水溶液を前記被膜に含浸・乾
燥・加熱する処理を行なう。ここに使用するクロ
ム酸は、比重1.6〜1.75の範囲の濃水溶液である
ことが好ましく、塗布法あるいは浸漬法などによ
つて前記処理によつて得た被膜に含浸させる。そ
の後、常温〜70℃で30〜60分間乾燥し、5〜7
℃/minの速度で昇温し550〜600℃において40〜
60分間加熱するような条件で処理することが好ま
しい。しかして、これらの処理は、少なくとも1
回反復繰返して行なうものであつて、2〜5回繰
返し行なうことが好ましい。このようにして、触
媒、担体、担持母体を相互に強固に結合させるこ
とができる。
本発明は、耐熱性金属を担持母体とし、これと
酸化物系担体及び貴金属系触媒物質とをCr2O3の
化学結合により被着するようにしたので、これら
を相互に強固に結合し被着し得たものである。し
かして、担持母体を耐熱性金属とし、たとえばハ
ニカム型とした場合、ハニカムコアのセルの壁厚
を40〜50μm程度に薄くすることができ、大きい
比表面積の担持母体が得られるとともに排ガスが
通過するための自由空間断面積を大きくすること
ができ圧力損の低減化が可能となるものである。
さらに、この担持母体に被着した担体も比表面積
すなわち触媒の担持面積をいちじるしく大きくで
き、これらが相まつて触媒反応器の小型化、高活
性能化及び長寿命化を来すことができる。なお、
γ−Al2O3やCr2O3あるいはこれに少量含有させ
ることができるCaOやCoOなどは、いずれも酸化
及び還元の助触媒作用も期待できるものであるな
ど多くのすぐれた効果が認められるものであり、
比較的簡易な操作と熱処理温度が低い方法である
ので工業的触媒担持方法として好適である。
次に、本発明方法の実施例を述べる。
実施例 1
(1) 担体・触媒のスラリーの調製
CrO350重量部を水30重量部に溶解した
H2CrO4の濃水溶液にCaCO312重量部を溶解し
水を加えて比重1.65の水溶液に調製し、この6
価クロムを含む水溶液36重量部に、粒径10μm
以下、平均粒径1μm、比表面積178m2/gのγ
−Al2O3の微粉末150重量部、触媒として
H2PtCl6・6H2O1.5重量部を添加して触媒を溶
解し、これらの混和物をアルミナ質ボールミル
を用いてよく混合してスラリーを調製した。
(2) 担持母体の調製
厚さ0.05mmのステンレス鋼SUS 304薄板を使
用してハニカム型に加工し、表面を粗面化し表
面積約3700cm2、外形寸法39φ×100mmのものに
調製した。
(3) 担体・触媒の担持
(1)において調製したスラリー中に、(2)で調製
した担持母体を浸漬し、担持母体表面にスラリ
ーを被着させ、52℃において60分間乾燥した
後、電気炉を用いて6℃/minで昇温し、600
℃において約100分間加熱処理を行なつた。つ
いで、比重1.6に調製したクロム酸単味の水溶
液中に浸漬してクロム酸を含有させ、60℃に30
分間乾燥後、前記の電気炉中で600℃に40分間
加熱処理し、この含浸−乾燥−加熱処理を行な
う処理を3回繰返し反復施行し、担持母体への
担体及び触媒の被着の補強を行なつた。
(4) 試験結果
このようにして担持母体に被着した膜厚は約
91μm、比表面積174m2/gであり、触媒は担
体量に対し約0.62重量%であつた。
次に、40φ×100mmのSUS 304製の円筒形反
応容器で収納し、SV 5000h-1において触媒の
活性試験を行なつた。実験に使用したガス組成
は、アイドリング時を想定し、CO10%、HC
(C3H8)0.15%、NO0.03%、O27%、N2残部
82.82%(容積割合)とし、その転化率を求め
た。
実験結果は、第1表に示す通り転化率は好成
績が長時間維持されることが認められた。
The present invention relates to a method for supporting a catalyst for purifying exhaust gas from an automobile, which can firmly adhere and hold the catalyst for purifying automobile exhaust gas on a heat-resistant metal-supported matrix together with oxide-based support. Exhaust gas purification catalysts for oxidizing, reducing, and decomposing harmful gases such as CO, hydrocarbons (hereinafter referred to as HC), and NOx contained in automobile exhaust gas are made of platinum (Pt), palladium (Pd), rhodium ( Rh) and other precious metals such as Pt, Pt+Pd, Pt
Precious metal catalysts such as +Pd+Rh are mainstream, and these catalysts are deposited on a carrier supported on a support matrix such as honeycomb-shaped, pellet-shaped, or spherical ceramics, or honeycomb-shaped metal. It is used. In other words, for honeycomb type ceramics, the surface of the skeleton of cordierite ceramics is coated with γ-Al 2 O 3 is mainly used, while for pellet type and spherical types, porous Al 2 O 3 is used. ing. In order to support the catalyst on the support supported by these support bodies, Pt,
A method is known in which the material is impregnated with a solution of a soluble salt of a noble metal such as Pd or Sh, such as a chloride, and then heat treated. Furthermore, in the case of a metallic carrier, a method is known in which a noble metal catalyst substance is deposited and supported on the metal surface using an adhesive such as silicone resin or water glass. Since the reactor for exhaust gas purification is exposed to high temperatures, the heat resistance, thermal shock resistance, and robustness of the catalyst, carrier, and support matrix, as well as an increase in the supporting area of the catalyst, i.e., high activation and durability, are required. The level of demand for sexuality is increasing. For this purpose, a catalyst,
It is desired to improve not only the carrier and the supporting matrix, but also the supporting method.
Compared to ceramic support bases, metallic support bases can significantly increase the supporting area of the support by making the base material thinner, allowing for smaller reactors, ease of matrix processing, and superior thermal shock resistance. It is desirable because it has many advantages such as: However, in the case of a metallic supporting matrix, there is a problem in supporting the carrier and catalyst firmly and imparting heat resistance in order to support the carrier and catalyst by the method described above. As a result of extensive research into catalyst supporting materials, supports, and supporting methods, with a focus on improving heat resistance, thermal shock resistance, and high activation, the present inventors determined that a heat-resistant metal was used as a supporting material, and this and an oxide carrier were used as a supporting material. The present invention was made based on the discovery that Cr 2 O 3 and a noble metal catalyst substance can be firmly adhered to each other by chemical bonding of Cr 2 O 3 . That is, the first aspect of the present invention is to heat-resistant a slurry of at least one kind of soluble salts of platinum, palladium, and rhodium and a concentrated aqueous solution of a chromium compound containing alumina or/and chromium oxide and hexavalent chromium. This is a method for supporting a catalyst for exhaust gas purification, in which the steps of depositing on a metal-supported matrix, drying and heat treatment, impregnating a concentrated aqueous chromic acid solution, drying, and heat treatment are repeated at least once. In the invention, a slurry of alumina or/and chromium oxide and a concentrated aqueous solution of a chromium compound containing hexavalent chromium is deposited on a heat-resistant metal support, dried and heat-treated to form a thin film, and then platinum and
After impregnating a thin film with an aqueous solution of at least one kind of soluble salts of palladium and rhodium and chromic acid, drying and heat-treating the thin film, further impregnating a concentrated aqueous solution of chromic acid, drying, and heat-treating at least once. This is a method of supporting a catalyst for exhaust gas purification that is carried out repeatedly. The heat-resistant metal-supporting matrix in the present invention includes:
For example, SUS302B, SUS304, SUS410L,
Heat-resistant steel such as SUH409, stainless steel, etc. are used. Therefore, in order to fit the reactor with thin plates of these metal materials, for example, a flat plate and a corrugated plate are rolled up and processed into a honeycomb shape. Degreasing and then chemical corrosion treatment, e.g.
It is preferable to carry out surface roughening treatment in advance by etching the matrix using a mixed solution of HNO 3 , HCl, and FeCl 3 +FeCl 2 . The carrier to be deposited on the surface of the carrier matrix is as follows:
For example, porous oxides such as alumina and chromium oxide, with a particle size of 15 μm or less, and an average particle size of 5 μm.
Hereinafter, it is preferable that the fine powder has a specific surface area of 75 m 2 /g or more and the range of particle size distribution is as narrow as possible, and these porous oxides are used alone or in appropriate combinations (for example, γ-Al 2 O 3 30 ~100 parts by weight, Cr2O30 ~
It is preferable to mix it in a range of 70 parts by weight. ) is used. The catalyst is a noble metal such as platinum, palladium, or rhodium, and their soluble salts such as chloroplatinic acid (H 2 PtCl 6 6H 2 O), palladium chloride (PdCl 2 2H 2 O), rhodium chloride (RhCl 3・3H2O )
It is preferable to use it as such. However,
At least one of these is used, and each may be used alone or in an appropriate combination. Catalysts are usually Pt, Pt+Pd, Pt
Since it is used in the form of +Pd+Rh, etc., it is preferable to use it in the form of a solution dissolved in chromic acid.
When each of these is used alone, the soluble salt is preferably in the range of 0.6 to 2.2 parts by weight per 100 parts by weight of the carrier material, and when two types are combined, for example, in the case of Pt + Pd, the Pt salt In the case of 0.6 to 1.2 parts by weight, 2 to 0.4 parts by weight of Pd salt, and Pt+Rh,
1.0 to 1.5 parts by weight of Pt salt, 0.2 to 0.4 parts by weight of Rh salt, or 1.0 to 2.0 parts by weight of Pd salt, Rh salt in the case of Pd+Rh
A blending ratio of 0.3 to 0.6 parts by weight is preferred. Furthermore, in the case of three types such as Pt + Pd + Rh, Pt salt
Preferably, the proportions are 1.0 to 1.5 parts by weight, Pd 0.5 to 1 part by weight, and Rh 0.2 to 0.4 parts by weight. Also, when dissolved in chromic acid, the concentration of chromic acid is
It is preferably in the range of 1.6 to 1.75. Concentrated aqueous solutions of chromium compounds containing hexavalent chromium used to firmly adhere the support and catalyst to the heat-resistant metal-supported matrix include CaCrO 4 , CoCrO 4 ,
The solution is preferably one in which at least one of ZnCrO 4 , CaCO 3 , CoCO 3 , ZnO, Cr 2 O 3 , etc. is dissolved in a concentrated aqueous solution of H 2 CrO 4 , and the content ratio of the compound is determined in the total amount. amount per mole of H 2 CrO 4
A suitable proportion is 0.1 to 0.4 mole.
Concentrated aqueous solutions of H 2 CrO 4 alone can also be used, and the concentrations of these solutions all have a specific gravity of 1.5 to 1.5.
It is preferable to adjust it to 1.7. Such a carrier and catalyst are applied to a carrier matrix together with a concentrated aqueous solution of a chromium compound containing hexavalent chromium or chromic acid by a coating method or a dipping method, and then:
The supporting method will be explained. In the first method of the invention, in which the support and the catalyst are deposited as a slurry with a concentrated aqueous solution of a chromium compound containing hexavalent chromium and impregnated with a chromic acid solution, the catalyst (for example, H 2 PtCl 6・6H 2 O2 parts by weight,
0.7 parts by weight of PdCl 2.2H 2 O and 0.3 parts by weight of RhCl 3.3H 2 O), γ-Al 2 O 3 fine powder (for example, particle size 10 μm)
Below, average particle size 3μm, specific surface area 158m 2 /g, 170
(parts by weight), a concentrated aqueous solution of a chromium compound containing hexavalent chromium (for example, a concentrated aqueous solution of H 2 CrO 4 ).
A slurry is prepared by adding 40 parts by weight of CaCO 3 dissolved at a ratio of 0.2 mol to 1 mol of H 2 CrO 4 to have a specific gravity of 1.6) and water (35 parts by weight).
Heat-resistant metal support (e.g. chrome steel SUH409
The thin plate) is processed into, for example, a honeycomb pole (for example, by the method disclosed in JP-A-54-25321 and JP-A-56-4373) and subjected to surface roughening treatment. After such preparation, a heat-resistant metal carrier base is immersed in the slurry to be coated, dried, and then heat-treated. The drying time after the slurry is applied varies depending on the size of the material, but it is usually at room temperature to 70℃.
It is preferable to carry out the heat treatment for a period of 30 to 60 minutes, and the heat treatment is performed by raising the temperature at a heating rate of 5 to 6 °C/min.
It is preferable to carry out the reaction at 550 to 600°C for 1 to 3 hours. The thickness of the film deposited in this way is
It can be controlled by the concentration of the slurry, dipping conditions, etc. In the numerical example in the above-mentioned box, a film in which the catalyst is uniformly dispersed and supported on the carrier can be obtained with a film thickness of about 60 to 200 μm. Next, the coating is impregnated with an aqueous chromic acid solution, dried, and heated. The chromic acid aqueous solution used here is preferably a concentrated aqueous solution with a specific gravity in the range of 1.6 to 1.75, and is impregnated into the film obtained by the above treatment by a coating method or a dipping method. After that, dry at room temperature to 70℃ for 30 to 60 minutes.
550-600℃ at a heating rate of ~6℃/min 40-60℃
Preferably, the heat treatment is performed for a minute. Therefore, these treatments are repeated at least once, preferably 2 to 5 times. In this way, the catalyst, carrier, and support matrix can be strongly bonded to each other. Next, the support is slurried with a concentrated aqueous solution of a chromium compound containing hexavalent chromium and deposited on a heat-resistant metal matrix, and the catalyst is impregnated with an aqueous solution of chromic acid, followed by a second process in which a chromic acid aqueous solution treatment is performed. In the method of the invention, for example, the same γ-
A mixture of Al 2 O 3 powder and Cr 2 O 3 powder (for example, particle size of 10 μm or less, average particle size of 2 μm, specific surface area of 146 m 2 /g) (for example, 50 parts by weight of γ-Al 2 O 3 , Cr 2 O 3 50 parts by weight) and a concentrated aqueous solution of a chromium compound containing hexavalent chromium (e.g. 0.1 to 1 mole of H 2 CrO 4
mol of CoCO 3 , and 0.1 mol of CaCO 3 and H 2 CrO 4
A solution whose specific gravity was adjusted to 1.6 by dissolving it in a concentrated aqueous solution of
A slurry was prepared with 35 parts by weight) and water (35 parts by weight), and a carrier made of 304 stainless steel processed into a honeycomb shape and roughened as described above was immersed in the slurry to cover the carrier. wear. The specific surface area of the carrier film obtained in this way was measured by peeling the carrier from the supporting matrix using an acid dissolution method125
~155m 2 /g (152m 2 /g in the example of the above figure)
g) is obtained. Then, an appropriately selected catalyst (e.g.
H 2 PtCl 6・6H 2 O1 parts by weight, and PdCl 2・2H 2 O0.4
parts by weight) in a chromic acid aqueous solution (for example, specific gravity 1.7,
140 parts by weight), and the supporting matrix having the carrier coated thereon is immersed in this solution to impregnate it, and after drying, heat treatment is performed to support the catalyst. Drying in this step is preferably carried out at 50 to 60°C for 30 to 60 minutes, and heat treatment is preferably carried out at 550 to 600°C for 1 to 2 hours at a rate of 4 to 6°C/min. . Note that the chromic acid used here is preferably a concentrated aqueous solution with a specific gravity of 1.6 to 1.75. Next, the coating is impregnated with an aqueous chromic acid solution, dried, and heated. The chromic acid used here is preferably a concentrated aqueous solution with a specific gravity in the range of 1.6 to 1.75, and is impregnated into the film obtained by the above treatment by a coating method or a dipping method. After that, dry at room temperature to 70℃ for 30 to 60 minutes, and dry for 5 to 7 minutes.
Increase the temperature at a rate of ℃/min to 40~ at 550~600℃
It is preferable to perform the treatment under conditions such as heating for 60 minutes. However, these processes require at least one
This is carried out repeatedly, preferably 2 to 5 times. In this way, the catalyst, carrier, and support matrix can be strongly bonded to each other. In the present invention, a heat-resistant metal is used as a support base, and an oxide-based support and a noble metal-based catalyst substance are adhered to the support through chemical bonding of Cr 2 O 3 . It was possible to arrive. Therefore, when the support matrix is made of a heat-resistant metal, for example, in a honeycomb shape, the wall thickness of the cells of the honeycomb core can be made as thin as about 40 to 50 μm, and a support matrix with a large specific surface area can be obtained and exhaust gas can pass through. The cross-sectional area of the free space can be increased to reduce pressure loss.
Furthermore, the specific surface area, that is, the catalyst supporting area of the carrier adhered to this carrier matrix can be significantly increased, and these factors can collectively lead to smaller size, higher activity, and longer life of the catalytic reactor. In addition,
γ-Al 2 O 3 and Cr 2 O 3 , as well as CaO and CoO, which can be contained in small amounts in these, are known to have many excellent effects, including the ability to act as a co-catalyst for oxidation and reduction. It is a thing,
Since this method is relatively simple to operate and requires a low heat treatment temperature, it is suitable as an industrial catalyst supporting method. Next, examples of the method of the present invention will be described. Example 1 (1) Preparation of carrier/catalyst slurry 50 parts by weight of CrO 3 was dissolved in 30 parts by weight of water.
Dissolve 12 parts by weight of CaCO 3 in a concentrated aqueous solution of H 2 CrO 4 and add water to make an aqueous solution with a specific gravity of 1.65.
Particle size 10μm in 36 parts by weight of aqueous solution containing valent chromium.
Below, γ with an average particle size of 1 μm and a specific surface area of 178 m 2 /g
−150 parts by weight of fine powder of Al 2 O 3 as catalyst
1.5 parts by weight of H 2 PtCl 6.6H 2 O was added to dissolve the catalyst, and the mixture was thoroughly mixed using an alumina ball mill to prepare a slurry. (2) Preparation of supporting matrix A stainless steel SUS 304 thin plate with a thickness of 0.05 mm was processed into a honeycomb shape, and the surface was roughened to prepare a material with a surface area of about 3700 cm 2 and external dimensions of 39φ×100 mm. (3) Supporting carrier/catalyst The supporting matrix prepared in (2) was immersed in the slurry prepared in (1), the slurry was coated on the surface of the supporting matrix, and after drying at 52°C for 60 minutes, electric Raise the temperature at 6℃/min using a furnace to 600℃.
Heat treatment was performed at ℃ for about 100 minutes. Then, it was immersed in an aqueous solution of simple chromic acid prepared to have a specific gravity of 1.6 to contain chromic acid, and then heated to 60℃ for 30 minutes.
After drying for 1 minute, heat treatment was performed at 600℃ for 40 minutes in the electric furnace, and this impregnation-drying-heat treatment process was repeated three times to strengthen the adhesion of the carrier and catalyst to the carrier matrix. I did it. (4) Test results The thickness of the film deposited on the support base in this way was approximately
91 μm, specific surface area 174 m 2 /g, and the amount of catalyst was about 0.62% by weight based on the amount of carrier. Next, the catalyst was placed in a 40φ×100mm cylindrical reaction vessel made of SUS 304, and a catalyst activity test was conducted at SV 5000h -1 . The gas composition used in the experiment was 10% CO, HC, assuming idling.
(C 3 H 8 ) 0.15%, NO 0.03%, O 2 7%, N 2 balance
The conversion rate was determined as 82.82% (volume ratio). As shown in Table 1, the experimental results showed that a good conversion rate was maintained for a long time.
【表】
又、担体−触媒被膜の被着強さは、担体及び
触媒被膜の表面にエポキシ系樹脂接着剤を使用
して引張試験用治具を接着して剥離試験により
測定したが、引張り強さは435Kg/cm2以上であ
つた。
実施例 2
(1) 担持母体の調製
実施例1と同様にして調製した。
(2) 担体スラリーの調製
粒径10μm、平均粒径1μm、比表面積178
m2/gのγ−Al2O3微粉末70重量部及び粒径
10μm、平均粒径3μm、比表面積146m2/gの
Cr2O3微粉末70重量部に、CrO324重量部を水16
重量部に溶解した比重1.65のH2CrO4濃水溶液
及び水30重量部を加え、アルミナ質ボールミル
を用いてよく混合して担体スラリーを調製し
た。
(3) 触媒の調製
H2PtO6・6H2O1.6重量部、PdCl2・2H2O0.7
重量部及びRhCl3・3H2O0.3重量部を比重1.6に
調製したH2CrO6濃水溶液120重量部に溶解し
て調製した。
(4) 担体・触媒の担持
(1)で調製した担持母体を(2)のように調製した
担体スラリー中に浸漬し担持母体表面に担体ス
ラリーを被着し、実施例1と同様に乾燥した
後、5.5℃/minの速度で昇温して600℃におい
て40分間加熱処理を行なつて担体被膜を形成さ
せた。
ついで、担体を担持した担持母体を(3)のよう
に調整した触媒溶液中に浸漬して担体に触媒を
含浸させ、55℃において60分間乾燥した後、
55.5℃/minの速度で昇温して600℃で100分間
加熱処理を行なつた。
さらに比重1.6に調製したH2CrO4濃水溶液に
よつて実施例1と同様にして含浸−乾燥−加熱
処理を行なう処理を4回繰返し反復し、担持母
体への担体及び触媒の被着の強化を行なつた。
(4) 試験結果
このようにして担持母体に被着した被膜は、
膜厚74μm、比表面積162m2/gであり、触媒
量は担体量に対し約0.48重量%であつた。
次に、実施例1と同様にして触媒の活性試験
を行なつた。実験結果を転化率で示す第2表に
みられるように転化率は好成績が長時間維持さ
れることが認められた。[Table] The adhesion strength between the carrier and the catalyst coating was measured by a peel test using an epoxy resin adhesive attached to the surface of the carrier and the catalyst coating. The weight was over 435Kg/ cm2 . Example 2 (1) Preparation of supporting matrix It was prepared in the same manner as in Example 1. (2) Preparation of carrier slurry Particle size 10 μm, average particle size 1 μm, specific surface area 178
70 parts by weight of γ-Al 2 O 3 fine powder of m 2 /g and particle size
10μm, average particle size 3μm, specific surface area 146m 2 /g.
Add 24 parts by weight of CrO 3 to 70 parts by weight of Cr 2 O 3 fine powder and 16 parts by weight of water.
A concentrated aqueous solution of H 2 CrO 4 having a specific gravity of 1.65 dissolved in parts by weight and 30 parts by weight of water were added and thoroughly mixed using an alumina ball mill to prepare a carrier slurry. (3) Preparation of catalyst H 2 PtO 6・6H 2 O1.6 parts by weight, PdCl 2・2H 2 O0.7
It was prepared by dissolving 0.3 parts by weight of RhCl 3.3H 2 O in 120 parts by weight of a concentrated aqueous solution of H 2 CrO 6 adjusted to a specific gravity of 1.6. (4) Supporting the carrier/catalyst The carrier matrix prepared in (1) was immersed in the carrier slurry prepared as in (2), the carrier slurry was coated on the surface of the carrier matrix, and the mixture was dried in the same manner as in Example 1. Thereafter, the temperature was increased at a rate of 5.5°C/min and heat treatment was performed at 600°C for 40 minutes to form a carrier film. Next, the support matrix carrying the carrier was immersed in the catalyst solution prepared as in (3) to impregnate the carrier with the catalyst, and after drying at 55°C for 60 minutes,
The temperature was increased at a rate of 55.5°C/min, and heat treatment was performed at 600°C for 100 minutes. Furthermore, the impregnation-drying-heat treatment process was repeated four times in the same manner as in Example 1 using a concentrated aqueous solution of H 2 CrO 4 prepared to have a specific gravity of 1.6, thereby strengthening the adhesion of the carrier and catalyst to the carrier matrix. I did this. (4) Test results The film deposited on the support base in this way was
The film thickness was 74 μm, the specific surface area was 162 m 2 /g, and the amount of catalyst was about 0.48% by weight based on the amount of carrier. Next, the activity test of the catalyst was conducted in the same manner as in Example 1. As shown in Table 2, which shows the experimental results in terms of conversion rates, it was observed that good conversion rates were maintained for a long period of time.
【表】
又、担体−触媒被膜の被着強さは、実施例1同
様に測定したが、引張り強さは450Kg/cm2以上で
あつた。[Table] The adhesion strength of the carrier-catalyst film was measured in the same manner as in Example 1, and the tensile strength was 450 Kg/cm 2 or more.
Claims (1)
ちの少なくとも1種類とアルミナ又は/及び酸化
クロムと6価クロムを含有するクロム化合物の濃
水溶液とのスラリーを耐熱性金属担持母体に被着
し乾燥後加熱処理した後、クロム酸濃水溶液を含
浸させ乾燥した後加熱処理する操作を少なくとも
1回反復繰返して施行することを特徴とする排ガ
ス用触媒の担持方法。 2 アルミナ又は/及び酸化クロムと6価クロム
を含有するクロム化合物の濃水溶液とのスラリー
を耐熱性金属担持母体に被着し乾燥後加熱処理し
て薄膜を形成した後、白金・パラジウム・ロジウ
ムの可溶性塩のうちの少なくとも1種類とクロム
酸との水溶液を薄膜上に含浸させ乾燥及び熱処理
をした後、さらにクロム酸濃水溶液を含浸させ乾
燥した後加熱処理する操作を少なくとも1回反復
繰返して施行することを特徴とする排ガス浄化用
触媒の担持方法。[Claims] 1. A slurry of at least one of soluble salts of platinum, palladium, and rhodium and a concentrated aqueous solution of a chromium compound containing alumina or/and chromium oxide and hexavalent chromium as a heat-resistant metal supporting matrix. 1. A method for supporting an exhaust gas catalyst, which comprises repeating at least once an operation of depositing, drying and heat treatment, impregnating with a concentrated aqueous chromic acid solution, drying and heat treatment. 2 A slurry of alumina or/and chromium oxide and a concentrated aqueous solution of a chromium compound containing hexavalent chromium is deposited on a heat-resistant metal-supporting matrix, dried and heat-treated to form a thin film. The thin film is impregnated with an aqueous solution of at least one type of soluble salt and chromic acid, dried and heat treated, and then impregnated with a concentrated aqueous solution of chromic acid, dried, and then heat treated, which is repeated at least once. A method for supporting a catalyst for exhaust gas purification, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59041644A JPS60187339A (en) | 1984-03-05 | 1984-03-05 | Process for supporting catalyst for purifying exhaust gas deposited on carrier by carrier base |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59041644A JPS60187339A (en) | 1984-03-05 | 1984-03-05 | Process for supporting catalyst for purifying exhaust gas deposited on carrier by carrier base |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60187339A JPS60187339A (en) | 1985-09-24 |
JPH0212622B2 true JPH0212622B2 (en) | 1990-03-22 |
Family
ID=12614042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59041644A Granted JPS60187339A (en) | 1984-03-05 | 1984-03-05 | Process for supporting catalyst for purifying exhaust gas deposited on carrier by carrier base |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60187339A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357780A (en) * | 1986-08-26 | 1988-03-12 | Usui Internatl Ind Co Ltd | Production of metallic carrier for exhaust gas cleaning converter |
KR20010037198A (en) * | 1999-10-14 | 2001-05-07 | 이계안 | Diesel oxidation catalyst |
-
1984
- 1984-03-05 JP JP59041644A patent/JPS60187339A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60187339A (en) | 1985-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6107239A (en) | Heat resistant metallic oxide catalyst for reducing pollution emission | |
JPH0653229B2 (en) | Exhaust gas purification catalyst | |
WO1997030194A1 (en) | Multi-layer non-identical catalyst on metal substrate by electrophoretic deposition | |
US5376344A (en) | Three-way catalyst for automotive emission control | |
JP2001232195A (en) | Catalyst body | |
KR101528334B1 (en) | a micro channel reactor and a fabricating method thereof | |
US4410454A (en) | Noble metal and rare earth metal catalyst | |
JPH0212622B2 (en) | ||
JPH0647286A (en) | Porous carrier for catalyst consisting of metal oxide-coated metal and its production | |
JP2851459B2 (en) | Metal-based catalyst and method for producing the same | |
JPH10277389A (en) | Catalyst for cleaning exhaust gas | |
JPH0663423A (en) | Production of catalyst element | |
JPH0244580B2 (en) | ||
US4719197A (en) | Process for making a carrier-supported catalyst | |
JPS6031828A (en) | Catalyst for purifying exhaust gas and its preparation | |
JP4547607B2 (en) | Exhaust gas purification catalyst | |
JPS6320036A (en) | Production of catalyst for purifying exhaust gas | |
RU2745741C1 (en) | Method for producing catalyst and ammonia oxidation catalyst itself | |
JPS6260937B2 (en) | ||
JP2716824B2 (en) | Preparation method of metal catalyst for exhaust gas treatment and metal catalyst | |
JP2831113B2 (en) | Metal catalyst and its production method | |
JP3327164B2 (en) | Catalyst body and method for producing the same | |
JPS5944101B2 (en) | Method for producing catalyst composition | |
JPH04122440A (en) | Metal catalyst and its preparation | |
JPH04180835A (en) | Production of catalyst for purifying exhaust gas |