JPH02126197A - Recycling pump controller - Google Patents
Recycling pump controllerInfo
- Publication number
- JPH02126197A JPH02126197A JP63279273A JP27927388A JPH02126197A JP H02126197 A JPH02126197 A JP H02126197A JP 63279273 A JP63279273 A JP 63279273A JP 27927388 A JP27927388 A JP 27927388A JP H02126197 A JPH02126197 A JP H02126197A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- signal
- neutron flux
- recirculation pump
- scram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004064 recycling Methods 0.000 title abstract 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 230000004907 flux Effects 0.000 claims abstract description 25
- 230000007423 decrease Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 6
- 238000003780 insertion Methods 0.000 abstract description 6
- 230000037431 insertion Effects 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、再循環ポンプ制御装置に係り、制御棒不挿入
事象時に原子炉の熱的裕度を確保するのに好適な再循環
ポンプ制御装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a recirculation pump control device, and is a recirculation pump control suitable for ensuring thermal margin of a nuclear reactor during a control rod non-insertion event. Regarding equipment.
第2図に原子力発電プラントの構成の概要を示す。原子
炉1で発生した水・蒸気の二相流は、蒸気ドラム2で気
水分離される。凝縮水と給水ポンプ7からの給水との混
合水は、下降管3を経て再循環ポンプ4へ導かれ、ここ
で昇圧して、再び、原子炉1へ戻る。一方、蒸気ドラム
2で気水分離された蒸気は、蒸気タービン5を回転させ
た後。Figure 2 shows an overview of the configuration of a nuclear power plant. A two-phase flow of water and steam generated in the nuclear reactor 1 is separated into steam and water in the steam drum 2. The mixed water of the condensed water and the feed water from the feed water pump 7 is led to the recirculation pump 4 through the downcomer pipe 3, where it is pressurized and returns to the reactor 1 again. On the other hand, the steam separated from steam and water in the steam drum 2 is rotated by the steam turbine 5 and then released.
復水器6で凝縮水として回収され、給水ポンプ7で昇圧
されて蒸気ドラム2に給水される。隔離給水ポンプ8は
、蒸気ドラム2の水位が異常に低下した場合に、十分な
原子炉冷却水を確保するために、冷却水貯蔵プール9の
冷却水を昇圧し、蒸気ドラム2に給水するものである。The water is recovered as condensed water in the condenser 6, and the pressure is increased by the water supply pump 7, and the water is supplied to the steam drum 2. The isolated water supply pump 8 boosts the pressure of the cooling water in the cooling water storage pool 9 and supplies water to the steam drum 2 in order to ensure sufficient reactor cooling water when the water level in the steam drum 2 drops abnormally. It is.
何らかの異常により原子炉スクラムが発生し、原子炉内
の中性子束が低下しているにもかかわらず、再循環ポン
プ4を回し続けると、冷却水中のボイドが急激に減少す
るので、蒸気ドラム2の水位が隔離給水ポンプ8の作動
水位まで低下する。Even though a reactor scram has occurred due to some abnormality and the neutron flux in the reactor has decreased, if the recirculation pump 4 continues to run, the voids in the cooling water will rapidly decrease, and the steam drum 2 will increase. The water level drops to the operating water level of the isolation water pump 8.
隔離給水ポンプ8を作動させると、蒸気ドラム2に冷水
が注入されて温度が急激に低下するので、熱応力の観点
から隔離給水ポンプ8の不必要な作動は、極力避けなく
てはならない。When the isolated feed water pump 8 is operated, cold water is injected into the steam drum 2 and the temperature drops rapidly, so unnecessary operation of the isolated feed water pump 8 must be avoided as much as possible from the viewpoint of thermal stress.
原子炉スクラム時に、蒸気ドラム2の水位が低下するこ
とは、あらかじめ予想できることであるので、この水位
の低下を何らかの方法で抑えることが望ましい。Since it can be predicted in advance that the water level in the steam drum 2 will decrease during the reactor scram, it is desirable to suppress this decrease in water level by some method.
そこで、従来の装置は、特開昭59−50395号公報
に記載のように、原子炉スクラム時には再循環ポンプを
トリップさせるごとにより、ボイドの減少を防止し、蒸
気ドラムの水位の低下を抑えていた。Therefore, as described in Japanese Unexamined Patent Application Publication No. 59-50395, conventional equipment trips the recirculation pump every time a reactor scram occurs, thereby preventing the reduction of voids and suppressing the drop in the water level in the steam drum. Ta.
第4図は、原子炉スクラム時に再循環ポンプをトリップ
させる方式の従来技術を示す説明図である。安全保護系
論理回路10から、原子炉スクラム信号が発せられると
、図には記載していない制御棒が炉心に挿入される。原
子炉スクラム信号により、直接、再循環ポンプを]・リ
ップさせると。FIG. 4 is an explanatory diagram showing a conventional technique of tripping a recirculation pump during a reactor scram. When a reactor scram signal is issued from the safety protection system logic circuit 10, control rods (not shown) are inserted into the reactor core. The reactor scram signal causes the recirculation pump to lip directly.
原子炉が熱的にきびしくなることから、タイマ11によ
り時間遅れを持たせ、再循環ポンプ制御装置12より再
循環ポンプ電源しゃ断器13のトリップ信号を発するこ
ととしている。第5図は、原子炉スクラム後、再循環ポ
ンプをトリップしたときの中性子束、再循環流量、蒸気
ドラム水位変化を示したものであり、原子炉トリップ時
にも、再循環ポンプを運転し続けた場合の蒸気ドラムの
水位変化を破線で示す。図により、再循環ポンプをトリ
ップすることで、隔離給水ポンプの起動をまぬがれてい
ることが分る。なお、タイマの設定時間は、なるへく長
い方が熱的には楽になるので。Since the reactor becomes thermally severe, a timer 11 is used to provide a time delay, and the recirculation pump control device 12 issues a trip signal for the recirculation pump power breaker 13. Figure 5 shows the neutron flux, recirculation flow rate, and steam drum water level changes when the recirculation pump was tripped after the reactor scram. The dashed line shows the water level change in the steam drum when The figure shows that by tripping the recirculation pump, the isolation water pump is prevented from starting. In addition, the longer the timer setting time, the easier it will be thermally.
設定誤差を考慮しても隔離給水ポンプ起動水位に至らな
い値でなるべく長い時間に設定している。Even considering the setting error, the time is set to a value that does not reach the starting water level of the isolated water supply pump, and for as long as possible.
上記従来技術は、安全保護系論理回路が原子炉スクラム
信号を発したにもかかわらず、制御棒が挿入されない(
原子炉スクラムしない)事象の想定を新たに設計条件と
して加えた場合、原子炉を冷却する」二で問題がある。In the above conventional technology, the control rods are not inserted even though the safety protection system logic circuit has issued the reactor scram signal (
If we add the assumption of an event in which the reactor does not scram as a new design condition, there is a problem with "cooling the reactor."
即ち、再循環ポンプをトリップさせた後の再循環流量は
、自然循環流量となり、原子炉を冷却するために十分な
流量でなく、原子炉の熱的裕度り確保できない。That is, the recirculation flow rate after the recirculation pump is tripped becomes a natural circulation flow rate, which is not sufficient to cool the reactor, and the thermal margin of the reactor cannot be secured.
本発明の目的は、原子炉スクラム時に制御棒が挿入され
ない事象を想定した場合にも、原子の熱的裕度を確保す
ることのできる再循環ポンプ制御装置を提供することに
ある。An object of the present invention is to provide a recirculation pump control device that can ensure thermal margin of atoms even when assuming an event in which a control rod is not inserted during a reactor scram.
」ユ記目的は、原子炉スクラム信号が発せられ。 ” The purpose of the reactor scram signal is issued.
原子炉内の中性子束が低下したときにのみ再循環ポンプ
をトリップさせることにより達成される。This is accomplished by tripping the recirculation pump only when the neutron flux within the reactor drops.
第3図を用いて本発明による動作を説明する。 The operation according to the present invention will be explained using FIG.
安全保護論理回路10から、原子炉スクラム信号が発せ
られると、図には記載していない制御棒が炉心に挿入さ
れ、中性子束が吸収される。原子炉内の中性子束は、常
に、計測されており、中性子束計装回路14からは、中
性子束の量に相当する信号が設定器15に出力される。When a reactor scram signal is issued from the safety protection logic circuit 10, control rods (not shown) are inserted into the reactor core and neutron flux is absorbed. The neutron flux within the reactor is constantly measured, and the neutron flux instrumentation circuit 14 outputs a signal corresponding to the amount of neutron flux to the setting device 15.
その信号が、設定器15で設定された値以下になったら
、設定器15より中性子束低信号を発する。設定器15
からの中性子束低信号と安全保護系論理回路】、Oから
の原子炉スクラム信号は、ANDロジックが組まれてお
り、両信号が発せられた時にのみ、再循環ポンプ制御装
置】−2より再循環ポンプ電源しや断器1.3を開く信
号を発することになる。また、中性子束低信号の設定値
を、再循環流量が自然環境による流量となっても原子炉
を十分冷却可能な時点での中性子束の量とすることによ
り、従来技術で設置していたタイマは不要どなる。When the signal becomes equal to or less than the value set by the setting device 15, the setting device 15 issues a neutron flux low signal. Setting device 15
The low neutron flux signal from the recirculation pump controller]-2 and the reactor scram signal from the safety protection system logic circuit are combined with AND logic, and only when both signals are issued, the recirculation pump control device This will generate a signal to open the circulation pump power source and disconnector 1.3. In addition, by setting the neutron flux low signal setting value to the amount of neutron flux at which the reactor can be sufficiently cooled even if the recirculation flow rate reaches the flow rate due to the natural environment, the timer installed with conventional technology can be is unnecessary.
原子炉スクラム信号が発生し、制御棒が炉心に挿入され
た場合には、再循環ポンプをトリップさせることにより
、ボイドの減少を防ぎ、蒸気ドラムの水位の低下を抑え
ろ。また、原子炉スクラム信号が発生しても制御棒が炉
心に挿入されない時には、中性子束が減少しないので、
再循環ポンプをトリップさせる信号が出ないため、再循
環ポンプは回転し続け、原子炉の熱的裕度を確保するこ
とができる。When a reactor scram signal is generated and a control rod is inserted into the core, trip the recirculation pump to prevent void reduction and reduce the drop in steam drum water level. In addition, even if a reactor scram signal is generated, when the control rods are not inserted into the reactor core, the neutron flux does not decrease.
Since there is no signal to trip the recirculation pump, the recirculation pump continues to rotate, ensuring the reactor's thermal margin.
以丁、本発明の一実施例を第1図により説明する。第1
図は、原子炉スクラム時に、特に、関連するシステムの
概要を示したものであり、第2図に記載した蒸気ドラム
からタービンまでのライン等は割愛している。安全保護
系論理回路10には。An embodiment of the present invention will now be described with reference to FIG. 1st
The figure particularly shows an overview of the system involved during the reactor scram, and the lines from the steam drum to the turbine etc. shown in FIG. 2 are omitted. In the safety protection logic circuit 10.
常時、プラントの主要なプロセス量の状態や機器の状態
が入力され、その状態が特に異常なものであれば、原子
炉スクラム信号を発する。原子炉スクラム信号が、制御
棒駆動機構16に入力されると制御棒17が炉心に急速
挿入され7原子炉が停止する。The status of the plant's main process quantities and equipment is constantly input, and if the status is particularly abnormal, a reactor scram signal is issued. When the reactor scram signal is input to the control rod drive mechanism 16, the control rods 17 are rapidly inserted into the reactor core, and reactor 7 is shut down.
また、原子炉のスクラム時には、炉心の発熱が急激に低
下し、ボイドの量が減少することにより、蒸気ドラム2
の水位が異常に低下することになる。In addition, during a reactor scram, the heat generation of the core decreases rapidly and the amount of voids decreases, causing the steam drum 2
The water level will drop abnormally.
これを防ぐには、原子炉スクラム後、再循環ポンプ4を
1−リップさせ、ボイドの減少を防ぐことが、イJ効で
あるが、原子炉スクラム信号が発せられたにもかかわら
ず、制御棒が挿入されない事故を想定した場合、十分に
炉心を冷却することができなくなり1問題であるため、
原子炉スクラム時に原子炉内の中性子束の減少により、
制御棒4の挿入が確認された時点で、再循環ポンプ4を
トリップさせることとする。In order to prevent this, it is effective to set the recirculation pump 4 to 1-rip after the reactor scram to prevent the decrease in voids, but even though the reactor scram signal is issued, the control If we assume an accident in which the rod is not inserted, the reactor core will not be able to be cooled sufficiently, which is one problem.
Due to the decrease in neutron flux inside the reactor during reactor scram,
When the insertion of the control rod 4 is confirmed, the recirculation pump 4 is tripped.
原子炉内には、複数の中性子束検出器18が設置されて
おり、これらの出力信号は、中性子束計装回路14内の
平均回路19で平均値が求められる。原子炉スクラム時
にはその平均値が、設定器15で設定された値以丁とな
った場合にのみ、再循環ポンプ4をトリップさせる。な
お、設定器15の設定値は、原子炉スクラム後に再循環
ポンプ4運転継続により炉心を冷却し続けなければなら
ない時間を上限とし、蒸気ドラム2の水位が、隔離給水
ポンプ起動水位に至るまでの時間を上限とする範囲に制
限される。A plurality of neutron flux detectors 18 are installed in the nuclear reactor, and the average value of these output signals is determined by an averaging circuit 19 in the neutron flux instrumentation circuit 14. During reactor scram, the recirculation pump 4 is tripped only when the average value is equal to or greater than the value set by the setting device 15. The setting value of the setting device 15 is set as the upper limit for the time during which the core must be cooled by continuing operation of the recirculation pump 4 after the reactor scram, and the time required for the core to continue to be cooled by continuing operation of the recirculation pump 4 after the reactor scram. Limited to an upper limit of time.
制御棒不挿入事象時の、制御棒駆動系のバックアップと
して、硼酸急速注入系を動作させる。A rapid boric acid injection system will be operated as a backup for the control rod drive system in the event of control rod non-insertion.
中性子H1装回路】4内の平均回路19から出力される
中性子束平均値、及び、安全保護系論理回路10からの
原子炉スクラム信号を、制御棒不挿入事象判断回路20
に入力する。、原子炉スクラム信号が出力されたにもか
かわらず、中性子束が減少しない場合には、制御棒不挿
入事象の発生と判断し、硼酸急速注入弁21を開くこと
により、硼酸貯蔵タンク22内の中性子吸収材である硼
酸水を炉心に注入する。[Neutron H1 installation circuit] The average value of neutron flux outputted from the averaging circuit 19 in 4 and the reactor scram signal from the safety protection system logic circuit 10 are sent to the control rod non-insertion event judgment circuit 20.
Enter. If the neutron flux does not decrease even though the reactor scram signal is output, it is determined that a control rod non-insertion event has occurred, and the boric acid rapid injection valve 21 is opened to drain the boric acid storage tank 22. Boric acid water, which is a neutron absorbing material, is injected into the reactor core.
本発明によれば、原子炉スクラム時に制御棒が確実に炉
心に挿入された場合には、再循環ポンプをトリップさせ
、蒸気ドラムの水位の低下を抑えることができ、制御棒
の不挿入事象時には、再循環ポンプを運転し続け、原子
炉を冷却するので、原子炉の熱的裕度を確保することが
できる。According to the present invention, if a control rod is reliably inserted into the reactor core during a reactor scram, the recirculation pump can be tripped and the drop in the water level in the steam drum can be suppressed, and in the event of a control rod not being inserted, the recirculation pump can be tripped. Since the recirculation pump continues to operate and cools the reactor, the thermal margin of the reactor can be secured.
第1図は、本発明の一実施例の再循環ポンプ停止方式を
用いた原子炉停止系の系統図、第2図は、原子力発電プ
ラントの系統図、第3図は、本発明の再循環ポンプ停止
方式の説明図、第4図は、従来の再循環ポンプ停止方式
の説明図、第5図は、原子炉スクラム後再循環ポンプを
トリップさせた時の蒸気ドラムの水位等を示すグラフで
ある。
■・・・原子炉、2・・・蒸気ドラム、4・・・再循環
ポンプ、5・・・タービン、7・・・給水ポンプ、8・
・・隔離給水ポンプ、10・・・安全保護系論理回路、
12・・・再循環ポンプ制御装置、13・・・再循環ポ
ンプ電源しゃ断器、14・・・中性子束計装回路、15
・・・設定器、・中性子束検出器、
・・平均回路、
20 ・・
制御捧不副人−ダ象判定回路。FIG. 1 is a system diagram of a nuclear reactor shutdown system using a recirculation pump shutdown method according to an embodiment of the present invention, FIG. 2 is a system diagram of a nuclear power plant, and FIG. Figure 4 is an explanatory diagram of the pump stop method. Figure 4 is an explanatory diagram of the conventional recirculation pump shutdown method. Figure 5 is a graph showing the water level in the steam drum when the recirculation pump is tripped after the reactor scram. be. ■...Nuclear reactor, 2...Steam drum, 4...Recirculation pump, 5...Turbine, 7...Water pump, 8...
...Isolated water supply pump, 10...Safety protection system logic circuit,
12... Recirculation pump control device, 13... Recirculation pump power breaker, 14... Neutron flux instrumentation circuit, 15
...Setter, -Neutron flux detector, -Averaging circuit, 20...Control/defect judgment circuit.
Claims (1)
クラム時に、前記再循環ポンプをトリップ、又は、減速
させて蒸気ドラム、又は、原子炉の水位低下を抑える方
式であつて、原子炉スクラム信号の発生後、中性子束の
低下等により制御棒が挿入されたことが、確認された時
のみ、前記再循環ポンプをトリップさせることを特徴と
する再循環ポンプ制御装置。1. A method of tripping or slowing down the recirculation pump during reactor scram in a nuclear power plant having a recirculation pump to suppress the water level drop in the steam drum or the reactor, which is based on the reactor scram signal. A recirculation pump control device characterized in that the recirculation pump is tripped only when it is confirmed that a control rod has been inserted due to a decrease in neutron flux or the like after the occurrence of a neutron flux.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63279273A JPH02126197A (en) | 1988-11-07 | 1988-11-07 | Recycling pump controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63279273A JPH02126197A (en) | 1988-11-07 | 1988-11-07 | Recycling pump controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02126197A true JPH02126197A (en) | 1990-05-15 |
Family
ID=17608868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63279273A Pending JPH02126197A (en) | 1988-11-07 | 1988-11-07 | Recycling pump controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02126197A (en) |
-
1988
- 1988-11-07 JP JP63279273A patent/JPH02126197A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5642091B2 (en) | Reactor transient mitigation system | |
US4948551A (en) | Method of protecting a pressurized water nuclear reactor against failures in its emergency stop means | |
US5528639A (en) | Enhanced transient overpower protection system | |
JPH0640143B2 (en) | Nuclear power plant control method and apparatus | |
US3702281A (en) | Removal of heat from a nuclear reactor under emergency conditions | |
JP7026019B2 (en) | Reactor shutdown equipment, nuclear plant and reactor shutdown method | |
US4716009A (en) | Dropped rod protection insensitive to large load loss | |
JPH02126197A (en) | Recycling pump controller | |
JP2019148518A (en) | Nuclear reactor shutdown device, nuclear reactor shutdown method and reactor core design method | |
JP6505889B1 (en) | Abnormality alleviation facility for nuclear reactor and method for judging adherence of control rod | |
JP3095485B2 (en) | Full capacity turbine bypass nuclear power plant | |
JP6678606B2 (en) | Valve closing speed control device, boiling water nuclear power plant, and method of operating boiling water nuclear power plant | |
JP2024102556A (en) | Abnormality mitigation facility of nuclear reactor and method for mitigating abnormality in nuclear reactor | |
JP2008157944A (en) | Protection system for and method of operating nuclear boiling water reactor | |
JP3095468B2 (en) | Reactor scram suppression device | |
Strawbridge et al. | Exclusion of core disruptive accidents from the design basis accident envelope in crbrp | |
JPS6128893A (en) | Nuclear power plant | |
JP2818941B2 (en) | Boiling water reactor | |
Kawashima et al. | Decay Heat Removal System of Monju | |
JPH0156716B2 (en) | ||
JPH02170099A (en) | Controller for nuclear reactor | |
Sotsu et al. | Unplanned shutdown frequency prediction of FBR Monju using fault tree analysis method | |
JPS5967498A (en) | Control device for reactor core cooling system | |
JP2815591B2 (en) | Recirculation pump protector | |
JPH09257980A (en) | Internal pump system |